
Security Reference Manual for i.MX
8M Nano Applications Processor

Document Number: IMX8MNSRM
Rev. 0, 01/2020

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

2 NXP Semiconductors
Confidential Proprietary

Contents

Section number Title Page

Chapter 1
Disclaimer

1.1 Disclaimer...65

Chapter 2
Security Overview

2.1 Overview...67

2.2 Feature summary...68

2.3 TrustZone architecture.. 70

2.4 High-Assurance Boot (HAB)..73

2.4.1 HAB process flow..73

2.4.2 HAB feature summary... 75

2.5 Secure Non-Volatile Storage (SNVS) module... 75

2.5.1 SNVS architecture..76

2.6 Cryptographic Acceleration and Assurance Module (CAAM).. 76

2.7 OCOTP_CTRL... 77

2.8 Central Security Unit (CSU)...78

2.9 Resource Domain Controller (RDC).. 78

2.10 AHB to IP Peripheral Bridge (AIPSTZ)...80

2.11 System JTAG Controller (SJC).. 81

2.11.1 Scan protection...81

2.12 TrustZone Address Space Controller (TZASC)... 82

2.13 Smart Direct Memory Access Controller (SDMA).. 82

2.14 TrustZone Watchdog (TZ WDOG).. 83

Chapter 3
Security System Integration

3.1 Master ID allocation... 85

3.2 System-level SNVS connections.. 85

3.2.1 System security violation alarm signals monitored by SNVS... 85

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 3
Confidential Proprietary

Section number Title Page

3.3 Security access error... 86

3.4 OCRAM TrustZone support... 86

3.5 Watchdog mechanism...87

3.6 Security configuration...88

3.6.1 Field return for retest procedure...88

Chapter 4
System Boot

4.1 Overview...91

4.2 Boot modes... 92

4.2.1 Boot mode pin settings...92

4.2.2 High-level boot sequence...93

4.2.3 Boot From Fuses mode (BOOT_MODE[1:0] = 00b)..94

4.2.4 Internal Boot mode (BOOT_MODE[1:0] = 0b10).. 94

4.2.5 Boot security settings... 95

4.3 Device configuration...96

4.3.1 Boot eFUSE descriptions... 96

4.3.2 GPIO boot overrides.. 99

4.4 Device initialization..99

4.4.1 Internal ROM/RAM memory map...99

4.4.2 Boot block activation .. 100

4.4.3 Clocks at boot time.. 101

4.4.4 Enabling MMU and caches..105

4.4.5 Exception handling.. 105

4.4.6 Interrupt handling during boot... 106

4.4.7 Persistent bits... 106

4.5 Boot devices (internal boot)..107

4.5.1 Serial NOR Flash Boot via FlexSPI...107

4.5.1.1 Serial NOR eFUSE Configuration...107

4.5.1.2 FlexSPI Serial NOR Flash Boot Operation..108

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

4 NXP Semiconductors
Confidential Proprietary

Section number Title Page

4.5.1.3 FlexSPI NOR boot flow chart..109

4.5.2 Serial NOR configuration based on FlexSPI interface.. 110

4.5.2.1 FlexSPI Configuration Block ..110

4.5.2.2 Serial NOR configuration block (512 bytes)... 114

4.5.3 NAND flash... 115

4.5.3.1 NAND eFUSE configuration... 115

4.5.3.2 NAND flash boot flow and Boot Control Blocks (BCB).. 117

4.5.3.3 Firmware configuration block..120

4.5.3.4 Discovered Bad Block Table (DBBT)... 124

4.5.3.5 Bad block handling in ROM.. 124

4.5.3.6 Toggle mode DDR NAND boot.. 125

4.5.3.6.1 GPMI and BCH clocks configuration...125

4.5.3.6.2 Setup DMA for DDR transfers... 126

4.5.3.6.3 Reconfigure timing and speed using values in FCB...................................126

4.5.3.7 Typical NAND page organization... 127

4.5.3.7.1 BCH ECC page organization..127

4.5.3.7.2 Metadata..128

4.5.3.8 IOMUX configuration for NAND... 128

4.5.4 Expansion device... 129

4.5.4.1 Expansion device eFUSE configuration.. 129

4.5.4.2 MMC and eMMC boot.. 132

4.5.4.3 SD, eSD, and SDXC.. 140

4.5.4.4 IOMUX configuration for SD/MMC...140

4.5.5 Serial NOR through SPI...141

4.5.5.1 Serial(SPI) NOR eFUSE configuration... 141

4.5.5.2 ECSPI boot...142

4.5.5.2.1 ECSPI IOMUX pin configuration.. 143

4.6 Boot image..144

4.6.1 Primary image offset and IVT offset... 144

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 5
Confidential Proprietary

Section number Title Page

4.6.2 Typical image placement in boot device..145

4.7 USB boot...147

4.8 Low-power boot..147

4.9 SD/MMC manufacture mode..149

4.9.1 Using manufacture mode / serial download mode with eMMC.. 149

4.10 High-Assurance Boot (HAB)..149

4.10.1 HAB API vector table addresses..151

4.11 Boot information for software.. 151

Chapter 5
Fusemap

5.1 Boot Fusemap... 153

5.2 Lock Fusemap...156

5.3 Fusemap Descriptions Table...157

Chapter 6
On-Chip OTP Controller (OCOTP_CTRL)

6.1 Overview...165

6.1.1 Features.. 165

6.2 Top-Level Symbol and Functional Overview...166

6.2.1 Operation..166

6.2.1.1 Shadow Register Reload.. 166

6.2.1.2 Fuse and Shadow Register Read..167

6.2.1.3 Fuse and Shadow Register Writes... 167

6.2.1.4 Write Postamble...168

6.2.2 Fuse Shadow Memory Footprint..169

6.2.3 OTP Read/Write Timing Parameters... 169

6.2.4 Hardware Visible Fuses... 170

6.2.5 Behavior During Reset...170

6.2.6 Secure JTAG control..170

6.3 Fuse Map...171

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

6 NXP Semiconductors
Confidential Proprietary

Section number Title Page

6.4 OCOTP Memory Map/Register Definition.. 171

6.4.1 OTP Controller Control Register (OCOTP_HW_OCOTP_CTRLn).. 174

6.4.2 OTP Controller Timing Register (OCOTP_HW_OCOTP_TIMING)...175

6.4.3 OTP Controller Write Data Register (OCOTP_HW_OCOTP_DATA).. 176

6.4.4 OTP Controller Write Data Register (OCOTP_HW_OCOTP_READ_CTRL).. 177

6.4.5 OTP Controller Read Data Register (OCOTP_HW_OCOTP_READ_FUSE_DATA)............................ 178

6.4.6 Sticky bit Register (OCOTP_HW_OCOTP_SW_STICKY)...179

6.4.7 Software Controllable Signals Register (OCOTP_HW_OCOTP_SCSn)... 180

6.4.8 OTP Controller Version Register (OCOTP_HW_OCOTP_VERSION)...181

6.4.9 Value of OTP Bank0 Word0 (Lock controls) (OCOTP_HW_OCOTP_LOCK)...................................... 182

6.4.10 Value of OTP Bank0 Word1 (Tester Info.) (OCOTP_HW_OCOTP_TESTER0).................................... 184

6.4.11 Value of OTP Bank0 Word2 (tester Info.) (OCOTP_HW_OCOTP_TESTER1)..................................... 184

6.4.12 Value of OTP Bank0 Word3 (Tester Info.) (OCOTP_HW_OCOTP_TESTER2).................................... 185

6.4.13 Value of OTP Bank1 Word0 (Tester Info.) (OCOTP_HW_OCOTP_TESTER3).................................... 185

6.4.14 Value of OTP Bank1 Word1 (Tester Info.) (OCOTP_HW_OCOTP_TESTER4).................................... 186

6.4.15 Value of OTP Bank1 Word2 (Tester Info.) (OCOTP_HW_OCOTP_TESTER5).................................... 186

6.4.16 Value of OTP Bank1 Word3 (Boot Configuration Info.) (OCOTP_HW_OCOTP_BOOT_CFG0).........187

6.4.17 Value of OTP Bank2 Word0 (Boot Configuration Info.) (OCOTP_HW_OCOTP_BOOT_CFG1).........187

6.4.18 Value of OTP Bank2 Word1 (Boot Configuration Info.) (OCOTP_HW_OCOTP_BOOT_CFG2).........188

6.4.19 Value of OTP Bank2 Word2 (Boot Configuration Info.) (OCOTP_HW_OCOTP_BOOT_CFG3).........188

6.4.20 Value of OTP Bank2 Word3 (BOOT Configuration Info.) (OCOTP_HW_OCOTP_BOOT_CFG4)......189

6.4.21 Shadow Register for OTP Bank6 Word0 (SRK Hash) (OCOTP_HW_OCOTP_SRK0)..........................189

6.4.22 Shadow Register for OTP Bank6 Word1 (SRK Hash) (OCOTP_HW_OCOTP_SRK1)..........................190

6.4.23 Shadow Register for OTP Bank6 Word2 (SRK Hash) (OCOTP_HW_OCOTP_SRK2)..........................190

6.4.24 Shadow Register for OTP Bank6 Word3 (SRK Hash) (OCOTP_HW_OCOTP_SRK3)..........................191

6.4.25 Shadow Register for OTP Bank7 Word0 (SRK Hash) (OCOTP_HW_OCOTP_SRK4)..........................191

6.4.26 Shadow Register for OTP Bank7 Word1 (SRK Hash) (OCOTP_HW_OCOTP_SRK5)..........................192

6.4.27 Shadow Register for OTP Bank7 Word2 (SRK Hash) (OCOTP_HW_OCOTP_SRK6)..........................192

6.4.28 Shadow Register for OTP Bank7 Word3 (SRK Hash) (OCOTP_HW_OCOTP_SRK7)..........................193

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 7
Confidential Proprietary

Section number Title Page

6.4.29 Value of OTP Bank8 Word0 (Secure JTAG Response Field) (OCOTP_HW_OCOTP_SJC_RESP0).... 193

6.4.30 Value of OTP Bank8 Word1 (Secure JTAG Response Field) (OCOTP_HW_OCOTP_SJC_RESP1).... 194

6.4.31 Value of OTP Bank8 Word2 (USB ID info) (OCOTP_HW_OCOTP_USB_ID)..................................... 194

6.4.32 Value of OTP Bank8 Word3 (Field Return) (OCOTP_HW_OCOTP_FIELD_RETURN)...................... 195

6.4.33 Value of OTP Bank9 Word0 (MAC Address) (OCOTP_HW_OCOTP_MAC_ADDR0)........................195

6.4.34 Value of OTP Bank9 Word1 (MAC Address) (OCOTP_HW_OCOTP_MAC_ADDR1)........................196

6.4.35 Value of OTP Bank9 Word2 (MAC Address) (OCOTP_HW_OCOTP_MAC_ADDR2)........................196

6.4.36 Value of OTP Bank14 Word0 () (OCOTP_HW_OCOTP_GP10).. 197

6.4.37 Value of OTP Bank14 Word1 () (OCOTP_HW_OCOTP_GP11).. 197

6.4.38 Value of OTP Bank14 Word2 () (OCOTP_HW_OCOTP_GP20).. 197

6.4.39 Value of OTP Bank14 Word3 () (OCOTP_HW_OCOTP_GP21).. 198

Chapter 7
Central Security Unit (CSU)

7.1 Overview...199

7.1.1 Features.. 199

7.2 Functional description...199

7.2.1 Peripheral access policy... 200

7.2.2 Initialization policy.. 200

7.3 Programmable Registers... 201

7.3.1 Config security level register (CSU_CSLn).. 203

7.3.2 HP0 register (CSU_HP0)... 207

7.3.3 HP1 register (CSU_HP1)... 211

7.3.4 Secure access register (CSU_SA).. 211

7.3.5 HPCONTROL0 register (CSU_HPCONTROL0)... 215

7.3.6 HPCONTROL1 register (CSU_HPCONTROL1)... 219

Chapter 8
Resource Domain Controller (RDC)

8.1 Overview...221

8.1.1 Features.. 222

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

8 NXP Semiconductors
Confidential Proprietary

Section number Title Page

8.2 Functional Description..223

8.2.1 Domain ID ...225

8.2.2 Resource Assignment ..225

8.2.3 Safe Sharing... 226

8.2.4 Resource Domain Control and Security Considerations ...227

8.3 Modes of Operation.. 229

8.3.1 Low Power Modes... 229

8.4 Programming Interface... 230

8.4.1 Master Assignment Registers...230

8.4.2 Peripheral Mapping ...231

8.4.3 Memory Region Map... 235

8.5 RDC Memory Map/Register Definition... 235

8.5.1 Version Information (RDC_VIR).. 245

8.5.2 Status (RDC_STAT).. 246

8.5.3 Interrupt and Control (RDC_INTCTRL)...247

8.5.4 Interrupt Status (RDC_INTSTAT).. 247

8.5.5 Master Domain Assignment (RDC_MDAn)... 248

8.5.6 Peripheral Domain Access Permissions (RDC_PDAPn)...249

8.5.7 Memory Region Start Address (RDC_MRSAn)... 250

8.5.8 Memory Region End Address (RDC_MREAn).. 252

8.5.9 Memory Region Control (RDC_MRCn)... 253

8.5.10 Memory Region Violation Status (RDC_MRVSn)... 254

8.6 RDC SEMA42 Memory Map/Register Definition... 255

8.6.1 Gate Register (RDC_SEMAPHOREx_GATEn)... 259

8.6.2 Reset Gate Write (RDC_SEMAPHOREx_RSTGT_W)..260

8.6.3 Reset Gate Read (RDC_SEMAPHOREx_RSTGT_R)..261

Chapter 9
TrustZone Address Space Controller (TZASC)

9.1 Overview...263

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 9
Confidential Proprietary

Section number Title Page

9.2 Clocks... 264

9.3 Address Mapping in various memory mapping modes.. 264

Chapter 10
Cryptographic Acceleration and Assurance Module (CAAM)

10.1 Overview of CAAM (cryptographic acceleration and assurance module) functionality... 265

10.2 Feature summary...266

10.3 CAAM implementation.. 270

10.3.1 CAAM submodules..270

10.3.2 CAAM Versions with Encryption Disabled.. 271

10.4 CAAM modes of operation...271

10.4.1 Platform Security State.. 271

10.4.1.1 The effect of security state on volatile keys...272

10.4.1.2 The effect of security state on non-volatile keys... 272

10.4.2 Keys available in different security modes.. 273

10.4.2.1 Keys available in trusted mode.. 273

10.4.2.2 Keys available in secure mode...274

10.4.2.3 Keys available in non-secure mode... 274

10.4.2.4 Keys available in fail mode..275

10.5 CAAM hardware functional description...275

10.5.1 System Bus Interfaces..276

10.5.1.1 AXI master (DMA) interface...276

10.5.1.1.1 DMA bursts that may read past the end of data structures......................... 276

10.5.1.2 Secure memory interface (AXI slave bus)...277

10.5.1.3 Register interface (IP bus)..277

10.5.2 CAAM service interface concepts... 278

10.5.2.1 Configuring the Service Interfaces.. 278

10.5.2.2 CAAM descriptors... 279

10.5.2.3 Job termination status/error codes..280

10.5.2.4 Frames and flows... 285

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

10 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.5.2.5 User data access control and isolation... 286

10.5.3 Service interfaces... 286

10.5.3.1 Job Ring interface.. 287

10.5.3.1.1 Configuring and managing the input/output rings, overview..................... 287

10.5.3.1.2 Managing the input rings.. 289

10.5.3.1.3 Managing the output rings.. 290

10.5.3.1.4 Controlling access to Job Rings..291

10.5.3.1.5 Initializing Job Rings.. 291

10.5.3.1.6 Job Ring Registers.. 291

10.5.3.1.7 Asserting Job Ring interrupts..292

10.5.3.2 Register-based service interface...292

10.5.4 Job scheduling..294

10.5.4.1 Job scheduling algorithm... 295

10.5.4.2 Job scheduling - DECO-specific jobs.. 296

10.5.5 Job execution hardware..296

10.5.5.1 Descriptor Controller (DECO) and CHA Control Block (CCB)... 296

10.5.5.1.1 Alignment blocks..297

10.5.5.2 Cryptographic hardware accelerators (CHAs) (overview).. 298

10.6 Descriptors and descriptor commands.. 299

10.6.1 Job Descriptors...300

10.6.2 Trusted descriptors...301

10.6.3 Shared descriptors.. 302

10.6.3.1 Executing shared descriptors in proper order.. 304

10.6.3.2 Specifying different types of shared descriptor sharing...305

10.6.3.2.1 Error sharing... 306

10.6.3.3 Changing shared descriptors.. 306

10.6.4 Using in-line descriptors.. 306

10.6.5 Using replacement job descriptors...307

10.6.6 Scatter/gather tables (SGTs).. 309

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 11
Confidential Proprietary

Section number Title Page

10.6.7 Using descriptor commands...310

10.6.7.1 Command execution order... 310

10.6.7.1.1 Executing commands when SHR = 0... 311

10.6.7.1.2 Executing commands when SHR = 1... 313

10.6.7.1.3 Executing commands when REO = 0... 313

10.6.7.1.4 Executing commands when REO = 1... 314

10.6.7.1.5 Executing additional HEADER commands..315

10.6.7.1.6 Jumping to another job descriptor...316

10.6.7.2 Command properties.. 316

10.6.7.2.1 Blocking commands..317

10.6.7.2.2 Load/store checkpoint...317

10.6.7.2.3 Done checkpoint... 317

10.6.7.3 Command types..317

10.6.7.4 SEQ vs non-SEQ commands... 318

10.6.7.4.1 Creating a sequence.. 319

10.6.7.4.2 Using sequences for fixed and variable length data....................................321

10.6.7.4.3 Transferring meta data.. 321

10.6.7.4.4 Rewinding a sequence...322

10.6.7.5 Information FIFO entries... 322

10.6.7.6 Output FIFO Operation..323

10.6.7.7 Cryptographic class..325

10.6.7.8 Address pointers...326

10.6.7.9 DECO/CCB behavior for jobs started via the register service interface..............................327

10.6.7.10 DECO/CCB default actions for one-off jobs... 327

10.6.7.11 DECO/CCB actions when sharing descriptors.. 327

10.6.7.12 Using a CHA more than once in a job... 328

10.6.8 HEADER command...329

10.6.9 KEY commands... 335

10.6.10 LOAD commands.. 339

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

12 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.6.11 FIFO LOAD command.. 351

