Rockchip Secure Boot Application Note

Version:1.9

Email:zyf@rock-chips.com hjh@rock-chips.com

Date:2018.06

Classification level:Publicity

Preface

Terms

Sector

Sector size is 512 bytes

eFuse

One-Time Programmable Memory IP in SOC

Introduction

This document describes how to implement Rockchip secure boot solution.

Secure boot mechanism is for verifying firmware validity, which aims to prevent invalid firmware upgrade
and booting.

The device which had programmed eFuse will enable secure boot ROM, and could not boot from the un-
signed firmware. So trying to upgrade un-signed firmware or unmatched key signed firmware will fail.

NOTE: The valid signed firmware can boot smoothly on fake copies of device circuit board or same CPU
platform hardware. Secure boot will verify the validity of software, but not hardware.

This document applies to RK3126, RK3128, RK3228, RK3229, RK3288, RK3368, RK3399, RK3228H, RK3328
and RK3326, RK3308 and PX30.

Features of secure boot:

e Support secure boot ROM
e Support SHA256

e Support RSA2048

e Support eFuse hash to verify public key
The relative tool and loader revision:

e MiniloaderV2.19 or the latest revision

e Uboot V2.170r the latest revision

e Efuse tool V1.35 or the latest revision

af://n0
mailto:zyf@rock-chips.com
mailto:hjh@rock-chips.com
af://n11

e SecureBootTool 1.79 or the latest revision

e RKBatchTool 1.8 or the latest revision(deprecated, Use FactoryTool instead)

e FactoryTool 1.39 or the latest revision

History
Revision Date
1.0 2014-11-05
1.1 2015-12-21
1.2 2016-02-02
1.3 2016-09-29
1.4 2016-11-15
1.5 2016-11-16
1.6 2017-02-15
1.7 2017-05-19
1.8 2017-10-30
1.9 2018-06-05

Contents

Description

Original document
Update secure boot tool
Update secure boot tool
Re-edit

Add detailed description of workflow

1. Add terms and definitions.2. Add eFuse layout.

Add RK3328 and RK3228H.
Add sequence chart and note
Refactor the format and add hardware info

Add OTP program public key hash flow

Rockchip Secure Boot Application Note
Preface

1 Architecture

1.1 Secure Boot Process
1.2 Secure Boot Sequence

1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
1.4 U-Boot Boot to Boot Image with Linux kernel)

1.5 U-Boot Boot to Recovery

2 eFuse Layout
3 Overall Operation Flow

3.1 Make Update.img
3.2 Firmware Sign

3.3 Programming eFuse

3.4 Firmware Upgrade

3.5 Ensure that Secure Boot has been Enabled
4 Make Update.img

4.1 Generate Images
4.2 Make Update.img

5 Firmware Sign Flow

5.1 Generating RSA key
5.2 Save RSA key
5.3 Loading RSA key

Author
ZYF
YBC
YHC
ZYF
Joshua
Joshua
ZYF

77|

cw

CF

5.4 Configuration
5.5 Sign Firmware
6 Programming eFuse
6.1 Hardware Conditions
6.1.1 eFuse Programming
6.1.2 OTP Programming
6.2 Tool Ul
6.3 Load the Signed Firmware
6.4 Click 'run' Button to Start
6.5 Programming eFuse
6.6 Programming OTP
7 Firmware Upgrade
7.1 Firmware Upgrade
8 Verification
8.1 Check Secure Flag
8.2 Secure Boot Test

1 Architecture
1.1 Secure Boot Process

Data process in

Boatram Data storage OBM Cods

SHAZ256
DOBM Code

L

SHA255 DS of Digital RS.U:EMB
DBM Signature of Decypiion

0OBM Code

HASH of RSAZ048 ’
OBM Code Encyption Digital

b signature

/

Data generate

OBM ¥
pio il i HASH of i

SHA256 [+—— Public Key

HASH of
pubkey

/L

SHAZSE

d—{ Public Key H-

Figure 1-1 Secure boot process

1.2 Secure Boot Sequence

af://n149
af://n150
af://n155

Varfies&Loads&Runs
¥

Secura OS{0OP-TEE) |
Verifie&Loads&Runs
BootLoader(1step) Run l

WerifieBloads— | Boolloader(2step) |

¥ Linuz Kamel |

Varfisloads&Ru ! |
SLOVETY L

Mode |

|

|

|

Initrd{ boelima)

L | I

fas
| VerifiefLoads&Runs

Linuxinitprocess & | | padsgRung | Jsyatem

imit.rc {from initrd}

Android framewark Signed
code I Losds&Runs) Ieystemidata
Unsigrad
Andreid fully active

\J

Figure 1-2 Secure boot sequence

1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)

af://n160

HASH in OTP

MASKROM

.

