
Rockchip Secure Boot Application Note
Version:1.9

Email:zyf@rock-chips.com hjh@rock-chips.com

Date:2018.06

Classification level:Publicity

Preface

Terms

Sector

Sector size is 512 bytes

eFuse

One-Time Programmable Memory IP in SOC

Introduction

This document describes how to implement Rockchip secure boot solution.

Secure boot mechanism is for verifying firmware validity, which aims to prevent invalid firmware upgrade
and booting.

The device which had programmed eFuse will enable secure boot ROM, and could not boot from the un-
signed firmware. So trying to upgrade un-signed firmware or unmatched key signed firmware will fail.

NOTE: The valid signed firmware can boot smoothly on fake copies of device circuit board or same CPU
platform hardware. Secure boot will verify the validity of software, but not hardware.

This document applies to RK3126, RK3128, RK3228, RK3229, RK3288, RK3368, RK3399, RK3228H, RK3328
and RK3326, RK3308 and PX30.

Features of secure boot:

Support secure boot ROM
Support SHA256

Support RSA2048

Support eFuse hash to verify public key

The relative tool and loader revision:

MiniloaderV2.19 or the latest revision

Uboot V2.17or the latest revision

Efuse tool V1.35 or the latest revision

af://n0
mailto:zyf@rock-chips.com
mailto:hjh@rock-chips.com
af://n11

Revision Date Description Author

1.0 2014-11-05 Original document ZYF

1.1 2015-12-21 Update secure boot tool YBC

1.2 2016-02-02 Update secure boot tool YHC

1.3 2016-09-29 Re-edit ZYF

1.4 2016-11-15 Add detailed description of workflow Joshua

1.5 2016-11-16 1. Add terms and definitions.2. Add eFuse layout. Joshua

1.6 2017-02-15 Add RK3328 and RK3228H. ZYF

1.7 2017-05-19 Add sequence chart and note ZZJ

1.8 2017-10-30 Refactor the format and add hardware info CW

1.9 2018-06-05 Add OTP program public key hash flow CF

SecureBootTool 1.79 or the latest revision

RKBatchTool 1.8 or the latest revision(deprecated, Use FactoryTool instead)

FactoryTool 1.39 or the latest revision

History

Contents

Rockchip Secure Boot Application Note
Preface
1 Architecture

1.1 Secure Boot Process
1.2 Secure Boot Sequence
1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
1.4 U-Boot Boot to Boot Image with Linux kernel)
1.5 U-Boot Boot to Recovery

2 eFuse Layout
3 Overall Operation Flow

3.1 Make Update.img
3.2 Firmware Sign
3.3 Programming eFuse
3.4 Firmware Upgrade
3.5 Ensure that Secure Boot has been Enabled

4 Make Update.img
4.1 Generate Images
4.2 Make Update.img

5 Firmware Sign Flow
5.1 Generating RSA key
5.2 Save RSA key
5.3 Loading RSA key

5.4 Configuration
5.5 Sign Firmware

6 Programming eFuse
6.1 Hardware Conditions

6.1.1 eFuse Programming
6.1.2 OTP Programming

6.2 Tool UI
6.3 Load the Signed Firmware
6.4 Click 'run' Button to Start
6.5 Programming eFuse
6.6 Programming OTP

7 Firmware Upgrade
7.1 Firmware Upgrade

8 Verification
8.1 Check Secure Flag
8.2 Secure Boot Test

1 Architecture

1.1 Secure Boot Process

Figure 1-1 Secure boot process

1.2 Secure Boot Sequence

af://n149
af://n150
af://n155

Figure 1-2 Secure boot sequence

1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)

af://n160

0-63 sector 64 sector reverse

first loader(8128 sector)(5 copys) Boot loader partition

0-2047 loader header

2048-4095 public key and digital signature

4096 - raw binary

…

Boot loader copy(4) partition

0-2047 loader header

2048-4095 public key and digital signature

4096 - raw binary

Figure 1-3 MaskRom to loader sequence

First loader layout in user partition of flash

Table 1-1 First loader data layout

The structure of public key and digital signature layout at address 2048 to 4095:

Figure 1-4 Second_loader_hdr struct

Digital signature: unsigned char rsaHash[256];

l Step 1: Get public key from first loader partition

l Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go to next
step, otherwise booting failed.

l Step 3: Calculate the hash(SHA256) of raw binary and compare it with RSA2048 encryption (have been
obtained in step 1) of digital signature, if matched, loading successfully and deliver the public key to U-Boot,
otherwise booting failed.