10.6.11.1 Bit length data.. 353

10.6.11.2 FIFO LOAD input data type ... 355

10.6.12 ECPARAM command..357

10.6.13 STORE command.. 360

10.6.14 FIFO STORE command...367

10.6.15 MOVE, MOVEB, MOVEDW, and MOVE_LEN commands.. 374

10.6.16 ALGORITHM OPERATION command... 383

10.6.17 PROTOCOL OPERATION Commands..388

10.6.18 PKHA OPERATION command.. 400

10.6.18.1 PKHA OPERATION: clear memory function...401

10.6.18.2 PKHA OPERATION: Arithmetic Functions...403

10.6.18.3 PKHA OPERATION: copy memory functions... 409

10.6.18.4 PKHA OPERATION: Elliptic Curve Functions..412

10.6.19 SIGNATURE command.. 415

10.6.20 JUMP (HALT) command.. 418

10.6.20.1 Jump type... 418

10.6.20.1.1 Local conditional jump... 419

10.6.20.1.2 Local conditional increment/decrement jump.. 419

10.6.20.1.3 Non-local conditional jump.. 420

10.6.20.1.4 Conditional halt...420

10.6.20.1.5 Conditional halt with user-specified status...421

10.6.20.1.6 Conditional subroutine call...421

10.6.20.1.7 Conditional subroutine return... 422

10.6.20.2 Test type...423

10.6.20.3 JSL and TEST CONDITION fields... 423

10.6.20.4 JUMP command format... 424

10.6.21 MATH and MATHI Commands..428

10.6.22 SEQ IN PTR command..434

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 13
Confidential Proprietary

Section number Title Page

10.6.23 SEQ OUT PTR command..437

10.7 Protocol acceleration...440

10.8 Public Key Cryptography Operations...442

10.8.1 Conformance considerations..442

10.8.2 Specifying the ECC domain curves for the discrete-log functions..443

10.8.3 Discrete-log key-pair generation..446

10.8.3.1 Inputs to the discrete-log key-pair generation function... 447

10.8.3.2 Assumptions of the discrete-log key-pair generation function.. 447

10.8.3.3 Outputs from the discrete-log key-pair generation function..447

10.8.3.4 Operation of the discrete-log key-pair generation function... 447

10.8.3.5 Notes associated with the discrete-log key-pair generation function447

10.8.4 Using the Diffie_Hellman function..448

10.8.4.1 Diffie_Hellman requirements.. 449

10.8.4.2 Inputs to the Diffie-Hellman function..449

10.8.4.3 Assumptions of the Diffie-Hellman function...449

10.8.4.4 Outputs from the Diffie-Hellman function.. 450

10.8.4.5 Operation of the Diffie-Hellman function... 450

10.8.4.6 Notes associated with the Diffie-Hellman function...450

10.8.5 Generating DSA and ECDSA signatures...451

10.8.5.1 Inputs to the DSA and ECDSA signature generation function..452

10.8.5.2 Assumptions of the DSA and ECDSA signature generation function.................................452

10.8.5.3 Outputs from the DSA and ECDSA signature generation function452

10.8.5.4 Operation of the DSA and ECDSA signature generation function452

10.8.5.5 Notes associated with the DSA and ECDSA Signature Generation function......................453

10.8.6 Verifying DSA and ECDSA signatures... 455

10.8.6.1 Inputs to the DSA and ECDSA signature verification function.. 455

10.8.6.2 Assumptions of the DSA and ECDSA signature verification function............................... 456

10.8.6.3 Outputs from the DSA and ECDSA signature verification function................................... 456

10.8.6.4 Operation of the DSA and ECDSA signature verification function 456

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

14 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.8.6.5 Notes associated with the DSA and ECDSA Signature Verification function 456

10.8.7 Elliptic Curve Public Key Validation.. 458

10.8.7.1 Inputs to the Elliptic Curve public key validation function... 459

10.8.7.2 Outputs from the Elliptic Curve public key validation function..459

10.8.7.3 Operation of the Elliptic Curve public key validation function...459

10.8.7.4 Notes associated with the Elliptic Curve public key validation function 459

10.8.8 RSA Finalize Key Generation (RFKG)... 460

10.8.9 Implementation of the RSA encrypt operation.. 462

10.8.10 Implementation of the RSA decrypt operation.. 464

10.9 Key agreement functions.. 470

10.9.1 Implementation of the derived key protocol.. 470

10.9.1.1 Using DKP with HMAC keys..471

10.9.1.2 Using DKP with ARC4 keys... 472

10.9.1.3 Implementation of the Blob Protocol...473

10.10 Cryptographic hardware accelerators (CHAs)..473

10.10.1 Public-key hardware accelerator (PKHA) functionality..474

10.10.1.1 Modular math...475

10.10.1.2 About Montgomery values...475

10.10.1.3 Non-modular Math...477

10.10.1.4 Elliptic-Curve Math... 477

10.10.1.4.1 ECC_MOD: Point math on a standard curve over a prime field (Fp)........ 478

10.10.1.4.2 ECC_F2M: Point math on a standard curve over a binary field (F2m)......479

10.10.1.5 PKHA Mode Register.. 480

10.10.1.6 PKHA functions...480

10.10.1.6.1 Copy memory, N-Size and Source-Size (COPY_NSZ and COPY_SSZ).. 481

10.10.1.6.2 Clear Memory (CLEAR_MEMORY) function.. 482

10.10.1.6.3 Arithmetic Functions.. 483

10.10.1.6.3.1 Integer Modular Addition (MOD_ADD) function...........483

10.10.1.6.3.2 Integer Modular Subtraction (MOD_SUB_1) function... 484

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 15
Confidential Proprietary

Section number Title Page

10.10.1.6.3.3 Integer Modular Subtraction (MOD_SUB_2) function... 484

10.10.1.6.3.4 Integer Modular Multiplication (MOD_MUL)................ 485

10.10.1.6.3.5 Integer Modular Multiplication with Montgomery

Inputs (MOD_MUL_IM)... 485

10.10.1.6.3.6 Integer Modular Multiplication with Montgomery

Inputs and Outputs (MOD_MUL_IM_OM) Function..... 486

10.10.1.6.3.7 Integer Modular Exponentiation (MOD_EXP and

MOD_EXP_TEQ).. 487

10.10.1.6.3.8 Integer Modular Exponentiation, Montgomery Input

(MOD_EXP_IM and MOD_EXP_IM_TEQ) Function... 487

10.10.1.6.3.9 Integer Simultaneous Modular Exponentiation

(MOD_SML_EXP).. 488

10.10.1.6.3.10 Integer Modular Square (MOD_SQR and

MOD_SQR_TEQ)..489

10.10.1.6.3.11 Integer Modular Square, Montgomery inputs

(MOD_SQR_IM and MOD_SQR_IM_TEQ)..................490

10.10.1.6.3.12 Integer Modular Square, Montgomery inputs and

outputs (MOD_SQR_IM_OM and

MOD_SQR_IM_OM_TEQ)...490

10.10.1.6.3.13 Integer Modular Cube (MOD_CUBE and

MOD_CUBE_TEQ)... 491

10.10.1.6.3.14 Integer Modular Cube, Montgomery input

(MOD_CUBE_IM and MOD_CUBE_IM_TEQ)............ 492

10.10.1.6.3.15 Integer Modular Cube, Montgomery input and output

(MOD_CUBE_IM_OM and

MOD_CUBE_IM_OM_TEQ)..492

10.10.1.6.3.16 Integer Modular Square Root (MOD_SQRT)..................493

10.10.1.6.3.17 Integer Modulo Reduction (MOD_AMODN)..................494

10.10.1.6.3.18 Integer Modular Inversion (MOD_INV)..........................494

10.10.1.6.3.19 Integer Montgomery Factor Computation (MOD_R2).... 495

10.10.1.6.3.20 Integer RERP mod P (MOD_RR).................................... 495

10.10.1.6.3.21 Integer Greatest Common Divisor (MOD_GCD)............ 496

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

16 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.10.1.6.3.22 Miller_Rabin Primality Test (PRIME_TEST)................. 497

10.10.1.6.3.23 Right Shift A (RIGHT_SHIFT_A) function.................... 497

10.10.1.6.3.24 Compare A B (COMPARE) function...............................498

10.10.1.6.3.25 Evaluate A (EVALUATE) function.................................498

10.10.1.6.3.26 Binary Polynomial (F2m) Addition (F2M_ADD)

function...499

10.10.1.6.3.27 Binary Polynomial (F2m) Modular Multiplication

(F2M_MUL)...500

10.10.1.6.3.28 Binary Polynomial (F2m) Modular Multiplication with

Montgomery Inputs (F2M_MUL_IM) Function..............500

10.10.1.6.3.29 Binary Polynomial (F2m) Modular Multiplication with

Montgomery Inputs and Outputs (F2M_MUL_IM_OM)

Function..501

10.10.1.6.3.30 Binary Polynomial (F2m) Modular Exponentiation

(F2M_EXP and F2M_EXP_TEQ)................................... 502

10.10.1.6.3.31 Binary Polynomial (F2m) Simultaneous Modular

Exponentiation (F2M_SML_EXP).................................. 502

10.10.1.6.3.32 Binary Polynomial (F2m) Modular Square (F2M_SQR

and F2M_SQR_TEQ)...503

10.10.1.6.3.33 Binary Polynomial (F2m) Modular Square,

Montgomery Input (F2M_SQR_IM and

F2M_SQR_IM_TEQ)...504

10.10.1.6.3.34 Binary Polynomial (F2m) Modular Square,

Montgomery Input and Output (F2M_SQR_IM_OM

and F2M_SQR_IM_OM_TEQ)....................................... 505

10.10.1.6.3.35 Binary Polynomial (F2m) Modular Cube (F2M_CUBE

and F2M_CUBE_TEQ)..505

10.10.1.6.3.36 Binary Polynomial (F2m) Modular Cube, Montgomery

Input (F2M_CUBE_IM and F2M_CUBE_IM_TEQ)......506

10.10.1.6.3.37 Binary Polynomial (F2m) Modular Cube, Montgomery

Input and Output (F2M_CUBE_IM_OM and

F2M_CUBE_IM_OM_TEQ)... 507

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 17
Confidential Proprietary

Section number Title Page

10.10.1.6.3.38 Binary Polynomial (F2m) Modulo Reduction

(F2M_AMODN)...507

10.10.1.6.3.39 Binary Polynomial (F2m) Modular Inversion

(F2M_INV)...508

10.10.1.6.3.40 Binary Polynomial (F2m) R2 Mod N (F2M_R2)

Function..508

10.10.1.6.3.41 Binary Polynomial (F2m) Greatest Common Divisor

(F2M_GCD) Function.. 509

10.10.1.6.4 Elliptic Curve Functions... 509

10.10.1.6.4.1 ECC Fp Point Add, Affine Coordinates

(ECC_MOD_ADD) Function.. 509

10.10.1.6.4.2 ECC Fp Point Add, Affine Coordinates, R2 Mod N

Input (ECC_MOD_ADD_R2) Function.......................... 510

10.10.1.6.4.3 ECC Fp Point Double, Affine Coordinates

(ECC_MOD_DBL) Function... 511

10.10.1.6.4.4 ECC Fp Point Multiply, Affine Coordinates

(ECC_MOD_MUL and ECC_MOD_MUL_TEQ)

Function..512

10.10.1.6.4.5 ECC Fp Point Multiply, R2 Mod N Input, Affine

Coordinates (ECC_MOD_MUL_R2 and

ECC_MOD_MUL_R2_TEQ) Function........................... 513

10.10.1.6.4.6 ECC Fp Check Point (ECC_MOD_CHECK_POINT)

Function..514

10.10.1.6.4.7 ECC Fp Check Point, R2 Mod N Input, Affine

Coordinates (ECC_MOD_CHECK_POINT_R2)

Function..515

10.10.1.6.4.8 ECC F2m Point Add, Affine Coordinates

(ECC_F2M_ADD) Function.. 516

10.10.1.6.4.9 ECC F2m Point Add, Affine Coordinates, R2 Mod N

Input (ECC_F2M_ADD_R2) Function............................517

10.10.1.6.4.10 ECC F2m Point Double - Affine Coordinates

(ECC_F2M_DBL) Function...518

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

18 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.10.1.6.4.11 ECC F2m Point Multiply, Affine Coordinates

(ECC_F2M_MUL and ECC_F2M_MUL_TEQ)

Function..518

10.10.1.6.4.12 ECC F2m Point Multiply, R2 Mod N Input, Affine

Coordinates (ECC_F2M_MUL_R2 and

ECC_F2M_MUL_R2_TEQ) Function.............................519

10.10.1.6.4.13 ECC F2m Check Point (ECC_F2M_CHECK_POINT)

Function..521

10.10.1.6.4.14 ECC F2m Check Point, R2

(ECC_F2M_CHECK_POINT_R2) Function...................521

10.10.1.6.4.15 ECM Modular Multiplication (ECM_MOD_MUL_X

and ECM_MOD_MUL_X_TEQ) Function..................... 522

10.10.1.6.4.16 ECM Fp Point Multiply, R2 Mod N Input, Affine

Coordinates (ECM_MOD_MUL_X_R2 and

ECM_MOD_MUL_X_R2_TEQ) Function..................... 523

10.10.1.6.4.17 ECT Modular Multiplication (ECT_MOD_MUL and

ECT_MOD_MUL_TEQ) Function.................................. 524

10.10.1.6.4.18 ECT Fp Point Multiply, R2 Mod N Input, Affine

Coordinates (ECT_MOD_MUL_R2 and

ECT_MOD_MUL_R2_TEQ) Function........................... 526

10.10.1.6.4.19 ECT Fp Point Add, Affine Coordinates

(ECT_MOD_ADD) Function...527

10.10.1.6.4.20 ECT Fp Point Add, Affine Coordinates, R2 Mod N

Input (ECT_MOD_ADD_R2) Function...........................527

10.10.1.6.4.21 ECT Fp Check Point (ECT_MOD_CHECK_POINT)

Function..528

10.10.1.6.4.22 ECT Fp Check Point, R2

(ECT_MOD_CHECK_POINT_R2) Function................. 529

10.10.1.6.4.23 Copy memory, N-Size and Source-Size (COPY_NSZ

and COPY_SSZ).. 530

10.10.1.6.4.24 Right Shift A (R_SHIFT) function...................................531

10.10.1.6.4.25 Compare A B (COMPARE) function...............................531

10.10.1.6.4.26 Evaluate A (EVALUATE) function.................................532

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 19
Confidential Proprietary

Section number Title Page

10.10.1.6.5 Special values for common ECC domains..532

10.10.2 ARC-4 hardware accelerator (AFHA) CHA functionality.. 552

10.10.2.1 AFHA use of the Mode Register..552

10.10.2.2 AFHA use of the Context Register.. 553

10.10.2.3 AFHA use of the Key Register.. 553

10.10.2.4 AFHA use of the Data Size Register... 553

10.10.2.5 Save and restore operations in AFHA S-box and AFHA context data................................554

10.10.2.5.1 Sbox and context data operations... 554

10.10.2.6 ARC-4 operation considerations..554

10.10.3 Data encryption standard accelerator (DES) functionality.. 555

10.10.3.1 DESA use of the Mode Register.. 555

10.10.3.2 DESA use of the Key Register...556

10.10.3.3 DESA use of the Key Size Register...556

10.10.3.4 DESA use of the Data Size Register..557

10.10.3.5 DESA Context Register... 557

10.10.3.6 Save and store operations in DESA context data...557

10.10.4 Random-number generator (RNG) functionality...557

10.10.4.1 RNG features summary..558

10.10.4.2 RNG functional description .. 558

10.10.4.2.1 RNG state handles...558

10.10.4.2.2 RNG NIST certification..559

10.10.4.3 RNG operations..560

10.10.4.4 RNG use of the Key Registers... 561

10.10.4.5 RNG use of the Context Register...562

10.10.4.6 RNG use of the Data Size Register..562

10.10.5 Message digest hardware accelerator (MDHA) functionality... 562

10.10.5.1 MDHA use of the Mode Register.. 563

10.10.5.2 MDHA use of the Key Register...564

10.10.5.2.1 Using the MDHA Key Register with normal keys..................................... 564

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

20 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.10.5.2.2 Using the MDHA Key Register with Derived HMAC Keys......................564

10.10.5.2.2.1 Definition and function of Derived HMAC Keys............ 564

10.10.5.2.2.2 Process flow when using the Key Register with Derived

HMAC Keys...565

10.10.5.2.2.3 Using padding with the Derived HMAC Key to align

with storage.. 565

10.10.5.2.2.4 Length of a Derived HMAC Key..................................... 565

10.10.5.2.2.5 Loading/storing a Derived HMAC Key with a KEY

command.. 565

10.10.5.2.2.6 Loading/storing a Derived HMAC Key with a FIFO

STORE command...566

10.10.5.2.2.7 Sizes of Derived HMAC Keys... 566

10.10.5.2.2.8 Storing an HMAC-SHA-1 Derived Key in Memory....... 566

10.10.5.2.3 MDHA use of the Key Size Register..567

10.10.5.3 MDHA use of the Data Size Register.. 567

10.10.5.4 MDHA use of the Context Register...568

10.10.5.5 Save and restore operations in MDHA context data..568

10.10.6 AES accelerator (AESA) functionality.. 568

10.10.6.1 Differences between the AES encrypt and decrypt keys... 568

10.10.6.2 AESA modes of operation... 569

10.10.6.3 AESA use of registers.. 570

10.10.6.4 AESA use of the parity bit... 570

10.10.6.5 AES ECB mode... 571

10.10.6.5.1 AES ECB mode use of the Mode Register... 571

10.10.6.5.2 AES ECB mode use of the Context Register..571

10.10.6.5.3 AES ECB Mode use of the Data Size Register ..572

10.10.6.5.4 AES ECB Mode use of the Key Register... 572

10.10.6.5.5 AES ECB Mode use of the Key Size Register... 572

10.10.6.6 AES CBC, CBC-CS2, OFB, CFB128 modes.. 572

10.10.6.6.1 AES CBC, OFB, and CFB128 modes use of the Mode Register............... 573

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 21
Confidential Proprietary