Get Public Key

HASH(SHA256) of public
key

Get raw binary of first
loader

3
HASH(SHA256) of raw
binary

YES

v

(Loading first loader)

MATCH?

Boot failed

Get digital Signature

r

RSA2048 encryption

NO

Figure 1-3 MaskRom to loader sequence

First loader layout in user partition of flash

Table 1-1 First loader data layout

0-63 sector

first loader(8128 sector)(5 copys)

0-2047
2048-4095

4096 -

Boot loader copy(4) partition
0-2047
2048-4095

4096 -

» Bootfailed |

64 sector reverse

Boot loader partition

loader header

public key and digital signature

raw binary

loader header

public key and digital signature

raw binary

The structure of public key and digital signature layout at address 2048 to 4095:

typedef struct tag_second_loader_hdr:

{1
unsigned char magic[LOADER_MAGIC_SIZE]; // "LOADER ".
+

unsigned int loader_load_addr, /* physical load addr ,default is Ox60000000%/ .

unsigned int loader_load_size; /* size in bytes */4
unsigned int crc32; frorc32 ®y
unsigned int hash_len; ¥ 200r 32,0 is no hash*/.

unsigned char hash[LOADER_HASH_SIZE];, /* sha */:

+

unsigned char reserved[1024-32-32];.

uint32 signTag; //0x4E474953, "N 'G" 'T' 'S"y

uint32 signlen; /f2564

unsigned char rsaHash[256]; /*digital signature */4

unsigned char reserved2[2048-1024-256-8];:
}second_loader_hdr; //Size:2K«

Figure 1-4 Second_loader_hdr struct
Digital signature: unsigned char rsaHash[256];
| Step 1: Get public key from first loader partition

| Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go to next
step, otherwise booting failed.

| Step 3: Calculate the hash(SHA256) of raw binary and compare it with RSA2048 encryption (have been
obtained in step 1) of digital signature, if matched, loading successfully and deliver the public key to U-Boot,
otherwise booting failed.

1.4 U-Boot Boot to Boot Image with Linux kernel)

af://n216

Get Public Key passing

from first loader

Y
HASH{SHAZ56) of
public key
NO
HASH in OTP @ Boot failed)
YES
F
Get raw binary of boot .. .
image Get digital Signature
HASH(SHAZ256) of raw RSA2048 encryption |-
hinary
MATCH?
NO Ve
Goading boot imaga =\\ Boot failed)
Figure 1-5 U-Boot to boot sequence
Table 1-2 Boot data layout
boot.img 0-2047 header
2048-4095 digital signature
4096- kernel,ramdisk,dtb...

The structure of layout 0-2047(header):

#define BOOT_MAGIC_SIZE 8
ftdefine BOOT_NAME SIZE 16
#define BOOT_ARGS_SIZE 512
typedef struct tag_boot_img_hdr{
unsigned char magic[BOOT_MAGIC_SIZE]; /*“ANDROID!"*/
unsigned int kernel_size; /¥ size in bytes */
unsigned int kernel addr; /* phyvsical load addr */
unsigned int ramdisk_size; /* size in bytes */
unsigned int ramdisk addr: /* phvsical load addr */
unsigned int second_size; /¥ size in bytes */
unsigned int second_addr; /* physical load addr */
unsigned int tags_addr; /* physical addr for kernel tags */
unsigned int page_size; /* flash page size we assume */
unsigned int unused[2]; /¥ future expansion: should be 0 */
unsigned char name[BOOT_NAME_SIZE]: /* asciiz product name */
unsigned char cmdline[BOOT_ARGS SIZE]:
unsigned int id[8]; /* timestamp / checksum / shal / etc */
unsigned char reserved[0x400-0x260]
uint32 signTag; //0xdE474953
uint32 signlen; //128
unsigned char rsaHash[128]: /* digital signature #*/
Jboot_img_hdr;

Figure 1-6 Boot_img_hdr struct
Digital signature: unsigned char rsaHash[128];
| Step 1: U-Boot get public key obtained from first loader.

| Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go to next
step, otherwise booting failed.

| Step 3: Hash(SHA256) of raw binary and compare it with RSA2048 encryption(using public key get in step 1)
of digital signature, if matched, boot to linux kernel, otherwise booting failed.

1.5 U-Boot Boot to Recovery

The same as boot to boot image, detail please refer to chapter1.4.