1.4 U-Boot Boot to Boot Image with Linux kernel)

af://n216

boot.img 0-2047 header

2048-4095 digital signature

4096- kernel,ramdisk,dtb…

…

Figure 1-5 U-Boot to boot sequence

Table 1-2 Boot data layout

The structure of layout 0-2047(header):

Figure 1-6 Boot_img_hdr struct

Digital signature: unsigned char rsaHash[128];

l Step 1: U-Boot get public key obtained from first loader.

l Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go to next
step, otherwise booting failed.

l Step 3: Hash(SHA256) of raw binary and compare it with RSA2048 encryption(using public key get in step 1)
of digital signature, if matched, boot to linux kernel, otherwise booting failed.

1.5 U-Boot Boot to Recovery

The same as boot to boot image, detail please refer to chapter1.4.

2 eFuse Layout

RK3368, RK3288, RK3229 and RK3228 used 1024 bits eFuse for secure boot, data layout:

Table 2-1 eFuse data layout

af://n260
af://n264

32-bit Word Addressing Description

0x00 Security flagBits [7:0] security enable flag Bits [31:8] reserved

0x01-0x3 Reserved

0x04-0x07 Reserved

0x8-0xF RSA public key hash

0x10-0x17 Reserved

0x18 Reserved

0x19-0x1A Reserved

0x1B-0x1D Reserved

0x1E Reserved

0x1F eFuse write lock bits

32-bit Word
Addressing

Description

0-63 Public Key (N)

64-127 Public Key (E)

128
Security flagBits [7:0] 0xff: security enable flagBits [15:8] RSA_E size (word
uint)Bits [31:16] Reserved

129 Trusted Firmware revocation counter (ID #0)

130-131 Non-trusted Firmware revocation counter (ID #1)

132-239 Reserved

RK3228H and RK3328 used 7680 bits OTP for secure boot, data layout:

Table 2-2 OTP data layout

3 Overall Operation Flow

af://n332

Figure 3-1 Secure boot operation process

3.1 Make Update.img

See Make update.img

3.2 Firmware Sign

af://n339
af://n344

See Firmware Sign Flow

3.3 Programming eFuse

See Programming eFuse

3.4 Firmware Upgrade

See Firmware Upgrade

3.5 Ensure that Secure Boot has been Enabled

See Verification

4 Make Update.img

4.1 Generate Images

After build Android,use the following script to generate images:

./mkimage.sh ota

Figure 4-1 Script to generate images

4.2 Make Update.img

Refer to RKTools/windows/AndroidTool/rockdev/package-file. This file controls which files will be packaged.

Take RK3288, for example. Change bootloader path, commentaries resource and kernel lines, set backup to
RESERVED.

af://n349
af://n354
af://n359
af://n363
af://n364
af://n373

Figure 4-2 Package-file to control the packaging

Copy RKTools/windows folders to windows system, then run AndroidTool/rockdev/mkupdate.bat to
generate the update.img.

Figure 4-3 Script-to-generate-images

5 Firmware Sign Flow

This instruction is for Windows tools, while Linux has its own.

5.1 Generating RSA key

af://n389
af://n392

Figure 5-1 SecureBootTool generates RSA key

5.2 Save RSA key

This key will be used for signed firmware and for OTA, please back up to a secure storage.

NOTE: The keypair is VERY important! Make sure to save it securely. Once you lost it or leak it, your product
will be exposed in high risk, also the old device will be unable to be updated anymore.It should be
maintained through the whole product life cycle

af://n397

Figure 5-2 SecureBootTool saves RSA key

5.3 Loading RSA key

af://n408

Figure 5-3 SecureBootTool loads RSA key

5.4 Configuration

Choose SOC platform

:

Option ‘efuse’ means using eFuse to store the hash of the RSA public key, and will enable secure boot
ROM(recommended).

Option ‘soft’ is for some special applications, will not enable secure boot ROM, used RSA1024 and SHA160.

Every product model will generate RSA KEY only once, please backup in case that you cannot upgrade
firmware or OTA again.

Loading backup RSA key (support ‘.pem’ file format generated by openssl)

Sign firmware

5.5 Sign Firmware

Make sure the ‘boot.img’ and the ‘recovery.img’ are included in the kernel image.