Section number Title Page

10.10.6.6.2 AES CBC, OFB, and CFB128 modes use of the Context Register............574

10.10.6.6.3 AES CBC, OFB, and CFB128 modes use of the Data Size Register......... 574

10.10.6.6.4 AES CBC, OFB, and CFB128 modes use of the Key Register..................574

10.10.6.6.5 AES CBC, OFB, and CFB128 modes use of the Key Size Register..........575

10.10.6.7 AES CTR mode... 575

10.10.6.7.1 AES CTR mode use of the Mode Register... 575

10.10.6.7.2 AES CTR mode use of the Context Register..575

10.10.6.7.3 AES CTR mode use of the Data Size Register... 576

10.10.6.7.4 AES CTR mode use of the Key Register..576

10.10.6.7.5 AES CTR mode use of the Key Size Register..576

10.10.6.8 AES XCBC-MAC and CMAC modes...576

10.10.6.8.1 AES XCBC-MAC and CMAC modes use of the Mode Register.............. 577

10.10.6.8.2 AES XCBC-MAC and CMAC Modes use of the Context Register...........578

10.10.6.8.3 AES XCBC-MAC and CMAC modes use of the Class 1 ICV Size

Register... 578

10.10.6.8.4 AES XCBC-MAC and CMAC modes use of the Data Size Register........ 579

10.10.6.8.5 AES XCBC-MAC and CMAC modes use of the Key Register................. 579

10.10.6.8.6 AES XCBC-MAC and CMAC modes use of the Key Size Register......... 579

10.10.6.8.7 ICV checking in AES XCBC-MAC and CMAC modes............................ 579

10.10.6.9 AESA CCM mode... 580

10.10.6.9.1 Generation encryption...580

10.10.6.9.2 Decryption verification... 580

10.10.6.9.3 AES CCM mode use of the Mode Register..581

10.10.6.9.4 AES CCM mode use of the Context Register...582

10.10.6.9.5 AES CCM mode use of the Data Size Register..583

10.10.6.9.6 AES CCM mode use of the Key Register...583

10.10.6.9.7 AES CCM mode use of the Key Size Register...583

10.10.6.9.8 AES CCM mode use of the ICV check.. 584

10.10.6.10 AES GCM mode.. 584

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

22 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.10.6.10.1 GMAC...584

10.10.6.10.2 GCM data types.. 584

10.10.6.10.3 IV processing.. 585

10.10.6.10.4 GCM initialization.. 585

10.10.6.10.5 AES GCM mode use of the Mode Register..585

10.10.6.10.6 AES GCM mode use of the Context Register.. 586

10.10.6.10.7 AES GCM Mode use of the Data Size Register... 587

10.10.6.10.8 AES GCM mode use of the Class 1 IV Size Register................................ 587

10.10.6.10.9 AES GCM mode use of the AAD Size Register...587

10.10.6.10.10 AES GCM mode use of the Class 1 ICV Size Register..............................588

10.10.6.10.11 AES GCM mode use of the Key Register.. 588

10.10.6.10.12 AES GCM mode use of the Key Size Register...588

10.10.6.10.13 AES GCM mode use of the ICV check.. 588

10.11 Trust Architecture modules...589

10.11.1 Run-time Integrity Checker (RTIC)...589

10.11.1.1 RTIC modes of operation...589

10.11.1.2 RTIC initialization and operation.. 589

10.11.1.3 RTIC use of the Throttle Register..590

10.11.1.4 RTIC use of command, configuration, and status registers... 590

10.11.1.5 Initializing RTIC.. 591

10.11.1.6 RTIC Memory Block Address/Length Registers...591

10.11.2 CAAM virtualization and security domain identifiers (SDIDs).. 592

10.11.2.1 Access Control... 592

10.11.2.2 Virtualization... 593

10.11.2.3 Security domain identifiers (SDIDs)..593

10.11.2.4 TrustZone SecureWorld...594

10.11.3 Special-purpose cryptographic keys.. 594

10.11.3.1 Initializing and clearing black and trusted descriptor keys..594

10.11.3.2 Black keys and JDKEK/TDKEK...595

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 23
Confidential Proprietary

Section number Title Page

10.11.3.3 Trusted descriptors and TDSK...595

10.11.3.4 Master key and blobs... 595

10.11.4 Black keys.. 596

10.11.4.1 Black key encapsulation schemes.. 596

10.11.4.2 Differences between black and red keys..596

10.11.4.3 Loading red keys..597

10.11.4.4 Loading black keys.. 597

10.11.4.5 Avoiding errors when loading red and black keys...597

10.11.4.6 Encapsulating and decapsulating black keys... 598

10.11.4.7 Types of black keys and their use.. 600

10.11.4.8 Types of blobs for key storage...600

10.11.5 Trusted descriptors...601

10.11.5.1 Why trusted descriptors are needed... 601

10.11.5.2 Trusted-descriptor key types and uses... 601

10.11.5.3 Trusted descriptors encrypting/decrypting black keys...602

10.11.5.4 Trusted-descriptor blob types and uses..602

10.11.5.5 Trusted descriptors and secure memory...603

10.11.5.6 Configuring the system to create trusted descriptors properly.. 603

10.11.5.7 Creating trusted descriptors... 603

10.11.5.7.1 Trusted descriptors and descriptor-header bits... 604

10.11.5.7.2 Trusted-descriptor execution considerations.. 604

10.11.6 Blobs.. 605

10.11.6.1 Blob protocol..605

10.11.6.2 Why blobs are needed.. 606

10.11.6.3 Blob conformance considerations..606

10.11.6.4 Encapsulating and decapsulating blobs..608

10.11.6.5 Blob types.. 608

10.11.6.5.1 Blob types differentiated by format.. 609

10.11.6.5.2 Blob types differentiated by content... 610

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

24 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.11.6.5.2.1 Red blobs (for general data)... 610

10.11.6.5.2.2 Black blobs (for cryptographic keys)............................... 611

10.11.6.5.2.3 Enforcing blob content type... 611

10.11.6.5.3 Blob types differentiated by security state..612

10.11.6.5.4 Blob types differentiated by memory type..612

10.11.6.5.4.1 General/Secure Memory blobs and access control...........612

10.11.6.5.4.2 Differences between general memory and Secure

Memory blobs...613

10.11.6.6 Blob encapsulation...613

10.11.6.7 Blob decapsulation...614

10.11.7 Critical security parameters... 615

10.11.8 Secure memory.. 616

10.11.8.1 CAAM Secure Memory features... 616

10.11.8.2 Secure memory controller (SMC) states..616

10.11.8.2.1 SMC initialize state...617

10.11.8.2.2 SMC normal state... 618

10.11.8.2.3 SMC fail state... 618

10.11.8.3 Secure memory organization... 619

10.11.8.4 Secure memory security functions...620

10.11.8.4.1 Automatic RAM zeroization...620

10.11.8.4.1.1 Zeroizing Secure Memory marked "CSP"........................621

10.11.8.4.2 Secure Memory Access Control... 621

10.11.8.4.2.1 Access control through the OS or hypervisor...................621

10.11.8.4.2.2 Access control through Job Rings.................................... 621

10.11.8.4.2.3 Setting Secure Memory access control permissions........ 622

10.11.8.4.3 Cryptographic protection of exported data... 624

10.11.8.4.3.1 Exporting/importing memory type blobs......................... 624

10.11.8.4.3.2 Access permissions cryptographically bound to Secure

Memory blobs...624

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 25
Confidential Proprietary

Section number Title Page

10.11.8.5 Initializing Secure Memory... 624

10.11.9 Manufacturing-protection chip-authentication process... 625

10.11.9.1 Providing data to the manufacturing-protection authentication process..............................628

10.11.9.1.1 Specifying the ECC domain curve for the manufacturing-protection

functions..628

10.11.9.1.2 Providing data to the MPPrivk_generation function.................................. 629

10.11.9.1.3 Providing data to the MPPubk_generation function...................................629

10.11.9.1.4 Providing data to the MPSign function...629

10.11.9.1.5 Role of the ROM-resident secure boot firmware..630

10.11.9.2 MPPrivk_generation function.. 630

10.11.9.2.1 Differences between the MPPrivk_generation function and the DL KEY

PAIR GEN function..630

10.11.9.2.2 MPPrivk_generation function parameters and operation........................... 631

10.11.9.2.3 Protocol data block (PDB) for the MPPrivk_generation function..............632

10.11.9.3 MPPubk_generation function.. 632

10.11.9.3.1 Differences between the MPPubk_generation function and the DL KEY

PAIR GEN function..632

10.11.9.3.2 MPPubk_generation function parameters and operation............................633

10.11.9.3.3 Protocol data block (PDB) for the MPPubk_generation function.............. 633

10.11.9.3.4 Running the MPPubK generation function at the OEM's facility.............. 634

10.11.9.4 MPSign function.. 634

10.11.9.4.1 MPSign function parameters and operation..634

10.11.9.4.2 Protocol data block (PDB) MPSign function..635

10.12 CAAM service error detection, recovery (reset), and reconfiguration... 636

10.12.1 Software CAAM Reset.. 636

10.12.2 Job ring error detection, recovery, reset and reconfiguration.. 637

10.12.2.1 Job ring user error detection, recovery, reset, and reconfiguration services........................637

10.12.2.1.1 Error recovery... 637

10.12.2.1.2 Unrecoverable conditions... 638

10.12.2.1.3 User reconfiguration options...639

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

26 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.12.2.2 Job ring error detection, recovery, reset, and reconfiguration management services.......... 640

10.12.2.2.1 Recoverable error status notifications...640

10.12.2.2.2 Ring user access termination procedure... 640

10.12.2.2.3 Ring user (re-)assignment procedure.. 640

10.12.3 RTIC error detection, recovery, reset, and reconfiguration... 641

10.12.3.1 RTIC user services... 641

10.12.3.2 RTIC management services... 641

10.12.3.2.1 Recoverable error conditions.. 642

10.12.3.2.2 Unrecoverable error conditions...642

10.12.3.2.3 Reconfiguration procedure..642

10.12.4 Global and DECO error detection, recovery, reset, and reconfiguration...643

10.12.4.1 Global and DECO user services...643

10.12.4.2 Global CAAM and DECO management services..643

10.12.4.2.1 Error detection.. 643

10.12.4.2.2 Recovery procedure.. 644

10.13 CAAM register descriptions... 644

10.13.1 CAAM memory map... 647

10.13.2 Master Configuration Register (MCFGR)... 673

10.13.2.1 Offset..673

10.13.2.2 Diagram..673

10.13.2.3 Fields..674

10.13.3 Page 0 SDID Register (PAGE0_SDID)...677

10.13.3.1 Offset..677

10.13.3.2 Diagram..678

10.13.3.3 Fields..678

10.13.4 Security Configuration Register (SCFGR).. 678

10.13.4.1 Offset..680

10.13.4.2 Diagram..680

10.13.4.3 Fields..681

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 27
Confidential Proprietary

Section number Title Page

10.13.5 Job Ring a DID Register - most significant half (JR0DID_MS - JR2DID_MS).......................................682

10.13.5.1 Offset..684

10.13.5.2 Diagram..684

10.13.5.3 Fields..684

10.13.6 Job Ring a DID Register - least significant half (JR0DID_LS - JR2DID_LS)... 685

10.13.6.1 Offset..686

10.13.6.2 Diagram..686

10.13.6.3 Fields..686

10.13.7 Debug Control Register (DEBUGCTL).. 687

10.13.7.1 Offset..687

10.13.7.2 Diagram..687

10.13.7.3 Fields..687

10.13.8 Job Ring Start Register (JRSTARTR)... 688

10.13.8.1 Offset..688

10.13.8.2 Diagram..688

10.13.8.3 Fields..689

10.13.9 RTIC OWN Register (RTIC_OWN)... 690

10.13.9.1 Offset..690

10.13.9.2 Diagram..690

10.13.9.3 Fields..691

10.13.10 RTIC DID Register for Block a (RTICA_DID - RTICD_DID)..691

10.13.10.1 Offset..691

10.13.10.2 Diagram..691

10.13.10.3 Fields..692

10.13.11 DECO Request Source Register (DECORSR).. 692

10.13.11.1 Offset..693

10.13.11.2 Diagram..693

10.13.11.3 Fields..693

10.13.12 DECO Request Register (DECORR)...694

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

28 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.12.1 Offset..694

10.13.12.2 Diagram..694

10.13.12.3 Fields..695

10.13.13 DECO Availability Register (DAR).. 695

10.13.13.1 Offset..696

10.13.13.2 Diagram..696

10.13.13.3 Fields..696

10.13.14 DECO Reset Register (DRR)...696

10.13.14.1 Offset..697

10.13.14.2 Diagram..697

10.13.14.3 Fields..697

10.13.15 Job Ring a Secure Memory Virtual Base Address Register (JR0SMVBAR - JR2SMVBAR)................. 697

10.13.15.1 Offset..698

10.13.15.2 Diagram..698

10.13.15.3 Fields..698

10.13.16 Peak Bandwidth Smoothing Limit Register (PBSL)... 698

10.13.16.1 Offset..699

10.13.16.2 Diagram..699

10.13.16.3 Fields..699

10.13.17 DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS)... 699

10.13.17.1 Offset..700

10.13.17.2 Diagram..700

10.13.17.3 Fields..701

10.13.18 DMA0_AIDL_MAP_LS (DMA0_AIDL_MAP_LS)..701

10.13.18.1 Offset..701

10.13.18.2 Diagram..702

10.13.18.3 Fields..702

10.13.19 DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS)... 702

10.13.19.1 Offset..703

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 29
Confidential Proprietary

Section number Title Page

10.13.19.2 Diagram..703

10.13.19.3 Fields..703

10.13.20 DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS)... 704

10.13.20.1 Offset..704

10.13.20.2 Diagram..704

10.13.20.3 Fields..704

10.13.21 DMA0 AXI ID Enable Register (DMA0_AID_ENB).. 705

10.13.21.1 Offset..705

10.13.21.2 Diagram..705

10.13.21.3 Fields..706

10.13.22 DMA0 AXI Read Timing Check Register (DMA0_ARD_TC).. 707

10.13.22.1 Offset..708

10.13.22.2 Diagram..708

10.13.22.3 Fields..708

10.13.23 DMA0 Read Timing Check Latency Register (DMA0_ARD_LAT)..709

10.13.23.1 Offset..710

10.13.23.2 Diagram..710

10.13.23.3 Fields..710

10.13.24 DMA0 AXI Write Timing Check Register (DMA0_AWR_TC).. 711

10.13.24.1 Offset..711

10.13.24.2 Diagram..712

10.13.24.3 Fields..712

10.13.25 DMA0 Write Timing Check Latency Register (DMA0_AWR_LAT)..713

10.13.25.1 Offset..714

10.13.25.2 Diagram..714

10.13.25.3 Fields..714

10.13.26 Manufacturing Protection Private Key Register (MPPKR0 - MPPKR63).. 714

10.13.26.1 Offset..715

10.13.26.2 Diagram..715

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

30 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.26.3 Fields..716

10.13.27 Manufacturing Protection Message Register (MPMR0 - MPMR31).. 716

10.13.27.1 Offset..716

10.13.27.2 Diagram..716

10.13.27.3 Fields..717

10.13.28 Manufacturing Protection Test Register (MPTESTR0 - MPTESTR31)... 717

10.13.28.1 Offset..717

10.13.28.2 Diagram..717

10.13.28.3 Fields..718

10.13.29 Manufacturing Protection ECC Register (MPECC).. 718

10.13.29.1 Offset..718

10.13.29.2 Diagram..718

10.13.29.3 Fields..719

10.13.30 Job Descriptor Key Encryption Key Register (JDKEKR0 - JDKEKR7).. 719

10.13.30.1 Offset..720

10.13.30.2 Diagram..720

10.13.30.3 Fields..720

10.13.31 Trusted Descriptor Key Encryption Key Register (TDKEKR0 - TDKEKR7)..721

10.13.31.1 Offset..721

10.13.31.2 Diagram..721

10.13.31.3 Fields..722

10.13.32 Trusted Descriptor Signing Key Register (TDSKR0 - TDSKR7)...722

10.13.32.1 Offset..722

10.13.32.2 Diagram..723

10.13.32.3 Fields..723

10.13.33 Secure Key Nonce Register (SKNR)... 723

10.13.33.1 Offset..724

10.13.33.2 Diagram..724

10.13.33.3 Fields..725

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 31
Confidential Proprietary