2 eFuse Layout

RK3368, RK3288, RK3229 and RK3228 used 1024 bits eFuse for secure boot, data layout:

Table 2-1 eFuse data layout

af://n260
af://n264

32-bit Word Addressing Description

0x00 Security flagBits [7:0] security enable flag Bits [31:8] reserved
0x01-0x3 Reserved

0x04-0x07 Reserved

0x8-0xF RSA public key hash

0x10-0x17 Reserved

0x18 Reserved

0x19-0x1A Reserved

0x1B-0x1D Reserved

Ox1E Reserved

Ox1F eFuse write lock bits

RK3228H and RK3328 used 7680 bits OTP for secure boot, data layout:

Table 2-2 OTP data layout

32-bit Word

PR e Description

0-63 Public Key (N)

64-127 Public Key (E)

128 Security flagBits [7:0] Oxff: security enable flagBits [15:8] RSA_E size (word
uint)Bits [31:16] Reserved

129 Trusted Firmware revocation counter (ID #0)

130-131 Non-trusted Firmware revocation counter (ID #1)

132-239 Reserved

3 Overall Operation Flow

af://n332

bioot.img
i sC.img
FECOvery . imdg
system.img
XA\ bootloader bin

package-file

update.img

privatekey bin

M ake update.img

Firmaare Sign

ublickey. bin
4] Y Y,

update_signed.img

Frogramming EF USE

Figure 3-1 Secure boot operation process

3.1 Make Update.img

See Make update.img

3.2 Firmware Sign

Firmerare Upgrade

,

Ensure that secure boot has been
enabled

af://n339
af://n344

See Firmware Sign Flow

3.3 Programming eFuse

See Programming eFuse

3.4 Firmware Upgrade

See Firmware Upgrade

3.5 Ensure that Secure Boot has been Enabled

See Verification

4 Make Update.img

4.1 Generate Images

After build Android,use the following script to generate images:

./mkimage.sh ota

projectsebcgon:hfrgleasefRH3288/midf5.1$./mkimage.sh ota
TARGET PRODUCT=rk3288

TARGET HARDWARE=rk30board

5ystem_filesysystem is ext4

make ota images...

gxeate boot.img with kernel... done,
feate recovery.img with kernel... done.
create misc.img.... done.

create system.img... done.

Figure 4-1 Script to generate images

4.2 Make Update.img

Refer to RKTools/windows/AndroidTool/rockdev/package-file. This file controls which files will be packaged.

Take RK3288, for example. Change bootloader path, commentaries resource and kernel lines, set backup to
RESERVED.

af://n349
af://n354
af://n359
af://n363
af://n364
af://n373

| package-£iled

NAME Relative path

3

$HWDEF HWDEF
package-file package-file

bootloader Image/RE32BEUbootLoaded.bin I
DATrAmMSTEY rk3ZB8-3.10-uboot .paramecer. TXL
$uboor Image/uboot . 1mg

misc Image/misc.img

fresource Image/resource.img
:_ke:nel Image/kernel.jimg

boot Image/boot.img

recovery Image,/recovery.img

aystem Image/syscemn. img

$ EE MpackuptEATCHREE S S (updare. ing)

$ SELF 2XET, FTHIEIH (update.ing) H 2

t ZEAFASE TN, T ASELFIHSNAE, BELHAEESLFIEE
5

ERAFE TN, RESsELFTANAL.
LEEERVED T S5 -
I backup RESERVED |
update-script update-script

IECOVEer-script rECOVer-scriptr

Figure 4-2 Package-file to control the packaging

Copy RKTools/windows folders to windows system, then run AndroidTool/rockdev/mkupdate.bat to

generate the update.img.

GO -1 + frarwires » e »

FEHF) ER(E) EBMV TAM WEH)

iR - mEsEs - HE - L amh s
- B Android Firmware Package Tool v1.62
[.
— . Adminis
& R backupimage
| § 14 Image
gt ke s - | 5 | AFPTool.exe
- package-file
_ recover-seript
BRBE
R rke3288-3.10-ubset.parameter.tet
B 5
cii

RE32B8Ubootloader_V2.19.06.bin

= BN 5 | RKlmageMaker.exe .

ydate.ing iz new Format,

« BF update-seript Adminiztrator ktop*Andreoe idToo 1 rock 1 Imageapdate. ing
= A ratorsDesktopsindre idToo 1\rockdey *pause
i
11 9%

Figure 4-3 Script-to-generate-images

5 Firmware Sign Flow
This instruction is for Windows tools, while Linux has its own.

5.1 Generating RSA key

af://n389
af://n392

w SecureBootTool v1.84 £ |

Basiec Function Advanced Function
- S1gn Loader
chip: |3288 [Generate Key Pairs] 1gr X
Sign File
Encrpyt: [Load Key]
— p—1 o
© «£{ PROMPT =3
INFO:Sta

INFO:Sta i0:| Generate Key pairs succeed,would you want to save them?
INFO: Gens -
INFOD: Gens

=0 E=()]

Figure 5-1 SecureBootTool generates RSA key

5.2 Save RSA key

This key will be used for signed firmware and for OTA, please back up to a secure storage.