Refer to the pack command:

Figure 5-4 Images’pack command

Open firmware image:

af://n413
af://n436

Figure 5-5 SecureBootTool selects firmware

Signed firmware:

Figure 5-6 Secure Boot Tool-signed firmware

af://n458

6 Programming eFuse

6.1 Hardware Conditions

For Rockchip AP series, there are two ways to program user secure data. One is "eFuse programming", the
other is "OTP programming"(only few chips support). Following is the introduction.

6.1.1 eFuse Programming

RK3126, RK3128, RK3228, RK3229, RK3288, RK3368 and RK3399 support eFuse programming, following is
the general requirements:

A. If products do not need eFuse data programming, we advise to connect eFuse Power Pin directly to GND.
Avoiding eFuse data change caused by misoperation. (RK3126/RK3126C eFuse Power Pin is reused with
SARADC function, so that it would not to be grounded.)

B. If products need eFuse programming, then connect a pull down resistance to GND on eFuse Power Pin, to
make sure that eFuse power pin doesn't fluctuate in normal work condition. also to avoid eFuse data
change caused by misoperation. This pull-down resistance value, please refer to each chip platform's
reference schematics, generally it's at a range of 47Ω-10KΩ.

C. There are two types of power supply for eFuse programming:

a) Onboard power supply mode

Advantage: PCBA socket test board is not needed, you can program eFuse data first, and then upgrade
the firmware. When system works in normal condition, the firmware must make sure that eFuse power
is not on,keep 0V to prevent misoperation.
Disadvantange: Power supply circuit must placement on the board. The material cost is increased, and
you need to make sure the firmware is no misoperation at any time.
Apply to: This power supply mode applies to customers who don't want to add PCBA testing process.
For example some BOX products, their interfaces and assembling are both simple, not need socket
board to use on the PCBA test.

b) Power supply by PCBA test board(recommended)

Advantage: Only test points needed. It is no power supply circuit on board so users can't crack through
software too.
Disadvantage: Increase PCBA test process, the test cost is higher.

l Apply to: Products like tablets, their assembling is complicated. If PCBA is abnormal, it 's more complicated
to rework and replace, so these kinds of products usually have PCBA testing process, Programming eFuse
on this process is reasonable.

D. Electronic circuit introduction:

Each chip platform’s eFuse power supply voltage is different(such as 1.5/1.8/2.5V), power supply pin number
and current requirement is also different.

we recommend that power supply capacity should be 50mA above, for detailed voltage and pull-down
resistance value, you can refer to schematic diagram. Summarized advices are below:

Table 6-1 Hardware parameters

af://n458
af://n459
af://n462

Chip Part
Number

eFusePower
Programming
Mode

VQPS Current
Requirement

Pull-down
Resistance Value

eFusePower
Pin Number

Remark

RK3126RK3126C 2.5V
Power by PCBA test
board

>50mA None PIN68
Reused
with ADC

RK3128 2.5V
Onboard or
powered by
external

>50mA <=10K R10

RK3168RK3188 1.5V
Onboard or
powered by
external

>50mA <=510R Y10

RK3228RK3229 1.55-1.6V
Onboard or
powered by
external

>50mA <=100R R10

RK3288 1.5V
Onboard or
powered by
external

>50mA <=510R P19

RK3368 1.5V
Onboard or
powered by
external

>50mA <=47R Y10

RK3399 1.8V
Onboard or
powered by
external

>50mA <=1K AD23

Recommended power supply mode is shown as below diagram.

a) PartA: eFuse power supply circuit, please choose suitable LDO part number according to the voltage
requirement above, this part circuit can be placed on mainboard, and also can be placed on the PCBA test
board.

b) PartB: eFuse power pin with pull down resistance R4(47R-10K), keep the voltage low level to avoid
misoperation. If power supply circuit is placed on the PCBA test board, the SOC mainboard needs to add
responding testing points, to facilitate fixture pin touch.

Attention:

a) RK3126C's eFuse power is reused with ADC function, so it can't connect pull-down resistance.

b) RK3228/RK3229's eFuse power supply is suggest to be adjusted to 1.55-1.6V, to be more stabled.

c) If the device uses onboard power supply mode, please make sure eFuse_PWREN, which is in the following
diagram be distributed an independent GPIO to control the LDO. It must make sure there is no power
output on VCC_eFuse PIN in normal work condition. Details refer to reference schematic that RK released, if
there is no GPIO distributed, contact us or use external power supply mode.