Section number Title Page

10.13.34 DMA Status Register (DMA_STA)...725

10.13.34.1 Offset..725

10.13.34.2 Diagram..725

10.13.34.3 Fields..726

10.13.35 DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP).. 726

10.13.35.1 Offset..727

10.13.35.2 Diagram..727

10.13.35.3 Fields..727

10.13.36 DMA_X_AID_3_0_MAP (DMA_X_AID_3_0_MAP).. 728

10.13.36.1 Offset..728

10.13.36.2 Diagram..728

10.13.36.3 Fields..728

10.13.37 DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP).. 729

10.13.37.1 Offset..729

10.13.37.2 Diagram..729

10.13.37.3 Fields..730

10.13.38 DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP).. 730

10.13.38.1 Offset..730

10.13.38.2 Diagram..731

10.13.38.3 Fields..731

10.13.39 DMA_X AXI ID Map Enable Register (DMA_X_AID_15_0_EN)... 731

10.13.39.1 Offset..732

10.13.39.2 Diagram..732

10.13.39.3 Fields..732

10.13.40 DMA_X AXI Read Timing Check Control Register (DMA_X_ARTC_CTL).. 733

10.13.40.1 Offset..734

10.13.40.2 Diagram..734

10.13.40.3 Fields..735

10.13.41 DMA_X AXI Read Timing Check Late Count Register (DMA_X_ARTC_LC)..................................... 736

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

32 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.41.1 Offset..736

10.13.41.2 Diagram..736

10.13.41.3 Fields..737

10.13.42 DMA_X AXI Read Timing Check Sample Count Register (DMA_X_ARTC_SC).................................737

10.13.42.1 Offset..738

10.13.42.2 Diagram..738

10.13.42.3 Fields..738

10.13.43 DMA_X Read Timing Check Latency Register (DMA_X_ARTC_LAT)..739

10.13.43.1 Offset..739

10.13.43.2 Diagram..739

10.13.43.3 Fields..740

10.13.44 DMA_X AXI Write Timing Check Control Register (DMA_X_AWTC_CTL)...................................... 740

10.13.44.1 Offset..741

10.13.44.2 Diagram..741

10.13.44.3 Fields..741

10.13.45 DMA_X AXI Write Timing Check Late Count Register (DMA_X_AWTC_LC)................................... 742

10.13.45.1 Offset..743

10.13.45.2 Diagram..743

10.13.45.3 Fields..743

10.13.46 DMA_X AXI Write Timing Check Sample Count Register (DMA_X_AWTC_SC)...............................743

10.13.46.1 Offset..744

10.13.46.2 Diagram..744

10.13.46.3 Fields..745

10.13.47 DMA_X Write Timing Check Latency Register (DMA_X_AWTC_LAT)..745

10.13.47.1 Offset..745

10.13.47.2 Diagram..745

10.13.47.3 Fields..746

10.13.48 RNG TRNG Miscellaneous Control Register (RTMCTL)..746

10.13.48.1 Offset..746

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 33
Confidential Proprietary

Section number Title Page

10.13.48.2 Diagram..747

10.13.48.3 Fields..747

10.13.49 RNG TRNG Statistical Check Miscellaneous Register (RTSCMISC)... 749

10.13.49.1 Offset..749

10.13.49.2 Diagram..749

10.13.49.3 Fields..749

10.13.50 RNG TRNG Poker Range Register (RTPKRRNG).. 750

10.13.50.1 Offset..750

10.13.50.2 Diagram..750

10.13.50.3 Fields..750

10.13.51 RNG TRNG Poker Maximum Limit Register (RTPKRMAX)... 751

10.13.51.1 Offset..751

10.13.51.2 Diagram..751

10.13.51.3 Fields..752

10.13.52 RNG TRNG Poker Square Calculation Result Register (RTPKRSQ).. 752

10.13.52.1 Offset..753

10.13.52.2 Diagram..753

10.13.52.3 Fields..753

10.13.53 RNG TRNG Seed Control Register (RTSDCTL)..753

10.13.53.1 Offset..754

10.13.53.2 Diagram..754

10.13.53.3 Fields..754

10.13.54 RNG TRNG Sparse Bit Limit Register (RTSBLIM)...754

10.13.54.1 Offset..755

10.13.54.2 Diagram..755

10.13.54.3 Fields..755

10.13.55 RNG TRNG Total Samples Register (RTTOTSAM)..756

10.13.55.1 Offset..756

10.13.55.2 Diagram..756

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

34 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.55.3 Fields..756

10.13.56 RNG TRNG Frequency Count Minimum Limit Register (RTFRQMIN)... 757

10.13.56.1 Offset..757

10.13.56.2 Diagram..757

10.13.56.3 Fields..757

10.13.57 RNG TRNG Frequency Count Register (RTFRQCNT)..758

10.13.57.1 Offset..758

10.13.57.2 Diagram..758

10.13.57.3 Fields..759

10.13.58 RNG TRNG Frequency Count Maximum Limit Register (RTFRQMAX)...759

10.13.58.1 Offset..759

10.13.58.2 Diagram..760

10.13.58.3 Fields..760

10.13.59 RNG TRNG Statistical Check Monobit Count Register (RTSCMC)..760

10.13.59.1 Offset..761

10.13.59.2 Diagram..761

10.13.59.3 Fields..761

10.13.60 RNG TRNG Statistical Check Monobit Limit Register (RTSCML)...761

10.13.60.1 Offset..762

10.13.60.2 Diagram..762

10.13.60.3 Fields..762

10.13.61 RNG TRNG Statistical Check Run Length 1 Count Register (RTSCR1C).. 763

10.13.61.1 Offset..763

10.13.61.2 Diagram..763

10.13.61.3 Fields..764

10.13.62 RNG TRNG Statistical Check Run Length 1 Limit Register (RTSCR1L)... 764

10.13.62.1 Offset..765

10.13.62.2 Diagram..765

10.13.62.3 Fields..765

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 35
Confidential Proprietary

Section number Title Page

10.13.63 RNG TRNG Statistical Check Run Length 2 Count Register (RTSCR2C).. 766

10.13.63.1 Offset..766

10.13.63.2 Diagram..766

10.13.63.3 Fields..767

10.13.64 RNG TRNG Statistical Check Run Length 2 Limit Register (RTSCR2L)... 767

10.13.64.1 Offset..768

10.13.64.2 Diagram..768

10.13.64.3 Fields..768

10.13.65 RNG TRNG Statistical Check Run Length 3 Count Register (RTSCR3C).. 769

10.13.65.1 Offset..769

10.13.65.2 Diagram..769

10.13.65.3 Fields..770

10.13.66 RNG TRNG Statistical Check Run Length 3 Limit Register (RTSCR3L)... 770

10.13.66.1 Offset..771

10.13.66.2 Diagram..771

10.13.66.3 Fields..771

10.13.67 RNG TRNG Statistical Check Run Length 4 Count Register (RTSCR4C).. 772

10.13.67.1 Offset..772

10.13.67.2 Diagram..772

10.13.67.3 Fields..772

10.13.68 RNG TRNG Statistical Check Run Length 4 Limit Register (RTSCR4L)... 773

10.13.68.1 Offset..773

10.13.68.2 Diagram..773

10.13.68.3 Fields..774

10.13.69 RNG TRNG Statistical Check Run Length 5 Count Register (RTSCR5C).. 774

10.13.69.1 Offset..775

10.13.69.2 Diagram..775

10.13.69.3 Fields..775

10.13.70 RNG TRNG Statistical Check Run Length 5 Limit Register (RTSCR5L)... 776

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

36 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.70.1 Offset..776

10.13.70.2 Diagram..776

10.13.70.3 Fields..776

10.13.71 RNG TRNG Statistical Check Run Length 6+ Count Register (RTSCR6PC)..777

10.13.71.1 Offset..777

10.13.71.2 Diagram..777

10.13.71.3 Fields..778

10.13.72 RNG TRNG Statistical Check Run Length 6+ Limit Register (RTSCR6PL)...778

10.13.72.1 Offset..779

10.13.72.2 Diagram..779

10.13.72.3 Fields..779

10.13.73 RNG TRNG Status Register (RTSTATUS).. 780

10.13.73.1 Offset..780

10.13.73.2 Diagram..780

10.13.73.3 Fields..781

10.13.74 RNG TRNG Entropy Read Register (RTENT0 - RTENT15)... 782

10.13.74.1 Offset..782

10.13.74.2 Diagram..783

10.13.74.3 Fields..783

10.13.75 RNG TRNG Statistical Check Poker Count 1 and 0 Register (RTPKRCNT10).......................................783

10.13.75.1 Offset..783

10.13.75.2 Diagram..784

10.13.75.3 Fields..784

10.13.76 RNG TRNG Statistical Check Poker Count 3 and 2 Register (RTPKRCNT32).......................................784

10.13.76.1 Offset..784

10.13.76.2 Diagram..785

10.13.76.3 Fields..785

10.13.77 RNG TRNG Statistical Check Poker Count 5 and 4 Register (RTPKRCNT54).......................................785

10.13.77.1 Offset..785

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 37
Confidential Proprietary

Section number Title Page

10.13.77.2 Diagram..786

10.13.77.3 Fields..786

10.13.78 RNG TRNG Statistical Check Poker Count 7 and 6 Register (RTPKRCNT76).......................................786

10.13.78.1 Offset..786

10.13.78.2 Diagram..787

10.13.78.3 Fields..787

10.13.79 RNG TRNG Statistical Check Poker Count 9 and 8 Register (RTPKRCNT98).......................................787

10.13.79.1 Offset..787

10.13.79.2 Diagram..788

10.13.79.3 Fields..788

10.13.80 RNG TRNG Statistical Check Poker Count B and A Register (RTPKRCNTBA)................................... 788

10.13.80.1 Offset..788

10.13.80.2 Diagram..789

10.13.80.3 Fields..789

10.13.81 RNG TRNG Statistical Check Poker Count D and C Register (RTPKRCNTDC)................................... 789

10.13.81.1 Offset..789

10.13.81.2 Diagram..790

10.13.81.3 Fields..790

10.13.82 RNG TRNG Statistical Check Poker Count F and E Register (RTPKRCNTFE)..................................... 790

10.13.82.1 Offset..790

10.13.82.2 Diagram..791

10.13.82.3 Fields..791

10.13.83 RNG DRNG Status Register (RDSTA)... 791

10.13.83.1 Offset..791

10.13.83.2 Diagram..791

10.13.83.3 Fields..792

10.13.84 RNG DRNG State Handle 0 Reseed Interval Register (RDINT0).. 793

10.13.84.1 Offset..793

10.13.84.2 Diagram..793

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

38 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.84.3 Fields..794

10.13.85 RNG DRNG State Handle 1 Reseed Interval Register (RDINT1).. 794

10.13.85.1 Offset..794

10.13.85.2 Diagram..795

10.13.85.3 Fields..795

10.13.86 RNG DRNG Hash Control Register (RDHCNTL)..795

10.13.86.1 Offset..795

10.13.86.2 Diagram..796

10.13.86.3 Fields..796

10.13.87 RNG DRNG Hash Digest Register (RDHDIG)...796

10.13.87.1 Offset..797

10.13.87.2 Diagram..797

10.13.87.3 Fields..797

10.13.88 RNG DRNG Hash Buffer Register (RDHBUF).. 797

10.13.88.1 Offset..798

10.13.88.2 Diagram..798

10.13.88.3 Fields..798

10.13.89 Partition c SDID register (P0SDID_PG0 - P7SDID_JR2).. 798

10.13.89.1 Offset..799

10.13.89.2 Diagram..800

10.13.89.3 Fields..800

10.13.90 Secure Memory Access Permissions register (P0SMAPR_PG0 - P7SMAPR_JR2)................................ 800

10.13.90.1 Offset..806

10.13.90.2 Diagram..807

10.13.90.3 Fields..807

10.13.91 Secure Memory Access Group Registers (P0SMAG2_PG0 - P7SMAG1_JR2).......................................810

10.13.91.1 Offset..811

10.13.91.2 Diagram..813

10.13.91.3 Fields..814

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 39
Confidential Proprietary

Section number Title Page

10.13.92 Recoverable Error Indication Status (REIS)..815

10.13.92.1 Offset..815

10.13.92.2 Diagram..816

10.13.92.3 Fields..816

10.13.93 Recoverable Error Indication Halt (REIH).. 817

10.13.93.1 Offset..817

10.13.93.2 Diagram..817

10.13.93.3 Fields..817

10.13.94 Secure Memory Write Protect Job Ring Register (SMWPJR0R - SMWPJR2R)......................................818

10.13.94.1 Offset..818

10.13.94.2 Diagram..818

10.13.94.3 Fields..819

10.13.95 Secure Memory Command Register (SMCR_PG0 - SMCR_JR2)... 819

10.13.95.1 Offset..820

10.13.95.2 Diagram..820

10.13.95.3 Fields..821

10.13.96 Secure Memory Command Status Register (SMCSR_PG0 - SMCSR_JR2).. 822

10.13.96.1 Offset..822

10.13.96.2 Diagram..823

10.13.96.3 Fields..823

10.13.97 CAAM Version ID Register, most-significant half (CAAMVID_MS)...824

10.13.97.1 Offset..825

10.13.97.2 Diagram..825

10.13.97.3 Fields..825

10.13.98 CAAM Version ID Register, least-significant half (CAAMVID_LS).. 826

10.13.98.1 Offset..826

10.13.98.2 Diagram..826

10.13.98.3 Fields..827

10.13.99 Holding Tank 0 Job Descriptor Address (HT0_JD_ADDR)... 827

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

40 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.99.1 Offset..827

10.13.99.2 Diagram..828

10.13.99.3 Fields..828

10.13.100 Holding Tank 0 Shared Descriptor Address (HT0_SD_ADDR)...829

10.13.100.1 Offset..829

10.13.100.2 Diagram..829

10.13.100.3 Fields..830

10.13.101 Holding Tank 0 Job Queue Control, most-significant half (HT0_JQ_CTRL_MS).................................. 830

10.13.101.1 Offset..831

10.13.101.2 Diagram..831

10.13.101.3 Fields..831

10.13.102 Holding Tank 0 Job Queue Control, least-significant half (HT0_JQ_CTRL_LS).................................... 833

10.13.102.1 Offset..833

10.13.102.2 Diagram..834

10.13.102.3 Fields..834

10.13.103 Holding Tank Status (HT0_STATUS).. 835

10.13.103.1 Offset..835

10.13.103.2 Diagram..835

10.13.103.3 Fields..836

10.13.104 Job Queue Debug Select Register (JQ_DEBUG_SEL)...836

10.13.104.1 Offset..837

10.13.104.2 Diagram..837

10.13.104.3 Fields..837

10.13.105 Job Ring Job IDs in Use Register, least-significant half (JRJIDU_LS).. 838

10.13.105.1 Offset..838

10.13.105.2 Diagram..838

10.13.105.3 Fields..838

10.13.106 Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC).. 839

10.13.106.1 Offset..839

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 41
Confidential Proprietary

Section number Title Page

10.13.106.2 Diagram..839

10.13.106.3 Fields..840

10.13.107 Job Ring Job-Done Job ID FIFO (JRJDJIF)..840

10.13.107.1 Offset..840

10.13.107.2 Diagram..840

10.13.107.3 Fields..841

10.13.108 Job Ring Job-Done Source 1 (JRJDS1)... 841

10.13.108.1 Offset..841

10.13.108.2 Diagram..842

10.13.108.3 Fields..842

10.13.109 Job Ring Job-Done Descriptor Address 0 Register (JRJDDA)... 842

10.13.109.1 Offset..843

10.13.109.2 Diagram..843

10.13.109.3 Fields..843

10.13.110 CHA Revision Number Register, most-significant half (CRNR_MS).. 844

10.13.110.1 Offset..844

10.13.110.2 Diagram..844

10.13.110.3 Fields..845

10.13.111 CHA Revision Number Register, least-significant half (CRNR_LS)..845

10.13.111.1 Offset..846

10.13.111.2 Diagram..846

10.13.111.3 Fields..846

10.13.112 Compile Time Parameters Register, most-significant half (CTPR_MS)...847

10.13.112.1 Offset..847

10.13.112.2 Diagram..848

10.13.112.3 Fields..848

10.13.113 Compile Time Parameters Register, least-significant half (CTPR_LS).. 850

10.13.113.1 Offset..850

10.13.113.2 Diagram..851

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

42 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.113.3 Fields..851

10.13.114 Secure Memory Status Register (SMSTA)..853

10.13.114.1 Offset..853

10.13.114.2 Diagram..853

10.13.114.3 Fields..854

10.13.115 Secure Memory Partition Owners Register (SMPO)...855

10.13.115.1 Offset..855

10.13.115.2 Diagram..856

10.13.115.3 Fields..856

10.13.116 Fault Address Register (FAR)..857

10.13.116.1 Offset..858

10.13.116.2 Diagram..858

10.13.116.3 Fields..858

10.13.117 Fault Address DID Register (FADID)... 859

10.13.117.1 Offset..859

10.13.117.2 Diagram..859

10.13.117.3 Fields..860

10.13.118 Fault Address Detail Register (FADR)..860

10.13.118.1 Offset..861

10.13.118.2 Diagram..861

10.13.118.3 Fields..861

10.13.119 CAAM Status Register (CSTA)...863

10.13.119.1 Offset..863

10.13.119.2 Diagram..863

10.13.119.3 Fields..864

10.13.120 Secure Memory Version ID Register, most-significant half (SMVID_MS)... 865

10.13.120.1 Offset..865

10.13.120.2 Diagram..865

10.13.120.3 Fields..866

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 43
Confidential Proprietary

Section number Title Page

10.13.121 Secure Memory Version ID Register, least-significant half (SMVID_LS)...866

10.13.121.1 Offset..867

10.13.121.2 Diagram..867

10.13.121.3 Fields..867

10.13.122 RTIC Version ID Register (RVID)..868

10.13.122.1 Offset..868

10.13.122.2 Diagram..868

10.13.122.3 Fields..868

10.13.123 CHA Cluster Block Version ID Register (CCBVID).. 869

10.13.123.1 Offset..870

10.13.123.2 Diagram..870

10.13.123.3 Fields..870

10.13.124 CHA Version ID Register, most-significant half (CHAVID_MS)..870

10.13.124.1 Offset..871

10.13.124.2 Diagram..871

10.13.124.3 Fields..871

10.13.125 CHA Version ID Register, least-significant half (CHAVID_LS)... 872

10.13.125.1 Offset..872

10.13.125.2 Diagram..872

10.13.125.3 Fields..873

10.13.126 CHA Number Register, most-significant half (CHANUM_MS).. 874

10.13.126.1 Offset..874

10.13.126.2 Diagram..874

10.13.126.3 Fields..875

10.13.127 CHA Number Register, least-significant half (CHANUM_LS)..875

10.13.127.1 Offset..876

10.13.127.2 Diagram..876

10.13.127.3 Fields..876

10.13.128 Input Ring Base Address Register for Job Ring a (IRBAR_JR0 - IRBAR_JR2)......................................877

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

44 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.128.1 Offset..877

10.13.128.2 Diagram..878

10.13.128.3 Fields..878

10.13.129 Input Ring Size Register for Job Ring a (IRSR_JR0 - IRSR_JR2)... 879

10.13.129.1 Offset..879

10.13.129.2 Diagram..880

10.13.129.3 Fields..880

10.13.130 Input Ring Slots Available Register for Job Ring a (IRSAR_JR0 - IRSAR_JR2)....................................880