NOTE: The keypair is VERY important! Make sure to save it securely. Once you lost it or leak it, your product
will be exposed in high risk, also the old device will be unable to be updated anymore.lt should be
maintained through the whole product life cycle

af://n397

%% SecureBootTool v1.84

Bazic Function fdvanced Function
- Generate Key Fairs Sign Loader
Sign File
Encrpyt:
Check 51 Fil
@ efuse eck Sign File
P SecureBootTool _vwl. B84
INFO Start to . bin
INFO:Start to i . config
INFO:Generatin b Log

INFO:Generate y >)l Temp

— | wE || mE |

Figure 5-2 SecureBootTool saves RSA key

5.3 Loading RSA key

B8 SecureBootTool v1.84

&)=L » BN » R E) » project » sdk2 v |42 || 2= sak2 o
|in vy gETiMEE =+ 0 @
o, EE - =%) BHES s Folh
L RiEARNE B || privateKey.bin 2017/10/30 14:25 BIN 0% 2 KB
| __| publicKey.bin 2017/10/30 14:25 BIN 3% 1KB
| BREaE
[z E
= BE& E
8 s
o BF
™ -
ta [Mis =
RN v | Key File(-bin) -]
| mFo | | ws |

af://n408

Figure 5-3 SecureBootTool loads RSA key

5.4 Configuration

Choose SOC platform

Encrpyt

@ wfuza soft

Option ‘efuse’ means using eFuse to store the hash of the RSA public key, and will enable secure boot
ROM(recommended).

Option ‘soft’ is for some special applications, will not enable secure boot ROM, used RSA1024 and SHA160.

Generate Hey Pairs

Every product model will generate RSA KEY only once, please backup in case that you cannot upgrade
firmware or OTA again.

Load Key

Loading backup RSA key (support‘.pem’ file format generated by openssl)

Sign Firmware

Sign firmware

5.5 Sign Firmware

Make sure the ‘boot.img’ and the ‘recovery.img’ are included in the kernel image.

Refer to the pack command:

. /mkimage.sh ¢

s boot.img with kernel...
recovery.img with kernel...
misc.img.... done.

system.img... done.

Figure 5-4 Images’pack command

Open firmware image:

af://n413
af://n436

W =E * B\ o ird= =8 i c

T BEAEA R i sdk2 20177111 14:22 i
|\ SecureBootTool v1.83_foruser-1 2017/1171 17:34 solse
=1 . SecureBootTool v1.B4 2017/11/1 17:40 3ol
| ERERE || updat_KEYS_Limg 2017/10/30 15:45 ¥EWEcrE 439,545 KB
H s |&] updat_KEVS_1_then_keyZ.img 2017/10/30 15:47 FeEEafcrid 439,545 KB
’ |&] updat_KEYS_1_then_key? then _keyS.i.. 2017/10/30 15:52 sSs&crs 439,545 KB
Br || update - source.img 2017/10/27 10:42 SeSRblEcriE 439,529 KB
e L6 updateimg 2017/11/3 1031 @SS 439,545 KB
J BF 4] update_2.img 2017/10/30 14:52 FeSRREcrs 438,545 KB
& u 6 2017/10/30 15:23 Fe@uhigcrit 430,545 KB
] update 6.img
N @ update_3288 6.0.img 2017/10/31 16:19 FdEdiecrit 520,929 KB
@ update_3288_6.0_source.img 2017/10/31 15:59 ¥ 520913 KB -
‘ ﬂ'ﬂ. = [_’.— I
THE(N): updateimg v |Ilmage File(".img) >

Figure 5-5 SecureBootTool selects firmware

Signed firmware:

W

Basic Function Advanced Function

| S

Sign Loader

'] [Generate Key Pairs]

chip: 3288

L

Sign File

tacryy: CE =

@ efuse soft L
b)

Check Sign File |

INFO:Start to sign file (be o Sign firmware success.
INFO:Sign file succeed, El4
INFO:Start to sign file(r
INFO:Sign £ile succeed, El
INFO:Start to pack androiq I BE I
INFO:pack android firmward

INFO:Start to pack union feeee—
INFO pack union firmware 0K
INFO:Start to sign check key.
INFO:Sign check key OK.

INFD:Si1gn firmware success.