Figure 6-1 eFuse circuit

6.1.2 OTP Programming

RK3328 and RK3228H support OTP programming mode, this mode is no need external power supply circuit,
OTP_VCC18(PIN16) is always powered by VCC_18. you only need to run the special time sequence for OTP
programming, not need the additional changes aboout hardware.

Figure 6-2 OTP circuit

6.2 Tool UI

af://n585
af://n594

Figure 6-3 eFuse tool UI

6.3 Load the Signed Firmware

Figure 6-4 Load signed firmware

6.4 Click 'run' Button to Start

af://n601
af://n606

Figure 6-5 Programming the chip

6.5 Programming eFuse

Connect the device to the PC by USB cable; the tool will program the hash of RSA public key to eFuse
automatically.

Programming eFuse needs an external power supply, the detail information please refer to SOC's
DATASHEET.

Notice:RK3228H,RK3328,RK3336,RK3308 and PX30 don’t need step 6.2 to 6.4. Programming will be done by
upgrading firmware which has been signed.

6.6 Programming OTP

RK3228H,RK3328,RK3336,RK3308 and PX30 support OTP programming. Public key hash need program to
OTP. Programming OTP performs are :

1.First, follow the above steps to burn signed firmware. If the machine can start normally，the signature
process is correct. Then OTP can be programed.

2.The signature tool uses version of SecureBootTool V1.9 or more. Open the config.ini file in the tools
directory. Find "sign_flag="，set"sign_flag=0x20"(bit 5 set 1) which enable write OTP in RKloader. Save
config.ini file. Reopen SecureBootTool.exe to sign firmware or RKLoader.

af://n611
af://n618

Figure 6-6-1 SecureBootTool

Figure 6-6-2 config.ini

3.Use re-signed firmware or RKLoader burnning. After burnning, restart the machine. The RKLoader will be
responsible for generating hash of Public key and writing it to OTP during startup and enable secure boot.

Figure 6-6-3 OTP program flow

4.If OTP program success, serial port print “otp write key success!!!”. If OTP program fail, serial port print"otp
write error: !!!".

7 Firmware Upgrade

7.1 Firmware Upgrade

Open the signed firmware and connect the device which has programmed eFuse to the PC by USB cable:

af://n640
af://n641

Figure 7-1 Upgrade tool 1

Click the ‘Upgrade’ button to start firmware upgrade and wait it to be completed:

Figure 7-2 Upgrade tool 2

8 Verification

8.1 Check Secure Flag

Use serial port tools (e.g. SecureCRT) to get the log of system boot. These words show that the security boot
is on:

Secure Boot Mode: 0x1

SecureBootEn = 1, SecureBootLock = 1

af://n655
af://n656

Figure 8-1 Log of system boot

8.2 Secure Boot Test

The device which had programmed eFuse will enable secure boot rom, and could not boot from the un-
signed firmware.

So try to upgrade un-signed firmware or unmatched key signed firmware will fail;

And upgrade matched signed firmware will boot success.

SOC RK3128 and RK3126 will fail at “wait for loader”:

af://n667

Figure 8-2 Upgrade fail 1

Other SOC will fail at “Download Boot”:

Figure 8-3 Upgrade fail 2

	Rockchip Secure Boot Application Note
	Preface
	1 Architecture
	1.1 Secure Boot Process
	1.2 Secure Boot Sequence
	1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
	1.4 U-Boot Boot to Boot Image with Linux kernel)
	1.5 U-Boot Boot to Recovery

	2 eFuse Layout
	3 Overall Operation Flow
	3.1 Make Update.img
	3.2 Firmware Sign
	3.3 Programming eFuse
	3.4 Firmware Upgrade
	3.5 Ensure that Secure Boot has been Enabled

	4 Make Update.img
	4.1 Generate Images
	4.2 Make Update.img

	5 Firmware Sign Flow
	5.1 Generating RSA key
	5.2 Save RSA key
	5.3 Loading RSA key
	5.4 Configuration
	5.5 Sign Firmware

	6 Programming eFuse
	6.1 Hardware Conditions
	6.1.1 eFuse Programming
	6.1.2 OTP Programming

	6.2 Tool UI
	6.3 Load the Signed Firmware
	6.4 Click 'run' Button to Start
	6.5 Programming eFuse
	6.6 Programming OTP

	7 Firmware Upgrade
	7.1 Firmware Upgrade

	8 Verification
	8.1 Check Secure Flag
	8.2 Secure Boot Test