10.13.130.1 Offset..881

10.13.130.2 Diagram..881

10.13.130.3 Fields..881

10.13.131 Input Ring Jobs Added Register for Job Ringa (IRJAR_JR0 - IRJAR_JR2)..882

10.13.131.1 Offset..882

10.13.131.2 Diagram..882

10.13.131.3 Fields..883

10.13.132 Output Ring Base Address Register for Job Ring a (ORBAR_JR0 - ORBAR_JR2)................................883

10.13.132.1 Offset..884

10.13.132.2 Diagram..884

10.13.132.3 Fields..885

10.13.133 Output Ring Size Register for Job Ring a (ORSR_JR0 - ORSR_JR2)... 885

10.13.133.1 Offset..886

10.13.133.2 Diagram..886

10.13.133.3 Fields..887

10.13.134 Output Ring Jobs Removed Register for Job Ring a (ORJRR_JR0 - ORJRR_JR2).................................887

10.13.134.1 Offset..888

10.13.134.2 Diagram..888

10.13.134.3 Fields..888

10.13.135 Output Ring Slots Full Register for Job Ring a (ORSFR_JR0 - ORSFR_JR2).. 888

10.13.135.1 Offset..889

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 45
Confidential Proprietary

Section number Title Page

10.13.135.2 Diagram..889

10.13.135.3 Fields..889

10.13.136 Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR2).................................... 890

10.13.136.1 Offset..890

10.13.136.2 Diagram..890

10.13.136.3 Fields..891

10.13.137 Job Ring Interrupt Status Register for Job Ring a (JRINTR_JR0 - JRINTR_JR2)...................................891

10.13.137.1 Offset..892

10.13.137.2 Diagram..892

10.13.137.3 Fields..892

10.13.138 Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_MS - JRCFGR_

JR2_MS).. 894

10.13.138.1 Offset..895

10.13.138.2 Diagram..896

10.13.138.3 Fields..896

10.13.139 Job Ring Configuration Register for Job Ring a, least-significant half (JRCFGR_JR0_LS - JRCFGR_J

R2_LS)... 899

10.13.139.1 Offset..899

10.13.139.2 Diagram..899

10.13.139.3 Fields..899

10.13.140 Input Ring Read Index Register for Job Ring a (IRRIR_JR0 - IRRIR_JR2).. 900

10.13.140.1 Offset..901

10.13.140.2 Diagram..901

10.13.140.3 Fields..901

10.13.141 Output Ring Write Index Register for Job Ring a (ORWIR_JR0 - ORWIR_JR2)................................... 902

10.13.141.1 Offset..902

10.13.141.2 Diagram..902

10.13.141.3 Fields..903

10.13.142 Job Ring Command Register for Job Ring a (JRCR_JR0 - JRCR_JR2)... 903

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

46 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.142.1 Offset..905

10.13.142.2 Diagram..905

10.13.142.3 Fields..905

10.13.143 Job Ring a Address-Array Valid Register (JR0AAV - JR2AAV)...906

10.13.143.1 Offset..906

10.13.143.2 Diagram..906

10.13.143.3 Fields..907

10.13.144 Job Ring a Address-Array Address b Register (JR0AAA0 - JR2AAA3)..907

10.13.144.1 Offset..908

10.13.144.2 Diagram..908

10.13.144.3 Fields..909

10.13.145 Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0 - REIR0JR2).................................... 909

10.13.145.1 Offset..910

10.13.145.2 Diagram..910

10.13.145.3 Fields..910

10.13.146 Recoverable Error Indication Record 2 for Job Ring a (REIR2JR0 - REIR2JR2).................................... 911

10.13.146.1 Offset..911

10.13.146.2 Diagram..911

10.13.146.3 Fields..912

10.13.147 Recoverable Error Indication Record 4 for Job Ring a (REIR4JR0 - REIR4JR2).................................... 912

10.13.147.1 Offset..912

10.13.147.2 Diagram..913

10.13.147.3 Fields..913

10.13.148 Recoverable Error Indication Record 5 for Job Ring a (REIR5JR0 - REIR5JR2).................................... 914

10.13.148.1 Offset..914

10.13.148.2 Diagram..914

10.13.148.3 Fields..914

10.13.149 RTIC Status Register (RSTA)..915

10.13.149.1 Offset..915

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 47
Confidential Proprietary

Section number Title Page

10.13.149.2 Diagram..916

10.13.149.3 Fields..916

10.13.150 RTIC Command Register (RCMD)... 918

10.13.150.1 Offset..918

10.13.150.2 Diagram..918

10.13.150.3 Fields..919

10.13.151 RTIC Control Register (RCTL)... 920

10.13.151.1 Offset..920

10.13.151.2 Diagram..920

10.13.151.3 Fields..920

10.13.152 RTIC Throttle Register (RTHR).. 922

10.13.152.1 Offset..922

10.13.152.2 Diagram..922

10.13.152.3 Fields..923

10.13.153 RTIC Watchdog Timer (RWDOG)..923

10.13.153.1 Offset..923

10.13.153.2 Diagram..923

10.13.153.3 Fields..924

10.13.154 RTIC Endian Register (REND)... 924

10.13.154.1 Offset..925

10.13.154.2 Diagram..925

10.13.154.3 Fields..925

10.13.155 RTIC Memory Block a Address b Register (RMAA0 - RMDA1).. 926

10.13.155.1 Offset..926

10.13.155.2 Diagram..927

10.13.155.3 Fields..927

10.13.156 RTIC Memory Block a Length b Register (RMAL0 - RMDL1)...928

10.13.156.1 Offset..928

10.13.156.2 Diagram..928

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

48 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.156.3 Fields..929

10.13.157 RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)................................929

10.13.157.1 Offset..929

10.13.157.2 Diagram..940

10.13.157.3 Fields..941

10.13.158 Recoverable Error Indication Record 0 for RTIC (REIR0RTIC)..941

10.13.158.1 Offset..941

10.13.158.2 Diagram..941

10.13.158.3 Fields..942

10.13.159 Recoverable Error Indication Record 2 for RTIC (REIR2RTIC)..942

10.13.159.1 Offset..942

10.13.159.2 Diagram..943

10.13.159.3 Fields..943

10.13.160 Recoverable Error Indication Record 4 for RTIC (REIR4RTIC)..943

10.13.160.1 Offset..944

10.13.160.2 Diagram..944

10.13.160.3 Fields..944

10.13.161 Recoverable Error Indication Record 5 for RTIC (REIR5RTIC)..945

10.13.161.1 Offset..945

10.13.161.2 Diagram..945

10.13.161.3 Fields..945

10.13.162 CCB 0 Class 1 Mode Register Format for Non-Public Key Algorithms (C0C1MR)................................946

10.13.162.1 Offset..947

10.13.162.2 Diagram..947

10.13.162.3 Fields..947

10.13.163 CCB 0 Class 1 Mode Register Format for Public Key Algorithms (C0C1MR_PK).................................949

10.13.163.1 Offset..950

10.13.163.2 Diagram..950

10.13.163.3 Fields..950

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 49
Confidential Proprietary

Section number Title Page

10.13.164 CCB 0 Class 1 Mode Register Format for RNG4 (C0C1MR_RNG).. 951

10.13.164.1 Offset..951

10.13.164.2 Diagram..951

10.13.164.3 Fields..952

10.13.165 CCB 0 Class 1 Key Size Register (C0C1KSR)... 955

10.13.165.1 Offset..955

10.13.165.2 Diagram..955

10.13.165.3 Fields..956

10.13.166 CCB 0 Class 1 Data Size Register (C0C1DSR).. 956

10.13.166.1 Offset..957

10.13.166.2 Diagram..957

10.13.166.3 Fields..957

10.13.167 CCB 0 Class 1 ICV Size Register (C0C1ICVSR)... 958

10.13.167.1 Offset..958

10.13.167.2 Diagram..958

10.13.167.3 Fields..959

10.13.168 CCB 0 CHA Control Register (C0CCTRL).. 959

10.13.168.1 Offset..959

10.13.168.2 Diagram..959

10.13.168.3 Fields..960

10.13.169 CCB 0 Interrupt Control Register (C0ICTL)...962

10.13.169.1 Offset..963

10.13.169.2 Diagram..963

10.13.169.3 Fields..963

10.13.170 CCB 0 Clear Written Register (C0CWR).. 966

10.13.170.1 Offset..966

10.13.170.2 Diagram..966

10.13.170.3 Fields..966

10.13.171 CCB 0 Status and Error Register, most-significant half (C0CSTA_MS)..969

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

50 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.171.1 Offset..969

10.13.171.2 Diagram..969

10.13.171.3 Fields..970

10.13.172 CCB 0 Status and Error Register, least-significant half (C0CSTA_LS)... 971

10.13.172.1 Offset..971

10.13.172.2 Diagram..971

10.13.172.3 Fields..972

10.13.173 CCB 0 Class 1 AAD Size Register (C0C1AADSZR)... 973

10.13.173.1 Offset..974

10.13.173.2 Diagram..974

10.13.173.3 Fields..974

10.13.174 CCB 0 Class 1 IV Size Register (C0C1IVSZR).. 974

10.13.174.1 Offset..975

10.13.174.2 Diagram..975

10.13.174.3 Fields..975

10.13.175 PKHA A Size Register (C0PKASZR)... 975

10.13.175.1 Offset..976

10.13.175.2 Diagram..976

10.13.175.3 Fields..976

10.13.176 PKHA B Size Register (C0PKBSZR)... 977

10.13.176.1 Offset..977

10.13.176.2 Diagram..977

10.13.176.3 Fields..977

10.13.177 PKHA N Size Register (C0PKNSZR)... 978

10.13.177.1 Offset..978

10.13.177.2 Diagram..978

10.13.177.3 Fields..978

10.13.178 PKHA E Size Register (C0PKESZR)..979

10.13.178.1 Offset..979

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 51
Confidential Proprietary

Section number Title Page

10.13.178.2 Diagram..979

10.13.178.3 Fields..979

10.13.179 CCB 0 Class 1 Context Register Word a (C0C1CTXR0 - C0C1CTXR15).. 980

10.13.179.1 Offset..980

10.13.179.2 Diagram..981

10.13.179.3 Fields..981

10.13.180 CCB 0 Class 1 Key Registers Word a (C0C1KR0 - C0C1KR7)...981

10.13.180.1 Offset..982

10.13.180.2 Diagram..983

10.13.180.3 Fields..983

10.13.181 CCB 0 Class 2 Mode Register (C0C2MR).. 983

10.13.181.1 Offset..983

10.13.181.2 Diagram..984

10.13.181.3 Fields..984

10.13.182 CCB 0 Class 2 Key Size Register (C0C2KSR)... 985

10.13.182.1 Offset..985

10.13.182.2 Diagram..985

10.13.182.3 Fields..986

10.13.183 CCB 0 Class 2 Data Size Register (C0C2DSR).. 986

10.13.183.1 Offset..987

10.13.183.2 Diagram..987

10.13.183.3 Fields..987

10.13.184 CCB 0 Class 2 ICV Size Register (C0C2ICVSZR)...988

10.13.184.1 Offset..988

10.13.184.2 Diagram..988

10.13.184.3 Fields..989

10.13.185 CCB 0 Class 2 Context Register Word a (C0C2CTXR0 - C0C2CTXR9).. 989

10.13.185.1 Offset..989

10.13.185.2 Diagram..990

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

52 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.185.3 Fields..990

10.13.186 CCB 0 Class 2 Key Register Word a (C0C2KEYR0 - C0C2KEYR15)..990

10.13.186.1 Offset..991

10.13.186.2 Diagram..991

10.13.186.3 Fields..991

10.13.187 CCB 0 FIFO Status Register (C0FIFOSTA)... 992

10.13.187.1 Offset..992

10.13.187.2 Diagram..992

10.13.187.3 Fields..992

10.13.188 CCB 0 iNformation FIFO When STYPE != 10b (C0NFIFO)... 993

10.13.188.1 Offset..993

10.13.188.2 Diagram..994

10.13.188.3 Fields..994

10.13.189 CCB 0 iNformation FIFO When STYPE == 10b (C0NFIFO_2).. 997

10.13.189.1 Offset..997

10.13.189.2 Diagram..997

10.13.189.3 Fields..998

10.13.190 CCB 0 Input Data FIFO (C0IFIFO)...1000

10.13.190.1 Offset..1001

10.13.190.2 Diagram..1001

10.13.190.3 Fields..1001

10.13.191 CCB 0 Output Data FIFO (C0OFIFO).. 1001

10.13.191.1 Offset..1002

10.13.191.2 Diagram..1003

10.13.191.3 Fields..1003

10.13.192 DECO0 Job Queue Control Register, most-significant half (D0JQCR_MS)..1003

10.13.192.1 Offset..1004

10.13.192.2 Diagram..1004

10.13.192.3 Fields..1004

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 53
Confidential Proprietary

Section number Title Page

10.13.193 DECO0 Job Queue Control Register, least-significant half (D0JQCR_LS)... 1006

10.13.193.1 Offset..1006

10.13.193.2 Diagram..1006

10.13.193.3 Fields..1007

10.13.194 DECO0 Descriptor Address Register (D0DAR)... 1007

10.13.194.1 Offset..1007

10.13.194.2 Diagram..1007

10.13.194.3 Fields..1008

10.13.195 DECO0 Operation Status Register, most-significant half (D0OPSTA_MS).. 1008

10.13.195.1 Offset..1009

10.13.195.2 Diagram..1009

10.13.195.3 Fields..1009

10.13.196 DECO0 Operation Status Register, least-significant half (D0OPSTA_LS).. 1010

10.13.196.1 Offset..1011

10.13.196.2 Diagram..1011

10.13.196.3 Fields..1011

10.13.197 DECO0 Primary DID Status Register (D0PDIDSR)...1011

10.13.197.1 Offset..1012

10.13.197.2 Diagram..1012

10.13.197.3 Fields..1012

10.13.198 DECO0 Output DID Status Register (D0ODIDSR).. 1013

10.13.198.1 Offset..1013

10.13.198.2 Diagram..1013

10.13.198.3 Fields..1013

10.13.199 DECO0 Math Register m_MS (D0MTH0_MS - D0MTH3_MS)... 1014

10.13.199.1 Offset..1014

10.13.199.2 Diagram..1014

10.13.199.3 Fields..1015

10.13.200 DECO0 Math Register m_LS (D0MTH0_LS - D0MTH3_LS).. 1015

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

54 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.200.1 Offset..1015

10.13.200.2 Diagram..1015

10.13.200.3 Fields..1016

10.13.201 DECO0 Gather Table Register 0 Word 0 (D0GTR0_0)..1016

10.13.201.1 Offset..1016

10.13.201.2 Diagram..1016

10.13.201.3 Fields..1016

10.13.202 DECO0 Gather Table Register 0 Word 1 (D0GTR0_1)..1017

10.13.202.1 Offset..1017

10.13.202.2 Diagram..1017

10.13.202.3 Fields..1017

10.13.203 DECO0 Gather Table Register 0 Word 2 (D0GTR0_2)..1018

10.13.203.1 Offset..1018

10.13.203.2 Diagram..1018

10.13.203.3 Fields..1018

10.13.204 DECO0 Gather Table Register 0 Word 3 (D0GTR0_3)..1019

10.13.204.1 Offset..1019

10.13.204.2 Diagram..1019

10.13.204.3 Fields..1020

10.13.205 DECO0 Scatter Table Register 0 Word 0 (D0STR0_0).. 1020

10.13.205.1 Offset..1020

10.13.205.2 Diagram..1021

10.13.205.3 Fields..1021

10.13.206 DECO0 Scatter Table Register 0 Word 1 (D0STR0_1).. 1021

10.13.206.1 Offset..1021

10.13.206.2 Diagram..1021

10.13.206.3 Fields..1022

10.13.207 DECO0 Scatter Table Register 0 Word 2 (D0STR0_2).. 1022

10.13.207.1 Offset..1022

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 55
Confidential Proprietary

Section number Title Page

10.13.207.2 Diagram..1022

10.13.207.3 Fields..1023

10.13.208 DECO0 Scatter Table Register 0 Word 3 (D0STR0_3).. 1023

10.13.208.1 Offset..1023

10.13.208.2 Diagram..1024

10.13.208.3 Fields..1024

10.13.209 DECO0 Descriptor Buffer Word a (D0DESB0 - D0DESB63)... 1024

10.13.209.1 Offset..1025

10.13.209.2 Diagram..1025

10.13.209.3 Fields..1025

10.13.210 DECO0 Debug Job Register (D0DJR)...1026

10.13.210.1 Offset..1026

10.13.210.2 Diagram..1026

10.13.210.3 Fields..1027

10.13.211 DECO0 Debug DECO Register (D0DDR)..1029

10.13.211.1 Offset..1029

10.13.211.2 Diagram..1029

10.13.211.3 Fields..1030

10.13.212 DECO0 Debug Job Pointer (D0DJP)...1032

10.13.212.1 Offset..1032

10.13.212.2 Diagram..1032

10.13.212.3 Fields..1033

10.13.213 DECO0 Debug Shared Pointer (D0SDP)...1033

10.13.213.1 Offset..1034

10.13.213.2 Diagram..1034

10.13.213.3 Fields..1034

10.13.214 DECO0 Debug DID, most-significant half (D0DDR_MS)... 1035

10.13.214.1 Offset..1035

10.13.214.2 Diagram..1035

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

56 NXP Semiconductors
Confidential Proprietary

Section number Title Page

10.13.214.3 Fields..1036

10.13.215 DECO0 Debug DID, least-significant half (D0DDR_LS)...1036

10.13.215.1 Offset..1036

10.13.215.2 Diagram..1037

10.13.215.3 Fields..1037

10.13.216 Sequence Output Length Register (SOL0).. 1037

10.13.216.1 Offset..1038

10.13.216.2 Diagram..1038

10.13.216.3 Fields..1038

10.13.217 Variable Sequence Output Length Register (VSOL0)...1038

10.13.217.1 Offset..1039

10.13.217.2 Diagram..1039

10.13.217.3 Fields..1039

10.13.218 Sequence Input Length Register (SIL0)...1039

10.13.218.1 Offset..1040

10.13.218.2 Diagram..1040

10.13.218.3 Fields..1040

10.13.219 Variable Sequence Input Length Register (VSIL0)...1040

10.13.219.1 Offset..1041

10.13.219.2 Diagram..1041

10.13.219.3 Fields..1041

10.13.220 Protocol Override Register (D0POVRD).. 1042

10.13.220.1 Offset..1042

10.13.220.2 Diagram..1042

10.13.220.3 Fields..1042

10.13.221 Variable Sequence Output Length Register; Upper 32 bits (UVSOL0)..1043

10.13.221.1 Offset..1043

10.13.221.2 Diagram..1043

10.13.221.3 Fields..1043

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 57
Confidential Proprietary