Figure 5-6 Secure Boot Tool-signed firmware

af://n458

6 Programming eFuse

6.1 Hardware Conditions

For Rockchip AP series, there are two ways to program user secure data. One is "eFuse programming", the
other is "OTP programming"(only few chips support). Following is the introduction.

6.1.1 eFuse Programming

RK3126, RK3128, RK3228, RK3229, RK3288, RK3368 and RK3399 support eFuse programming, following is
the general requirements:

A. If products do not need eFuse data programming, we advise to connect eFuse Power Pin directly to GND.
Avoiding eFuse data change caused by misoperation. (RK3126/RK3126C eFuse Power Pin is reused with
SARADC function, so that it would not to be grounded.)

B. If products need eFuse programming, then connect a pull down resistance to GND on eFuse Power Pin, to
make sure that eFuse power pin doesn't fluctuate in normal work condition. also to avoid eFuse data
change caused by misoperation. This pull-down resistance value, please refer to each chip platform's
reference schematics, generally it's at a range of 47Q-10KQ.

C. There are two types of power supply for eFuse programming:
a) Onboard power supply mode

e Advantage: PCBA socket test board is not needed, you can program eFuse data first, and then upgrade
the firmware. When system works in normal condition, the firmware must make sure that eFuse power
is not on,keep OV to prevent misoperation.

e Disadvantange: Power supply circuit must placement on the board. The material cost is increased, and
you need to make sure the firmware is no misoperation at any time.

e Apply to: This power supply mode applies to customers who don't want to add PCBA testing process.
For example some BOX products, their interfaces and assembling are both simple, not need socket
board to use on the PCBA test.

b) Power supply by PCBA test board(recommended)

e Advantage: Only test points needed. It is no power supply circuit on board so users can't crack through
software too.
e Disadvantage: Increase PCBA test process, the test cost is higher.

| Apply to: Products like tablets, their assembling is complicated. If PCBA is abnormal, it 's more complicated
to rework and replace, so these kinds of products usually have PCBA testing process, Programming eFuse
on this process is reasonable.

D. Electronic circuit introduction:

Each chip platform'’s eFuse power supply voltage is different(such as 1.5/1.8/2.5V), power supply pin number
and current requirement is also different.

we recommend that power supply capacity should be 50mA above, for detailed voltage and pull-down
resistance value, you can refer to schematic diagram. Summarized advices are below:

Table 6-1 Hardware parameters

af://n458
af://n459
af://n462

Chip Part eFusePower Programming VQPS Current Pull-down eFusePower
Number Mode Requirement Resistance Value Pin Number

Remark

P PCBA R
ower by PCBA test ~50mA None PINGS eused

RK3126RK3126C 2.5V)
board with ADC

Onboard or
RK3128 2.5V powered by >50mA <=10K R10
external

Onboard or
RK3168RK3188 1.5V powered by >50mA <=510R Y10
external

Onboard or
RK3228RK3229 1.55-1.6V powered by >50mA <=100R R10
external

Onboard or
RK3288 1.5V powered by >50mA <=510R P19
external

Onboard or
RK3368 1.5V powered by >50mA <=47R Y10
external

Onboard or
RK3399 1.8V powered by >50mA <=1K AD23
external

Recommended power supply mode is shown as below diagram.

a) PartA: eFuse power supply circuit, please choose suitable LDO part number according to the voltage
requirement above, this part circuit can be placed on mainboard, and also can be placed on the PCBA test
board.

b) PartB: eFuse power pin with pull down resistance R4(47R-10K), keep the voltage low level to avoid
misoperation. If power supply circuit is placed on the PCBA test board, the SOC mainboard needs to add
responding testing points, to facilitate fixture pin touch.

Attention:
a) RK3126C's eFuse power is reused with ADC function, so it can't connect pull-down resistance.
b) RK3228/RK3229's eFuse power supply is suggest to be adjusted to 1.55-1.6V, to be more stabled.

¢) If the device uses onboard power supply mode, please make sure eFuse_PWREN, which is in the following
diagram be distributed an independent GPIO to control the LDO. It must make sure there is no power
output on VCC_eFuse PIN in normal work condition. Details refer to reference schematic that RK released, if
there is no GPIO distributed, contact us or use external power supply mode.

e :
o - =13 i PartB: :
. Part A Power Supply Circuit { - Pull down RES and test points
: VGG VCC_EFUSE | © fsm gd'} 1
- 1 T M-
wor —_— S e our |- e 1 ! “:':‘EI.FUE
g il i i i
| S ! l— GND e 1 O ™
i o 100K - H e Lt i | e i
S m . 1 = | "
. &TH | ROMZ RIS 18300 | w WV ¢ R4
) l 80T_11 5 *| ca coMz ;i S ATRAMK
ol ROMZ =] i % n
| a2 oiat] oz B | Aoz
EFUSE_PusmEn S—d 1 2 0K w |-58050 L L ! ™2
5 Ln — -)
fll. 2
i EFLSE_PWREN 33— TP3

Figure 6-1 eFuse circuit

6.1.2 OTP Programming

RK3328 and RK3228H support OTP programming mode, this mode is no need external power supply circuit,
OTP_VCC18(PIN16) is always powered by VCC_18. you only need to run the special time sequence for OTP
programming, not need the additional changes aboout hardware.

M16
SARADC_AVDD_1vs VCC_18

OTP/eFUSE oTP VCGis |18 c910
EFUSE_VP il _:;{ggnl:

nov

RK3328 = ____00402

BGA395_14R00X14R00X1R24

Figure 6-2 OTP circuit

6.2 Tool Ul

af://n585
af://n594

| Firmwaras Var:

Londar War:
Chip:

[[§] Fail - Drevnee List Device Typs mw Upgrade Prompl [} Success

Wizard:

l.First use, Tag USE poart:plug device in, record ID showing on the teol.Tag sll. SucEess. L4

Z.after pluging device in. connect ancthesr until dewvice iz deing upgrads.

3.led iz green, plug device in . led ix zed, do not plug dewvice in or out. Fail
4. After finizhing upgrads, gresn to show success, ced to zhow failure. Total:
E.To zhow rucceaxrrful device on the right of grid and failed dewvice on the left of groid.

Figure 6-3 eFuse tool Ul

6.3 Load the Signed Firmware

:-__?I’irrmlo Ran H"““"""| 9 Exit |

Firswscs | [:usndroidTocl Releass_v3. 343128box \ rockdevispdate, img | Firmwars Wer:! d_ 4.04
Loadsr Ver: 2. 31

Chip; REJ13A

i Fail - Drevice Lint Device Typs m Upgrade Prampt 1 Bucceas

| Part]i]
| = Part2]
£ 5 Eort(d] Huls 23
& Portf1] =

1. First wee, Tag USH port:plug device in. record ID showing on the tool. Tag all. Success: 0

2, After pluging dewics in. cormsct another wntil dewvice irx doing upgrads.

3. led iz gresn, plug device an:led ixr red, do not plug device ain ar ouat. Fail
4. After finizhing upgrads, gresn to show succeszsz, ced ta zhow failure. Total:
E.Te show successful device on the right of geid and failed device on the left of geid

Figure 6-4 Load signed firmware

6.4 Click 'run' Button to Start

af://n601
af://n606

| Firmwars Ver:d.4.04
Loadsr Ver: 2. 31
Chip: RE3124

n | Fail Drevice List Device Type o Upgrade Prompt o Success

= Port[1] Hub -1

Wizard:

L. First use, Tag USE part:plug device in, recerd ID showing on the tool. Tag all. Success: 0
2. After pluging dewvice in. connect ancther wntil device iz deaing upgrade.

3 led is gesen,plug devios an:led 15 red. do mot plug dewvios in or out. EaLE

d.After finishing upgrade, gresn to show success, ped to show failure. Total

5. To show puccessful dewvices on the right of grid and failed dewvice on the left of grid,

Figure 6-5 Programming the chip

6.5 Programming eFuse

Connect the device to the PC by USB cable; the tool will program the hash of RSA public key to eFuse
automatically.

Programming eFuse needs an external power supply, the detail information please refer to SOC's
DATASHEET.

Notice:RK3228H,RK3328,RK3336,RK3308 and PX30 don't need step 6.2 to 6.4. Programming will be done by

upgrading firmware which has been signed.

6.6 Programming OTP

RK3228H,RK3328,RK3336,RK3308 and PX30 support OTP programming. Public key hash need program to
OTP. Programming OTP performs are :

1.First, follow the above steps to burn signed firmware. If the machine can start normally , the signature
process is correct. Then OTP can be programed.

2.The signature tool uses version of SecureBootTool V1.9 or more. Open the config.ini file in the tools
directory. Find "sign_flag=", set"sign_flag=0x20"(bit 5 set 1) which enable write OTP in RKloader. Save
config.ini file. Reopen SecureBootTool.exe to sign firmware or RKLoader.

af://n611
af://n618

i » #HEEESE (Dd) » work » SecureBootTool v1.9

sl

=¥ Bl HEs -] o

bin 2016/11/7 15:26 Zif=

Log 2018/5/11 1017 Sziss
| config.ini 2018/5/14 18:01 E=ES 2 KB
] liberypto-1_1.dl 2017/5/25 21:20 ~ WAEFTE 2,042 KB
] libssl-1_1.dll 2017/5/25 2120 REREYE 365 K8
[msver120.dl 2017/5/25 21:20 REERETE 049 KB
| PrivateKey.pem 2018/4/2 10:46 PEM 32{% 2KB
| | PublicKey.pem 2018/4/2 10:46 PEM {4 1KE
SecureBootTool.exe 2018/5/11 10:14 225 3= 1,130 KB