Section number Title Page

10.13.222 Variable Sequence Input Length Register; Upper 32 bits (UVSIL0).. 1044

10.13.222.1 Offset..1044

10.13.222.2 Diagram..1044

10.13.222.3 Fields..1045

Chapter 11
Secure Non-Volatile Storage (SNVS)

11.1 SNVS introduction..1047

11.1.1 SNVS feature list... 1048

11.1.2 SNVS functional description... 1050

11.2 SNVS Structure...1050

11.2.1 SNVS power domains..1053

11.2.2 Digital Low-Voltage Detector (LVD)..1054

11.2.3 SNVS clock sources...1055

11.3 Security violation policy...1055

11.3.1 Security state machine... 1056

11.3.2 SNVS interrupts, alarms, and security violations.. 1060

11.3.3 Configuring SNVS's response to a security event... 1060

11.3.4 SNVS_LP security event policy.. 1062

11.3.5 High Assurance Counter.. 1063

11.4 Runtime Procedures..1064

11.4.1 Using SNVS Timer Facilities.. 1064

11.4.1.1 SNVS_HP Real Time Counter...1064

11.4.1.2 SNVS_LP Secure Real Time Counter (SRTC)..1065

11.4.1.3 RTC/SRTC control bits setting.. 1066

11.4.1.4 Reading RTC and SRTC values...1067

11.4.2 Using Other SNVS Registers...1068

11.4.2.1 Using the General-Purpose Register.. 1068

11.4.2.2 Using the Monotonic Counter (MC)..1068

11.5 Configuring Master Key checking and control...1069

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

58 NXP Semiconductors
Confidential Proprietary

Section number Title Page

11.5.1 Error Code for the OTPMK... 1071

11.5.2 Provisioning the Zeroizable Master Key... 1072

11.6 Reset and Initialization of SNVS..1074

11.6.1 Checklist for Initialization of the SNVS HP..1075

11.6.2 Checklist for Initialization of the SNVS LP.. 1076

11.7 SNVS register descriptions...1078

11.7.1 SNVS memory map... 1079

11.7.2 SNVS_HP Lock Register (HPLR)...1079

11.7.2.1 Offset..1080

11.7.2.2 Diagram..1080

11.7.2.3 Fields..1080

11.7.3 SNVS_HP Command Register (HPCOMR)..1082

11.7.3.1 Offset..1082

11.7.3.2 Diagram..1083

11.7.3.3 Fields..1083

11.7.4 SNVS_HP Control Register (HPCR)...1086

11.7.4.1 Offset..1086

11.7.4.2 Diagram..1086

11.7.4.3 Fields..1086

11.7.5 SNVS_HP Security Interrupt Control Register (HPSICR)..1088

11.7.5.1 Offset..1088

11.7.5.2 Diagram..1088

11.7.5.3 Fields..1089

11.7.6 SNVS_HP Security Violation Control Register (HPSVCR)... 1090

11.7.6.1 Offset..1090

11.7.6.2 Diagram..1090

11.7.6.3 Fields..1091

11.7.7 SNVS_HP Status Register (HPSR)..1091

11.7.7.1 Offset..1092

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 59
Confidential Proprietary

Section number Title Page

11.7.7.2 Diagram..1092

11.7.7.3 Fields..1092

11.7.8 SNVS_HP Security Violation Status Register (HPSVSR).. 1094

11.7.8.1 Offset..1094

11.7.8.2 Diagram..1094

11.7.8.3 Fields..1095

11.7.9 SNVS_HP High Assurance Counter IV Register (HPHACIVR).. 1096

11.7.9.1 Offset..1096

11.7.9.2 Diagram..1097

11.7.9.3 Fields..1097

11.7.10 SNVS_HP High Assurance Counter Register (HPHACR)..1097

11.7.10.1 Offset..1097

11.7.10.2 Diagram..1098

11.7.10.3 Fields..1098

11.7.11 SNVS_HP Real Time Counter MSB Register (HPRTCMR).. 1098

11.7.11.1 Offset..1098

11.7.11.2 Diagram..1099

11.7.11.3 Fields..1099

11.7.12 SNVS_HP Real Time Counter LSB Register (HPRTCLR).. 1099

11.7.12.1 Offset..1099

11.7.12.2 Diagram..1100

11.7.12.3 Fields..1100

11.7.13 SNVS_HP Time Alarm MSB Register (HPTAMR)..1100

11.7.13.1 Offset..1100

11.7.13.2 Diagram..1101

11.7.13.3 Fields..1101

11.7.14 SNVS_HP Time Alarm LSB Register (HPTALR)..1101

11.7.14.1 Offset..1101

11.7.14.2 Diagram..1101

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

60 NXP Semiconductors
Confidential Proprietary

Section number Title Page

11.7.14.3 Fields..1102

11.7.15 SNVS_LP Lock Register (LPLR)..1102

11.7.15.1 Offset..1102

11.7.15.2 Diagram..1102

11.7.15.3 Fields..1103

11.7.16 SNVS_LP Control Register (LPCR)..1104

11.7.16.1 Offset..1105

11.7.16.2 Diagram..1105

11.7.16.3 Fields..1105

11.7.17 SNVS_LP Master Key Control Register (LPMKCR)... 1108

11.7.17.1 Offset..1108

11.7.17.2 Diagram..1108

11.7.17.3 Fields..1108

11.7.18 SNVS_LP Security Violation Control Register (LPSVCR).. 1110

11.7.18.1 Offset..1110

11.7.18.2 Diagram..1110

11.7.18.3 Fields..1110

11.7.19 SNVS_LP Security Events Configuration Register (LPSECR).. 1111

11.7.19.1 Offset..1111

11.7.19.2 Diagram..1112

11.7.19.3 Fields..1112

11.7.20 SNVS_LP Status Register (LPSR).. 1113

11.7.20.1 Offset..1113

11.7.20.2 Diagram..1113

11.7.20.3 Fields..1114

11.7.21 SNVS_LP Secure Real Time Counter MSB Register (LPSRTCMR)...1115

11.7.21.1 Offset..1116

11.7.21.2 Diagram..1116

11.7.21.3 Fields..1116

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 61
Confidential Proprietary

Section number Title Page

11.7.22 SNVS_LP Secure Real Time Counter LSB Register (LPSRTCLR)... 1116

11.7.22.1 Offset..1117

11.7.22.2 Diagram..1117

11.7.22.3 Fields..1117

11.7.23 SNVS_LP Time Alarm Register (LPTAR)... 1117

11.7.23.1 Offset..1118

11.7.23.2 Diagram..1118

11.7.23.3 Fields..1118

11.7.24 SNVS_LP Secure Monotonic Counter MSB Register (LPSMCMR)..1118

11.7.24.1 Offset..1119

11.7.24.2 Diagram..1119

11.7.24.3 Fields..1119

11.7.25 SNVS_LP Secure Monotonic Counter LSB Register (LPSMCLR)..1120

11.7.25.1 Offset..1120

11.7.25.2 Diagram..1120

11.7.25.3 Fields..1120

11.7.26 SNVS_LP Digital Low-Voltage Detector Register (LPLVDR).. 1121

11.7.26.1 Offset..1121

11.7.26.2 Diagram..1121

11.7.26.3 Fields..1122

11.7.27 SNVS_LP General Purpose Register 0 (legacy alias) (LPGPR0_legacy_alias)..1122

11.7.27.1 Offset..1122

11.7.27.2 Diagram..1122

11.7.27.3 Fields..1122

11.7.28 SNVS_LP Zeroizable Master Key Register (LPZMKR0 - LPZMKR7)... 1123

11.7.28.1 Offset..1123

11.7.28.2 Diagram..1123

11.7.28.3 Fields..1124

11.7.29 SNVS_LP General Purpose Registers 0 .. 3 (LPGPR0 - LPGPR3).. 1124

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

62 NXP Semiconductors
Confidential Proprietary

Section number Title Page

11.7.29.1 Offset..1124

11.7.29.2 Diagram..1125

11.7.29.3 Fields..1125

11.7.30 SNVS_HP Version ID Register 1 (HPVIDR1)..1125

11.7.30.1 Offset..1125

11.7.30.2 Diagram..1126

11.7.30.3 Fields..1126

11.7.31 SNVS_HP Version ID Register 2 (HPVIDR2)..1126

11.7.31.1 Offset..1126

11.7.31.2 Diagram..1127

11.7.31.3 Fields..1127

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 63
Confidential Proprietary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

64 NXP Semiconductors
Confidential Proprietary

Chapter 1
Disclaimer

1.1 Disclaimer
As system security requirements and the attack surface evolves, it is important for
customers to understand the types of attacks (especially advanced physical attacks) which
NXP does not claim to protect against, or strongly mitigate, so that appropriate mitigation
can be taken by the customer at the system level if necessary:

• NXP does not guarantee against advanced tamper attempts, including the operation
of the device beyond the defined specification limits. NXP does not guarantee the
protection against semi-invasive and invasive attacks.

• This i.MX SoC has several built-in features addressing side channel attacks (e.g.
mechanisms to make Differential Power Analysis (DPA) more difficult), however,
there is no claim to be completely resistant. The effectiveness of these features has
not been independently evaluated, therefore NXP does not guarantee that the result
will meet specific customer requirements.

• This i.MX SoC’s security trust architecture relies on the on the strength of
cryptographic algorithms and digital signatures and if these are subsequently
determined to have inherent flaws, then the impact for each flaw must be evaluated
and, in this case, NXP does not guarantee the underlying trust architecture claims.

• This i.MX SoC has some built-in access control mechanisms to support the logical
separation of executed code. However, NXP does not guarantee that the device
completely ensures logical separation by itself. Any vulnerabilities identified in
Trusted Execution Environments or Hypervisor software may impact this separation
and data integrity and may require additional mitigations.

NXP recommends customers to implement appropriate design and operating safeguards
based on defined threat models, to minimize the security risks associated with their
applications and products.

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 65
Confidential Proprietary

Disclaimer

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

66 NXP Semiconductors
Confidential Proprietary

Chapter 2
Security Overview

2.1 Overview
This chapter provides an overview of the following chip security components, explaining
the purpose and features of each of them.

• Resource Domain Controller (RDC)
• Supports 4 domains and up to 8 regions

• TrustZone (TZ) architecture—includes security extensions in the Cortex-A53
processors, Generic Interrupt Controller (GIC), TrustZone Watchdog (TZ WDOG),
On-Chip RAM (OCRAM), and Trust Zone Address Space Controller (TZASC)

• Arm Cortex-A53 MPCore TrustZone support
• On-chip RAM (OCRAM) secure region protection using OCRAM controller
• High Assurance Boot (HAB) feature in the system boot
• Cryptographic Acceleration and Assurance Module (CAAM):

• Support Widevine and PlayReady content protection
• Public Key Cryptography (PKHA) with RSA and Elliptic Curve (ECC)

algorithms
• Real-time integrity checker (RTIC)
• DRM support for RSA, AES, 3DES, DES
• True random number generation (RNG)
• Manufacturing protection support

• Secure Non-Volatile Storage (SNVS)
• Secure real-time clock (RTC), key storage, and security monitor

• Secure JTAG Controller (SJC) with secure debug
• On-chip One-Time Programmable Element Controller (OCOTP_CTRL) with on-

chip electrical fuse arrays
• Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 67
Confidential Proprietary

2.2 Feature summary
This figure shows a simplified diagram of the security subsystem:

iROM
(HAB)

MMU

Arm

JTAG
Controller

JTAG
D

isable

Electrical Fuse Array (OCOTP)
Fuse Secret Key, Boot Image Version Control,

Chip Unique Identification, SRK hash, Security Configuration

HAB
Param

SW
Alarm

Supervisor mode
access indication

Arm TZ
Non-secure mode
indication

Alarm

C
SU

AES-128,
192, 256

Secure
RAM

DES

RC4

RNG

3DES

DMA

SHA-256

Secure Key Module

TZASC

To
DDRC

To OCRAM

CAAM

Security State

Zeroize
RAM

Secure
RAM

Alarm

SNVS

HP

LP

System Security Monitor

Zeroizable Secret key

Secure Time and Monotonic Counter

Digital Low Voltage Detector

Fuse Unique
Secret Key

Figure 2-1. Security subsystem (simplified)

This diagram represents an example of the CSU use.

All platforms built using this chip share a general need for security, though the specific
security requirements vary greatly from platform to platform. For example, portable
consumer devices need to protect a different type and cost of assets than the automotive
or industrial platforms. Each market must be protected against different kinds of attacks.
The platform designers need an appropriate set of counter measures to meet the security
needs of their specific platform.

To help the platform designers to meet the requirements of each market, the chip
incorporates a range of security features. Most of these features provide protection
against specific kinds of attack, and can be configured for different levels according to
the required degree of protection. These features are designed to work together or
independently. They can be also integrated with the appropriate software to create
defensive layers. In addition, the chip includes a general-purpose accelerator that
enhances the performance of selected industry-standard cryptographic algorithms.

The security features include:

Feature summary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

68 NXP Semiconductors
Confidential Proprietary

• Arm TrustZone Architecture, a trusted execution environment for security-critical
software

• Hardware-assisted virtualization-two virtual machines: Secure and Normal
Worlds (processor modes)

• Hardware firewalls
• Control of access from the CPU and DMA peripherals to the on-chip

peripherals and to both the on-chip and off-chip memories (see CSU, RDC,
AIPSTZ)

• Interrupt separation
• Secure storage separation
• Cryptographic separation
• Encrypted Boot

• Manufacturing protection
• High-Assurance Boot

• Security library embedded in the on-chip ROM
• Authenticated boot, which protects against unauthorized software

• Verification of the code signature during boot
• RSA-1024/2048/3072/4096 keys anchored to the OTP fingerprint

(SHA-256)
• Runs every time the chip is reset
• Image version control/image revocation (on-chip OTP-based)

• Secure Non-Volatile Storage (SNVS)
• On-chip zeroizable secure RAM (32 KB)
• Off-chip storage protection using AES-256 and the chip's die-individual

hardware-only key
• Hardware cryptographic accelerators

• Symmetric: AES-128/192/256, DES/3DES
• Asymmetric: RSA (up to 4096), Elliptic Curve (up to 1023)
• Hash message digest and HMAC: SHA-1, SHA-256, MD-5
• Built-in Protocols: ECDSA/DSA

• True and pseudorandom number generator
• On-chip secure real-time clock with autonomous power domain
• Secure debugging

• Configurable protection against unauthorized JTAG manipulation
• Three security levels + a complete JTAG disable
• Support for JTAG port secure reopening for field return debugging

• Electrical fuses (OTP Memory)

Chapter 2 Security Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 69
Confidential Proprietary

2.3 TrustZone architecture
The TrustZone architecture provides a trusted execution environment for security-critical
software. The software running in this environment is protected against attacks from
potentially compromised platform software including applications, services, drivers, and
even the operating system itself. The TrustZone hardware protects the confidentiality and
integrity of both the security services and sensitive data. Furthermore, the security
services cannot be starved of the access to the processor resources or hijacked by
uncontrolled interrupts. TrustZone enables the security-critical software to coexist with a
rich platform software environment.

These features work together to create the TrustZone architecture:

• The TrustZone security extensions in the Arm core (see Figure 2-2) duplicate the
user, supervisor, and other privileged modes of the processor in the Secure World
and the Normal World. The security services execute in the Secure World under the
control of a security kernel, while the normal services and applications run in the
Normal World with a rich operating system. TrustZone also provides a monitor
mode, to which the Normal World operating system traps when the security services
are required.

• The TrustZone extensions to the MMU and memory caches separate the Secure
World and Normal World memory spaces (including memory-mapped peripherals).
All read, write, and instruction fetch operations from the Arm core indicate the
current world, and the page tables and cache lines can be isolated from each other.
Using this feature, the security kernel controls the access to the Secure World
memory and peripherals from the Normal World software (even the operating
system).

• TrustZone Access Controller (TZASC) separates the Secure-World and Normal-
World external memory spaces for other bus masters such as the DMA-equipped
peripherals. For more details on TZASC, see TrustZone Address Space Controller
(TZASC).

• The On-Chip RAM (OCRAM) controller separates the Secure-World and Normal-
World internal memory spaces for other bus masters. For more details on OCRAM,
see the OCRAM section of the reference manual.

• Central Security Unit (CSU) and the peripheral bridge (AIPS-TZ) separates the
Secure-World and Normal-World peripheral address spaces for other bus masters,
such as the DMA-equipped peripherals. For more details on CSU, see Central
Security Unit (CSU). For more information on AIPSTZ (in addition to what is
presented in this document), see the chip reference manual.

• Generic Interrupt Controller (GIC) collects the interrupt requests from all sources
and provides the interrupt interface to the core. Each interrupt source can be

TrustZone architecture

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

70 NXP Semiconductors
Confidential Proprietary

configured dynamically as a normal or a secure interrupt by the Secure World
software. The context switch to handle the normal or secure interrupts when
executing in the Normal World or the Secure World is configured in the Arm core.

• TrustZone Watchdog (TZ WDOG) protects against the Normal World software
preventing to switch back to the Secure World, thereby starving the security services
of the access to the core. When TZ WDOG is activated, the Secure World software
must service it on a periodic basis. If the servicing does not take place before the
configured timeout, TZ WDOG asserts a secure interrupt that forces a switch to the
Secure World. If it is still not served, TZ WDOG asserts a security violation alarm.
TZ WDOG cannot be programmed or deactivated from the Normal World. For more
details on TZ WDOG, see TrustZone Watchdog (TZ WDOG).