Figure 6-6-1 SecureBootTool

3| config.ini - iD=
| (R $\B(E) B{E(0) EE(NV) EEH)
[Svstem]

support_chip=3308 |3326|3300|3228n | 3220|3368 | 3228 | 3285 [3128 | 3036
new_crypto=3308 | 3326

#using software to check signature, using shalf0 ,belong to “soft_sign”
soft_sizn=3128|3036

#using hardware to check signature, using bigz sha256, belong to “hard sis
hard_sign_biz_hash=3228h|3368|3228 3288

#using hardware to check signature,using little shaZ56, belong to “hard.
hard _=sign 1itte _hash=33099

#using hardware to check signature,using pss padding ,at the beginning
hard_sign_pss=3308|3326(3229

sign flag=0xZ0
gign soft wversion=
=ign nonce=

Figure 6-6-2 config.ini

3.Use re-signed firmware or RKLoader burnning. After burnning, restart the machine. The RKLoader will be
responsible for generating hash of Public key and writing it to OTP during startup and enable secure boot.

[RKLoader W

v

YES
Go to secure

boot flow

Secure boot enable?

Get secure header from

flash
v

Get public key from

secure header

'

Signature
encryption (RSA2048)

. MNO
Booting system HASH (5HA256) of
secure header

YES

Booting system

Enable OTP write?

HASH(SHA256) of public
key

v

Program hash to OTP and

enable secure boot

Figure 6-6-3 OTP program flow

4.1f OTP program success, serial port print “otp write key success!!!”. If OTP program fail, serial port print"otp
write error: 1",

7 Firmware Upgrade

7.1 Firmware Upgrade

Open the signed firmware and connect the device which has programmed eFuse to the PC by USB cable:

af://n640
af://n641

Exit |

\? Firmare o Fun |H Language
Firmware FRCCICSaTTIENEET Fieawsee Vees§. 0. 0D
Loader Ver: 2, 30

*

Chip:FE32Z

- Dievice List Dievice Type 1} Upgr.u-d: Prompt (1] SUCDESS
F-i My Computer -
=-#% RootHub20
[+ Portll]
i Port]2]
-+ Port[3]
i+ Port[d]
| v part[E] Maskrom 15
i Port[f]
- Port[]]
{2 Part[g]
| v Part[a]
(- Port[10] R
-+ Part[11]
[Par[12]
v Port[l]
-+ Port[14]
-+ Port[15]
|« Part[16] g

D Fail

Wizard:

l.Firzt usze, Tag USE port:plug device in, cecosd ID sheowing on the tool. Tag all. Success: 0

2. After pluging device im, cormect another until dewice iz doing upgrade. 0
Fail:

3.led 15 green,plug device in;led is ced, do not plug device in oo out.

4, 8fter finighing upgrade, green to show success, red to show failure. Toral: 0

5.To show successful device onm the right of grid =nd failed dewice om the left of grid.

Figure 7-1 Upgrade tool 1

Click the 'Upgrade’ button to start firmware upgrade and wait it to be completed:

oo

B 5. 0,00
Loader i 2, 30

R TE R RE32
o oy [« P EE=m D ARRS

ez Part[1]

L Port[2]

- Port[3]

i+ Port(4]

-3 Port[5] Maskrom 5 FREiBootFiz
L Port[6]

e Port[T]

i Port[E]

- Past(g]

-+ Port[10] —
{-+% Pori[11]

Lo Port[12]

- Port[13)

i+ Port]14]

i Port[15]

sk Prrt[16] -

- 4 m 3 -

m

EWRs:
L B—mEH, EsER O A R8RS, TRARF R E BICRISEID. i FRUSEE0. Rath: Q0000
z A EEHE, ESRTEAGHEEEEAT —5.
o THREE &, TS, BORE, LTS, FRikE.
4, HRETE, RO BEEEET, &ML EE £ TT. e 00000
b HAENERSHANEARART, FAEMEESE LR ERET.

EF 00000

Figure 7-2 Upgrade tool 2

8 Verification

8.1 Check Secure Flag

Use serial port tools (e.g. SecureCRT) to get the log of system boot. These words show that the security boot
is on:

Secure Boot Mode: 0x1

SecureBootEn = 1, SecureBootLock = 1

af://n655
af://n656

A%rur USALy UCLOULL TLUVLL LIS

GetParam

£ check paramscer success

10% Unknow pagam: MACHINE MODEL:rk3288!
110 Unknow RAagam: I'I'J'-ACHI'EE_TD:EIDT!

111 Unknow param: MANUFACTURER:RK3288!
112 Upknow paxam: PWR_HLD: ©0,0,A,0,1!
119 power key: bank-0 pin-5

114 can't find gdtas node for ricohéld
115 pmig:act8846

116 fg:cw2Qlx
117 Boot Mode: Oxl

1] tEn = 1, SecureBootlock = 1

120 #BooT yer: 2015-02-068%2.19
empty serial ne.

122 checkEey

123 whua = 0

Figure 8-1 Log of system boot

8.2 Secure Boot Test

The device which had programmed eFuse will enable secure boot rom, and could not boot from the un-

signed firmware.
So try to upgrade un-signed firmware or unmatched key signed firmware will fail;
And upgrade matched signed firmware will boot success.

SOC RK3128 and RK3126 will fail at “wait for loader”:

B FactoryTool v152

Load=r Ver:2. 30

s Chip:RE32

[u] Fail Drevice List Drevice Type 11} Upgrade Prompt
B 7o

Cs RootHub20
=% Portfl]
--# Port]2)
-2 Port{3]

w2 Portf4]

-
% Por[7]
== Port(E]
& Port{9]
=gy Porfl0)
-2 Porif11]
e Port(17]
% Port{13]
- Port{14)
o Port{15]
-+ Port[16]

Wizard:

1.Firzt uze, Tag U5E portiplug devica in, record ID showing om the tool. Teg all.
2. After pluging dewice in, connect another until dewice 1z doing upgrade.
d.led iz green,plug device in:led iz red,do not plug device in or out,

4. After finizhing upgrade, green to show success, red to show failure.

B. To show sueccessful device on the right of grid and failed dewice om the left of grid.

Firnware Wer:6. 0,00

iPots] Meskom 5 TestDeviceFal

(=] ® ==

Success:

Fails:

Total:

Success

00000

00001

00001

af://n667

Figure 8-2 Upgrade fail 1
Other SOC will fail at “Download Boot™:
W FactoryTool v052

40

@ [pgrade Restare ' Dems |. Lal _._-__| ’ Exit

Firmware Wer:5. 0,00

Flma.r!
Loader Ver:2.30

| Dena Chaip:RE32

0 Fail | Device List Devica Type D Upgrade Prompt D Success -
| i W My Computer
£ 2% RootHubI
-« Portfl]
- Pori]2]
-2 Port{3]
% Port4]
bews Makom 5 TetDeicefa |
-2 Port]6)
-+ Port]7]
% Port{8]
= Porifd]
- Perfi0]
e Port[11]
-2 Port12]
% Port{l13]
ey Portf1d]
- Port]15)]
-+ Port{16] -

il

Wizard:

1.Firzt uze, Tag U5E portiplug device in, record ID showing on the tool. Tag all. Success: 00000
2. &fter pluging device in, connect another until dewice 15 doing upgrade.

. _) _ Fail: 00001
d.led iz green,plug device in:led iz red,do not plug device in or out,
4. &fter finizhing upgrade, green to show success, red to show failure. Total: 00001

B. To show successful device on the rizht of grid and failed device om the left of grid.

Figure 8-3 Upgrade fail 2

	Rockchip Secure Boot Application Note
	Preface
	1 Architecture
	1.1 Secure Boot Process
	1.2 Secure Boot Sequence
	1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
	1.4 U-Boot Boot to Boot Image with Linux kernel)
	1.5 U-Boot Boot to Recovery

	2 eFuse Layout
	3 Overall Operation Flow
	3.1 Make Update.img
	3.2 Firmware Sign
	3.3 Programming eFuse
	3.4 Firmware Upgrade
	3.5 Ensure that Secure Boot has been Enabled

	4 Make Update.img
	4.1 Generate Images
	4.2 Make Update.img

	5 Firmware Sign Flow
	5.1 Generating RSA key
	5.2 Save RSA key
	5.3 Loading RSA key
	5.4 Configuration
	5.5 Sign Firmware

	6 Programming eFuse
	6.1 Hardware Conditions
	6.1.1 eFuse Programming
	6.1.2 OTP Programming

	6.2 Tool UI
	6.3 Load the Signed Firmware
	6.4 Click 'run' Button to Start
	6.5 Programming eFuse
	6.6 Programming OTP

	7 Firmware Upgrade
	7.1 Firmware Upgrade

	8 Verification
	8.1 Check Secure Flag
	8.2 Secure Boot Test