The MMU and the TrustZone architecture are capable of distinguishing between four
different code-execution modes:

• Code executing in the Normal World mode:
• Code running in the kernel mode (also called supervisor mode or privileged

mode)
• Code running in the user mode

• Code executing in the TrustZone Secure World mode:
• Code running in the TrustZone kernel mode (also called supervisor mode or

privileged mode)
• Code running in the TrustZone user mode

The following figure shows the four execution modes.

Chapter 2 Security Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 71
Confidential Proprietary

Figure 2-2. TrustZone security extensions

The TrustZone architecture also provides hardware support for a limited virtualization of
the Arm core. In the limited virtualization, there are two guest virtual machines: one is
secure and the other is non-secure.

The TrustZone architecture is integrated with other security features for the trusted
execution support as follows:

• After the Power On Reset (POR), all Arm cores are in the Secure World, all
interrupts are secure interrupts, all bus masters are configured as the Secure World
masters, and all bus slaves can be accessed by the Secure World bus masters. This
has two implications:

• If a trusted execution environment is not required, there is no need to switch to
the Normal World. In this case, the system is backwards compatible with a non-
TrustZone system. All platform software runs in the Secure World, without the
modification for TrustZone.

• If enabled, the HAB executes in the Secure World to authenticate either the
security kernel (on a platform using TrustZone) or the normal operating system
bootloader.

• The CSU, AIPS, TZASC, and enforce configurable core access rights to the
peripherals and memory from the Secure World and the Normal World.

TrustZone architecture

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

72 NXP Semiconductors
Confidential Proprietary

• The CSU configures other bus masters to make either Secure World or Normal
World accesses.

• Secure storage separation .
• If not serviced, the TZ WDOG security violation alarm goes to the SNVS.

For more details on the components of the chip TrustZone architecture, see the
descriptions of the Cortex A53 Platform in the chip reference manual.

2.4 High-Assurance Boot (HAB)
The HAB, which is the high-assurance boot feature in the system boot ROM, detects and
prevents the execution of unauthorized software (malware) during the boot sequence.

When the unauthorized software is permitted to gain control of the boot sequence, it can
be used for a variety of goals, such as exposing stored secrets; circumventing access
controls to sensitive data, services, or networks, or for repurposing the platform. The
unauthorized software can enter the platform during upgrades or reprovisioning, or when
booting from the USB connections or removable devices.

The HAB protects against unauthorized software by:

• Using digital signatures to recognize the authentic software. This enables you to boot
the device to a known initial state and run the software signed by the device
manufacturer.

2.4.1 HAB process flow

The following figure shows the flow for creating and verifying digital signatures. The top
half of this figure shows the signing process, which is performed off-chip. The bottom
half shows the verification process performed on-chip during every system boot.

Chapter 2 Security Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 73
Confidential Proprietary

Figure 2-3. Code signing and authentication processes

The original software is programmed into the flash memory (or any other boot device)
along with the signature. The HAB uses a public key to recover the reference hash value
from the signature; it then compares the reference hash value to the current hash value

High-Assurance Boot (HAB)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

74 NXP Semiconductors
Confidential Proprietary

calculated from the software in the flash. If the contents of the flash are modified either
intentionally or unintentionally, the two hash values do not match and the verification
fails.

2.4.2 HAB feature summary

The HAB features:

• Enforced internal boot via on-chip masked ROM
• Authentication of software loaded from any boot device (including the USB

download)
• CMS PKCS#1 signature verification using the RSA public keys (from 1024-bit to

4096-bit) and the SHA-256 hash algorithm
• Public Key Infrastructure (PKI) support using X.509v3 certificates
• Root public key fingerprint in the manufacturer-programmable on-chip fuses
• Multiple root public keys with revocation by fuses
• Initialization of other security components
• Authenticated USB download fall-over on any security failure
• Open configuration for development purposes and non-secure platforms
• Closed configuration for shipping secure platforms

On the chip, the HAB is integrated with these security features:

• The HAB executes in the TrustZone Secure World.
• The HAB initializes the SNVS security monitor state machine. A successful secure

boot with the HAB is required for the platform software to gain access to use the
master secret key selected by SNVS.

• The HAB reads the root public key fingerprint, revocation mask, and security
configuration from the OCOTP_CTRL.

• The HAB can use the to accelerate hash calculations.

2.5 Secure Non-Volatile Storage (SNVS) module
• Provides a non-volatile real-time clock maintained by an uninterrupted power source

during system power down for use in both the secure and non-secure platforms.
• Protects the real-time clock against rollback attacks in time-sensitive protocols such

as DRM and PKI
• Deters replay attacks in time-independent protocols such as certificate or firmware

revocations

Chapter 2 Security Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 75
Confidential Proprietary

• Controls the access to the OTP master secret key used by the to protect confidential
data in the off-chip storage

• Provides non-volatile highly protected storage for an alternative master secret key

2.5.1 SNVS architecture

The SNVS is partitioned into two sections: a low-power part (SNVS_LP) and a high-
power part (SNVS_HP).

The SNVS_LP block is in the always-powered-up domain. It is isolated from the rest of
the logic by isolation cells which are library-instantiated cells that ensure that the
powered-up logic is not corrupted when the power goes down in the rest of the chip.

The SNVS_LP has these functional units:

• Zeroizable Master Key
• Secure non-rollover real-time counter with alarm
• Non-rollover monotonic counter
• Digital Low-voltage Event Detection
• General-purpose register
• Control and status registers

The SNVS_HP is in the chip power-supply domain. The SNVS_HP provides an interface
between the SNVS_LP and the rest of the system. The access to the SNVS_LP registers
can be gained through the SNVS_HP only when it is powered up according to the access
permission policy.

The SNVS_HP has these functional units:

• IP bus interface
• SNVS_LP interface
• System Security Monitor (SSM)
• Zeroizable Master Key programming mechanism
• Master Key control block
• Non-secure real-time counter with alarm
• Control and status registers

2.6 Cryptographic Acceleration and Assurance Module
(CAAM)

The Cryptographic Acceleration and Assurance Module (CAAM) has two major
purposes: acceleration and assurance. It provides:

Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

76 NXP Semiconductors
Confidential Proprietary

• Cryptographic acceleration
• Encryption algorithms: AES, DES/3DES, RC4
• Hashing algorithms: MD5, SHA-1/224/256
• Message authentication codes: HMAC, AES-CMAC, AES-XCBC-MAC
• Authenticated encryption algorithms: AES-CCM

• A secure, hardware random number generation provided by the RNG4-
Pseudorandom Number Generator (PRNG), designed to be compliant with the
National Institute of Standards and Technology (NIST)

• Export and import of cryptographic blobs
• Secure memory controller and interface

• Protection for the cryptographic keys against the exposure to malicious software
running on the processor

• Protected storage for confidential data, such as the proprietary software,
encryption keys, passwords, or PINs against unauthorized disclosure (including
cloning)

• Protected storage for trusted data, such as the Digital Rights Management
(DRM) licences, biometrics reference data, or root certificates against
unauthorized modification

• On-chip (run-time) and off-chip protected storage
• Automatic zeroization of the security parameters and the secure memory
• IP slave interface
• DMA

2.7 OCOTP_CTRL
The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with the
on-chip fuses. These fuses' uses include:

• Unique chip identifiers
• Mask revision numbers
• Cryptographic keys
• Security configuration
• Boot characteristics
• Various control signals requiring permanent non-volatility

For security purposes, the fuses protect the confidentiality or integrity of the critical
security data against both the software attacks and the board-level hardware attacks.

The OCOTP_CTRL provides:

• Shadow cache of fuse values, loaded at reset, before the system boot
• Ability to read the fuse values in the shadow cache (does not affect the fuse element)

Chapter 2 Security Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 77
Confidential Proprietary

• Ability to read the fuses directly (ignoring the shadow cache)
• Ability to write (program) the fuses by software or JTAG
• Fuses and shadow cache bits enforce read-protect, override-protect, and write-protect
• Lock fuses for selected fuse fields
• Scan protection
• Volatile software-accessible signals which can be used for software control of

hardware elements (not requiring non-volatility).

2.8 Central Security Unit (CSU)
Central Security Unit (CSU) sets access control policies between the bus masters and bus
slaves, enabling the peripherals to be separated into distinct security domains. This
protects against the indirect unauthorized access to data which occurs when the software
programs a DMA bus master to access addresses that the software itself is prohibited
from accessing directly. Configuring the DMA bus master privileges in the CSU
consistently with the software privileges defends against such indirect unauthorized
access.

The CSU provides:

• Configuration of peripheral access permissions for peripherals that are unable to
control their own access permissions

• Configuration of bus master privileges for bus masters that are unable to control their
own privileges

• TrustZone support to enhance the non-TrustZone-aware bus masters
• Optional locking of the individual CSU settings until the next power-on reset

On the chip, the CSU interfaces with:

• The Arm TrustZone architecture to assign peripherals to the Secure World and
Normal World domains

2.9 Resource Domain Controller (RDC)
The Resource Domain Controller (RDC) provides a mechanism to allow boot time
configuration code to establish resource domains by assigning cores, bus masters,
peripherals and memory regions to domain identifiers. Once configured, bus transactions
are monitored to restrict accesses initiated by cores and bus masters to their respective
peripherals and memory.

Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

78 NXP Semiconductors
Confidential Proprietary

For shared peripherals, the RDC provides a semaphore-based locking mechanism to
provide for temporary exclusivity while the domain software uses the peripheral. Once
the software of one domain has finished the task and finished with the peripheral then it
may release the semaphore making the peripheral available to the other domain.

The RDC provides:

• Assignment of cores, bus masters, peripherals, and memory regions to a resource
domain

• Fixed memory resolution of 128 Bytes for small address spaces and 4 KB for large
address spaces

• Four resource domain identifiers
• Memory read/write access controls for each resource domain and region
• Optional semaphore-based, hardware-enforced exclusive access of shared peripherals

to a resource domain
• Prioritized access permissions for overlapping memory regions
• Automatic restoration of resource domain access permissions to memory regions in

the power-down domain

Chapter 2 Security Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 79
Confidential Proprietary

D0 Core

main
fabric

DSEC

DEXSC

TZASC

AHB Slave

OCRAM

DDRC

CAAM
Secure RAM

switch
fabric

DEXSC

DEXSC

AIPS-TZ

SEMA42
(Shared)

D0 Periph

D1 Periph

D1 Core switch
fabric

Master to Domain Assignment

Gate
Locks

Peripheral Permissions

Memory Region Bounds

Allowed
Domains

SPBA Periph

RDC
(D0 TZ
Locked)

Figure 2-4. Example RDC Connections

2.10 AHB to IP Peripheral Bridge (AIPSTZ)
The AIPSTZ bridge provides programmable access protections for both masters and
peripherals. It allows the privilege level of a master to be overridden, forcing it to user-
mode privilege, and allows masters to be designated as trusted or untrusted.

Peripherals may require supervisor privilege level for access, may restrict access to a
trusted master only, and may be write-protected. IP bus peripherals are subject to access
control policies set in both CSU registers and AIPSTZ registers. An access is blocked if it
is denied by either policy.

AHB to IP Peripheral Bridge (AIPSTZ)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

80 NXP Semiconductors
Confidential Proprietary

Masters and peripherals are assigned to one or more resource domains in the RDC
submodule (see the RDC chapter for details). Depending on RDC programming, masters
transactions through the AIPSTZ may or may not be allowed access to peripherals in
different resource domains.

2.11 System JTAG Controller (SJC)
The JTAG port provides debug access to hardware blocks, including the Arm processor
and the system bus. This enables program control and manipulation as well as visibility
to the chip peripherals and memory.

The JTAG port must be accessible during initial platform development, manufacturing
tests, and general troubleshooting. Given its capabilities, JTAG manipulation is a known
attack vector for accessing sensitive data and gaining control over software execution.
The System JTAG Controller (SJC) protects against unauthorized JTAG manipulation. It
also provides a JTAG port that conforms to the IEEE 1149.1 and IEEE 1149.6 (AC)
standards for BSR (boundary-scan) testing.

The SJC provides these security levels:

• The JTAG Disabled-JTAG use is permanently blocked.
• The No-Debug-All security sensitive JTAG features are permanently blocked.
• The Secure JTAG-JTAG use is restricted (as in the No-Debug level) unless a secret-

key challenge/response protocol is successfully executed.

The security levels are selected via the e-fuse configuration.

NOTE
For the final production hardware, the most secure and
preferred method is to ensure that the JTAG interface is not
pinned or routed out at all. The same applies to any other trace,
diagnostic or test ports including SDP.

2.11.1 Scan protection

The chip includes further scan protection logic for those SJC modes where the JTAG use
is allowed. This ensures that the access to critical security values is protected as follows:

• The chip is reset when entering the scan mode.
• All modules are reset two clock cycles before receiving the scan-enable indication.

Chapter 2 Security Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 81
Confidential Proprietary

• The chip cannot exit the scan mode without a reset.
• The security modules (including CAAM, SNVS, CSU, and OCOTP_CTRL) have an

additional scan-protection logic to protect the sensitive internal data and
functionality.

See the "System JTAG Controller (SJC)" section in for more information on the SJC.

2.12 TrustZone Address Space Controller (TZASC)
The TrustZone Address Space Controller (TZASC) protects security-sensitive software
and data in a trusted execution environment against potentially compromised software
running on the platform.

The TZASC:

• Supports 2, 4, 8, or 16 independent address regions.
• Uses access controls that are programmable independently for each address region

and permits the data transfers between the master and slave only if the security status
of the system bus transaction matches the security settings of the memory region it
addresses.

• Allows locking of sensitive registers.
• Allows the host interrupt to be programmed to signal the attempted access control

violations.

For a detailed specification of TZASC, see the Arm® Infocenter documentation center,
Revision: r0p1 CoreLink™ TrustZone Address Space Controller TZC-380 Technical
Reference Manual.

2.13 Smart Direct Memory Access Controller (SDMA)
The Smart Direct Memory Access Controller (SDMA) enables the data transfers between
the peripheral I/O devices and the internal/external memories which maximizes the
system performance by offloading the CPU in the dynamic data routing. Because the
SDMA is software-programmable, it can be abused by malicious software to gain indirect
access to addresses that the software itself is prohibited from accessing directly (if left
unprotected). However, the SDMA can be configured to protect against such abuse.

The SDMA supports two security levels which are configurable until the next reset by a
write-once lock bit:

TrustZone Address Space Controller (TZASC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

82 NXP Semiconductors
Confidential Proprietary

• In the open mode, the processor has a full control to load scripts and context into the
SDMA RAM and modify the SDMA registers. This is the default mode.

• In the locked mode, the selected SDMA registers become read-only to prevent the
modification of the software reset, exception, and debug handling. The scripts and
their context cannot be loaded into the SDMA RAM anymore.

On the chip, the SDMA privileges are configured in the CSU as a further precaution
against the software abuse.

For more details on the SDMA, see the "System DMA (SDMA)" section in the chip
reference manual.

2.14 TrustZone Watchdog (TZ WDOG)
The TrustZone Watchdog (TZ WDOG) timer module protects against the denial-of-
service attacks on the Secure World software by the Normal World software. The TZ
starvation is a situation where the normal OS prevents from switching to the TZ mode.
This situation is undesirable because it can compromise the security of the system.

When the TZ WDOG module is activated, it must be serviced by the Secure World
software on a periodic basis. If the servicing does not take place, the timer expires and the
TZ WDOG asserts a secure interrupt that forces the processor to switch to the Secure
World. If this interrupt is not serviced, the TZ WDOG asserts a security violation alarm
to the SNVS. The TZ WDOG module cannot be programmed or deactivated by the
Normal World software.

The TZ WDOG is another instantiation of the system WDOG. The TZ WDOG has these
features:

• Time-out periods from 0.5 seconds up to 128 seconds
• Time resolution of 0.5 seconds
• Configurable counters to run or stop during the low-power modes
• Configurable counters to run or stop during the debug mode
• Two event time points: one for the TrustZone interrupt assertion and one for the

security alarm assertion

Chapter 2 Security Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 83
Confidential Proprietary

TrustZone Watchdog (TZ WDOG)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

84 NXP Semiconductors
Confidential Proprietary

Chapter 3
Security System Integration

3.1 Master ID allocation
The master IDs are used in setting up the TrustZone Address Space Controller (TZASC)
and in profiling. This table summarizes the master IDs for all system master modules:

Table 3-1. Master IDs

Module Master ID

Cortex A53 001b

SDMA 011b

All others 000b

3.2 System-level SNVS connections

3.2.1 System security violation alarm signals monitored by SNVS

The SNVS supports several system security violation alarm inputs, as shown in the
following table. This allocation is related to the HPSVSR, HPSVCR and LPSVCR SNVS
registers.

Table 3-2. SNVS system security violation alarm input signals

SNVS registers Source Description

HPSVSR register
bit field

HPSVCR register
bit field

LPSVCR register
bit field

bit 0 - CAAM bit 0 - CAAM_CFG bit 0 - CAAM_EN CAAM CAAM security violation

bit 1 - SJC bit 1 - SJC_CFG bit 1 - SJC_EN SJC JTAG active

bit 2 - WDOG2 bit 2 -
WDOG2_CFG

bit 2 - WDOG2_EN WDOG2 Watchdog 2 reset

Table continues on the next page...

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 85
Confidential Proprietary

Table 3-2. SNVS system security violation alarm input signals
(continued)

SNVS registers Source Description

HPSVSR register
bit field

HPSVCR register
bit field

LPSVCR register
bit field

bit 3 - Reserved bit 3 - Reserved bit 3 - Reserved (Reserved) —

bit 4 - SRC bit 4 - SRC_CFG bit 4 - SRC_EN SRC Internal boot

bit 5 - Reserved bit 5 - Reserved bit 5 - Reserved (Reserved) —

3.3 Security access error
The system slave modules can be configured to return a bus-access error when a security-
violating access is detected, using the SEC_ERR_RESP bit (GPR10[11] register):

• When set, the slave modules return a bus-error indication on a non-proper security
level access.

• When cleared, the operation does not proceed on a non-proper security level access,
but the slave modules do not indicate an error.

The bit is set by default, enabling the error indications. The SEC_RRR_RESP itself can
be locked, preventing further modifications by the LOCK_SEC_ERR_RESP bit
(GPR10[27]) to assure the system security integrity.

For more information, see the general registers in the chip reference manual.

3.4 OCRAM TrustZone support
The OCRAM supports TrustZone and non-TrustZone accesses to the internal on-chip
RAM. There is an option to configure a TrustZone-only access region.

When the OCRAM_TZSECURE_REGION[SECURE_ENBL] bit in the OCRAM
module is set, the STARTADDR and ENDADDR bit fields in this register establish the
region of OCRAM that can only be accessed (both read and write) in accordance with the
execution mode policy defined in the "Execution Mode Access Policy" section of the
CSU chapter. If this bit is cleared, the entire OCRAM can be accessed in either the secure
or non-secure modes. The secure-region addresses are programmed through the
IOMUXC and should be modified when no transactions are occurring on the OCRAM
bus.

Security access error

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

86 NXP Semiconductors
Confidential Proprietary

The TrustZone bits are described in the "Programmable Registers" section of the chip
reference manual.

NOTE
The ENDADDR bit field is not configurable. Its value is the
last address of the OCRAM space. The STARTADDR
granularity is 4 KB.

This figure shows the OCRAM schematic connectivity:

Figure 3-1. OCRAM schematic connectivity

3.5 Watchdog mechanism
The chip has two WDOG modules: WDOG1 and WDOG2 (TZ). Both modules are
disabled by default after the reset. The WDOG1 is configured during the boot. The
WDOG2 is dedicated for the Secure-World purposes and is only activated by the
TrustZone software (if required).

The WDOG module operates as follows:

• If servicing does not take place, the timer times out and asserts the internal system
reset signal (wdog_rst_B) which goes to the SRC (System Reset Controller).

• The interrupt can be generated before the timer actually times out.
• The wdog_rst_B signal can be activated by software.
• There is a power-down counter that is enabled out of any reset. This counter has a

fixed time-out period of 16 seconds after which it asserts the WDOG_B signal.

Chapter 3 Security System Integration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 87
Confidential Proprietary

This figure describes the WDOG1 and WDOG2 connectivity at the system level.

Figure 3-2. WDOG1 and WDOG2 alarms and interrupts connectivity

3.6 Security configuration
The following figure illustrates the typical device security-configuration lifecycle which
starts from the IC fabrication and continues with the OEM development and assembly
through to the final product in the end user's hands. It also shows the option for field-
return debugging and re-testing at either the OEM or NXP facilities. Note that the field-
return configuration is required for NXP to run test patterns even on non-secure products
(open configuration).

Figure 3-3. Device security configuration life cycle

3.6.1 Field return for retest procedure

Manufacturers can enable the debugging restrictions designed to protect the device keys
and other sensitive data on the devices shipped to the end users. These debugging
restrictions include these measures:

Security configuration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

88 NXP Semiconductors
Confidential Proprietary

• Disabling JTAG (using JTAG_SMODE+KTE, or SJC_DISABLE fuses).
• Preventing the execution of unauthorized bootloader software (using the

SEC_CONFIG[1] fuse).

Naturally, these debugging restrictions also constrain the legitimate debugging of the
field-return devices with suspected faults. The chip includes a field-return configuration
to enable the legitimate debugging, including the possibility for NXP to run the test
modes on returned parts. The field-return configuration:

• Enables JTAG (overriding JTAG_SMODE+KTE and SJC_DISABLE fuses).
• Enables the execution of unsigned bootloader software as in the open configuration

(overriding the SEC_CONFIG[1] fuse).

To protect the sensitive data already provisioned, the field-return configuration
permanently disables the access to the device keys (including access from the or DTCP
modules).

The entry to the field-return configuration is strictly controlled to deter inadvertent,
unauthorized, or widespread use.

• The FIELD_RETURN fuse is protected by the FIELD_RETURN_LOCK sticky bit
in the OCOTP_CTRL fuse controller.

• Before leaving the boot ROM, the FIELD_RETURN_LOCK bit is set by default
(provided the OCOTP clock has been enabled in the initial bootloader either via the
DCD or plug-in method), so that the FIELD_RETURN fuse cannot be burned.

• Setting the FIELD_RETURN_LOCK bit can be avoided by including the unlock
command in the CSF or DCD (open configuration only) which provides:

• The CSF and bootloader software pass signature verification (Closed
configuration).

• The unlock command arguments match the value in the UNIQUE_ID fuses on
the device.

NOTE
OCOTP_CTRL fuse controller clocks should be enabled for the
FIELD_RETURN functionality.

The typical mass-production bootloader on the shipped devices has no unlock command,
so the entry to the field-return configuration requires booting to a special bootloader
which is customized for a single device. For the closed devices, a special bootloader must
be signed for that single device, so that it cannot be used to unlock other devices even if it
leaks to the end users.

The boot flow to activate the field-return configuration is shown in this figure:

Chapter 3 Security System Integration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 89
Confidential Proprietary

Figure 3-4. HAB FIELD_RETURN flowchart

When the FIELD_RETURN fuse is burned, the part is nearly returned to its open state
after the next POR, including:

• Enabling the JTAG (overriding blocking by other means).
• Enabling the unsigned images to execute, as in the open configuration.
• Block access to the sensitive keys provided by the OCOTP_CTRL or SNVS to

CAAM.
• Note that the field-return configuration is required for NXP to run the test patterns

even on non-secure products (open configuration).

Security configuration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

90 NXP Semiconductors
Confidential Proprietary

Chapter 4
System Boot

4.1 Overview
The boot process begins at the Power-On Reset (POR) where the hardware reset logic
forces the Arm core to begin the execution starting from the on-chip boot ROM.

The boot ROM code uses the state of the internal register BOOT_MODE[3:0] as well as
the state of various eFUSEs and/or GPIO settings to determine the boot flow behavior of
the device.

The main features of the ROM include:

• Support for booting from various boot devices
• Serial downloader support (USB OTG)

The boot ROM supports these boot devices:

• Serial NOR Flash via FlexSPI
• NAND flash
• SD/MMC
• Serial (SPI) NOR

The boot ROM uses the state of the BOOT_MODE and eFUSEs to determine the boot
device. For development purposes, the eFUSEs used to determine the boot device may be
overridden using the GPIO pin inputs.

The boot ROM code also allows to download the programs to be run on the device. The
example is a provisioning program that can make further use of the serial connection to
provide a boot device with a new image. Typically, the provisioning program is
downloaded to the internal RAM and allows to program the boot devices, such as the
SD/MMC flash. The ROM serial downloader uses a high-speed USB in a non-stream
mode connection.

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 91
Confidential Proprietary

A key feature of the boot ROM is the ability to perform a secure boot, also known as a
High-Assurance Boot (HAB). This is supported by the HAB security library which is a
subcomponent of the ROM code. The HAB uses a combination of hardware and software
together with the Public Key Infrastructure (PKI) protocol to protect the system from
executing unauthorized programs. Before the HAB allows the user image to execute, the
image must be signed. The signing process is done during the image build process by the
private key holder and the signatures are then included as a part of the final program
image. If configured to do so, the ROM verifies the signatures using the public keys
included in the program image. A secure boot with HAB can be performed on all boot
devices supported on the chip in addition to the serial downloader. The HAB library in
the boot ROM also provides the API functions, allowing the additional boot chain
components (bootloaders) to extend the secure boot chain. The out-of-fab setting for the
SEC_CONFIG is the open configuration, in which the ROM/HAB performs the image
authentication, but all authentication errors are ignored and the image is still allowed to
execute.

4.2 Boot modes

During boot, the core's behavior is defined by the boot mode pin settings, as described in
Boot mode pin settings.

4.2.1 Boot mode pin settings

The device supports 16 boot modes but only several are supported on the chip and the
others are reserved for future use. The boot mode is selected based on the binary value
stored in the internal BOOT_MODE register.

The BOOT_MODE is initialized by sampling the BOOT_MODE inputs on the rising
edge of the POR_B. After these inputs are sampled, their subsequent state does not affect
the contents of the BOOT_MODE internal register. The state of the internal
BOOT_MODE register may be read from the BMOD[1:0] field of the SRC Boot Mode
Register (SRC_SBMR2). The available boot modes are: Boot From Fuses, serial boot via
USB, and Internal Boot. See this table for settings:

Table 4-1. Boot MODE pin settings

Boot Device
Select

BOOT_MODE
[5]

BOOT_MODE
[4]

BOOT_MODE
[3]

BOOT_MODE
[2]

BOOT_MODE
[1]

BOOT_MODE
[0]

Boot from internal
fuses

0 0 0 0 0 0

Table continues on the next page...

Boot modes

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

92 NXP Semiconductors
Confidential Proprietary

Table 4-1. Boot MODE pin settings (continued)

Boot Device
Select

BOOT_MODE
[5]

BOOT_MODE
[4]

BOOT_MODE
[3]

BOOT_MODE
[2]

BOOT_MODE
[1]

BOOT_MODE
[0]

USB Serial
Download

0 0 0 0 0 1

USDHC3 (eMMC) 0 0 0 0 1 0

USDHC2 (SD) 0 0 0 0 1 1

NAND 8-bit single
device, 256 pages

0 0 0 1 0 0

NAND 8-bit single
device, 512 pages

0 0 0 1 0 1

FlexSPI 3B Read 0 0 0 1 1 0

FlexSPI
Hyperflash 3.3V

0 0 0 1 1 1

eCSPI Boot 0 0 1 0 0 0

Reserved 0 0 1 0 0 1

4.2.2 High-level boot sequence

The figure found here show the high-level boot ROM code flow.

Figure 4-1. Boot flow

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 93
Confidential Proprietary

4.2.3 Boot From Fuses mode (BOOT_MODE[1:0] = 00b)

A value of 00b in the BOOT_MODE[1:0] register selects the Boot From Fuses mode.

This mode is similar to the Internal Boot mode described in Internal Boot mode
(BOOT_MODE[1:0] = 0b10) with one difference. In this mode, the GPIO boot override
pins are ignored. The boot ROM code uses the boot eFUSE settings only. This mode also
supports a secure boot using HAB.

If set to Boot From Fuses, the boot flow is controlled by the BT_FUSE_SEL eFUSE
value. If BT_FUSE_SEL = 0, indicating that the boot device (for example, flash, SD/
MMC) was not programmed yet, the boot flow jumps directly to the Serial Downloader.
If BT_FUSE_SEL = 1, the normal boot flow is followed, where the ROM attempts to
boot from the selected boot device.

The first time a board is used, the default eFUSEs may be configured incorrectly for the
hardware on the platform. In such case, the Boot ROM code may try to boot from a
device that does not exist. This may cause an electrical/logic violation on some pads.
Using the Boot From Fuses mode addresses this problem.

Setting the BT_FUSE_SEL=0 forces the ROM code to jump directly to the Serial
Downloader. This allows a bootloader to be downloaded which can then provision the
boot device with a program image and blow the BT_FUSE_SEL and the other boot
configuration eFUSEs. After the reset, the boot ROM code determines that the
BT_FUSE_SEL is blown (BT_FUSE_SEL = 1) and the ROM code performs an internal
boot according to the new eFUSE settings. This allows the user to set
BOOT_MODE[1:0]=00b on a production device and burn the fuses on the same device
(by forcing the entry to the Serial Downloader), without changing the value of the
BOOT_MODE[1:0] or the pullups/pulldowns on the BOOT_MODE pins.

4.2.4 Internal Boot mode (BOOT_MODE[1:0] = 0b10)

A value of 0b10 in the BOOT_MODE[1:0] register selects the Internal Boot mode. In
this mode, the processor continues to execute the boot code from the internal boot ROM.

The boot code performs the hardware initialization, loads the program image from the
chosen boot device, performs the image validation using the HAB library (see Boot
security settings), and then jumps to an address derived from the program image. If an
error occurs during the internal boot, the boot code jumps to the Serial Downloader (see
Serial Downloader). A secure boot using the HAB is possible in all the three boot modes.

Boot modes

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

94 NXP Semiconductors
Confidential Proprietary

When set to the Internal Boot, the boot flow may be controlled by a combination of
eFUSE settings with an option of overriding the fuse settings using the General Purpose
I/O (GPIO) pins. The GPIO Boot Select FUSE (BT_FUSE_SEL) determines whether the
ROM uses the GPIO pins for a selected number of configuration parameters or eFUSEs
in this mode.

• If BT_FUSE_SEL = 1, all boot options are controlled by the eFUSEs described in
Table 4-2.

• If BT_FUSE_SEL = 0, the specific boot configuration parameters may be set using
the GPIO pins rather than eFUSEs. The fuses that can be overridden when in this
mode are indicated in the GPIO column of Table 4-2. Table 4-3 provides the details
of the GPIO pins.

The use of the GPIO overrides is intended for development since these pads are used for
other purposes in the deployed products. NXP recommends controlling the boot
configuration by the eFUSEs in the deployed products and reserving the use of the GPIO
mode for the development and testing purposes only.

4.2.5 Boot security settings

The internal boot modes use one of three security configurations.

• Closed: This level is intended for use with shipping-secure products. All HAB
functions are executed and the security hardware is initialized (the Security
Controller or SNVS enters the Secure state), the DCD is processed if present, and the
program image is authenticated by the HAB before its execution. All detected errors
are logged, and the boot flow is aborted with the control being passed to the serial
downloader. At this level, the execution does not leave the internal ROM unless the
target executable image is authenticated.

• Open: This level is intended for use in non-secure products or during the
development phases of a secure product. All HAB functions are executed as for a
closed device. The security hardware is initialized (except for the SNVS which is left
in the Non-Secure state), the DCD is processed if present, and the program image is
authenticated by the HAB before its execution. All detected errors are logged, but
have no influence on the boot flow which continues as if the errors did not occur.
This configuration is useful for a secure product development because the program
image runs even if the authentication data is missing or incorrect, and the error log
can be examined to determine the cause of the authentication failure.

• Field Return: This level is intended for the parts returned from the shipped products.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 95
Confidential Proprietary

4.3 Device configuration
This section describes the external inputs that control the behavior of the Boot ROM
code.

This includes the boot device selection (SD, MMC, and so on), boot device
configuration (SD bus width, speed, and so on), and other. In general, the source for this
configuration comes from the eFUSEs embedded inside the chip. However, certain
configuration parameters can be sourced from the GPIO pins, allowing further flexibility
during the development process.

4.3.1 Boot eFUSE descriptions

This table is a comprehensive list of the configuration parameters that the ROM uses.

Table 4-2. Boot eFUSE descriptions

Fuse Address Configuration Definition GPIO1 Shipped value Settings2

BT_FUSE_SEL

0x470[28]

OEM In the Internal Boot
mode
BOOT_MODE[1:0]
= 10, the
BT_FUSE_SEL
fuse determines
whether the boot
settings indicated
by a Yes in the
GPIO column are
controlled by the
GPIO pins or the
eFUSE settings in
the On-Chip OTP
Controller
(OCOTP).

In the Boot From
Fuse mode
BOOT_MODE[1:0]
= 00, the
BT_FUSE_SEL
fuse indicates
whether the bit
configuration
eFuses are
programmed.

NA 0 If
BOOT_MODE[1:0]
= 0b10:

0—The bits of the
SBMR are
overridden by the
GPIO pins.

1—The specific bits
of the SBMR are
controlled by the
eFUSE settings. If
BOOT_MODE[1:0]
= 0b00

0—The BOOT
configuration
eFuses are not
programmed yet.
The boot flow
jumps to the serial
downloader.

1—The BOOT
configuration
eFuses are
programmed. The
regular boot flow is
performed.

Table continues on the next page...

Device configuration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

96 NXP Semiconductors
Confidential Proprietary

Table 4-2. Boot eFUSE descriptions
(continued)

SEC_CONFIG[1:0]

0 - 0x450[17]

1 - 0x470[25]

SEC_CONFIG [0] -
NXP

SEC_CONFIG [1] -
OEM

Security
Configuration, as
defined in Boot
security settings

NA 01 00—Reserved

01—Open (allows
any program
image, even if the
authentication fails)

1x—Closed (The
program image
executes only if
authenticated)

SRK_HASH[255:0]

0x580 - 0x5F0

OEM 256-bit hash value
of the super root
key (SRK_HASH)

NA 0 Settings vary—
used by HAB

RECOVER_ECSPI
_BOOT_EN

0x480[25]

OEM ECSPI NOR
recover boot
enable bit

NA 0 0 - Disable

1 - Enable

SDP_DISABLE

0x480[21]

OEM Serial download
disable bit

NA 0 0 - Enable

1 - Disable

FORCE_BT_FRO
M_FUSE

0x480[20]

OEM Force boot from
fuse enable bit

NA 0 0 - Disable

1 - Enable. Read
boot mode from
boot mode fuses.

L1 I-Cache
DISABLE

0x480[12]

OEM L1 I Cache disable
bit used by the boot
during the entire
execution.

No 0 0—L1 I Cache is
enabled by the
ROM during the
boot.

1—L1 I Cache is
disabled by the
ROM during the
boot.

DCACHE_DIS

0x480[8]

OEM L1 Data Cache
disable bit

NA 0 0 - Enable L1 D-
Cache

1 - Disable L1 D-
Cache

BT_FREQ

0x480[9]

OEM Boot frequency
selection

No 0 0—Arm—1000
MHz

1—Arm—500 MHz

LPB_BOOT

0x480[15:14]

OEM USB Low-Power
Boot

No 00 0x—LPB Disable

10—Divide by 2

11—Divide by 4

BT_LPB_POLARIT
Y

0x480[13]

OEM USB Low-Power
Boot GPIO polarity

No 0 0—Low on the
GPIO pad indicates
the lowpower
condition.

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 97
Confidential Proprietary

Table 4-2. Boot eFUSE descriptions
(continued)

1—High on the
GPIO pad indicates
the low-power
condition.

WDOG_ENABLE

0x480[10]

OEM Watchdog reset
counter enable

No 0 0—The watchdog
reset counter is
disabled during the
serial downloader.

1—The watchdog
reset counter is
enabled during the
serial downloader.

WDOG_TIMEOUT
_SELECT

0x480[17:16]

OEM Watch Dog timeout
value selection

NA 00 00 - 2s

01 - 1.5s

10 - 1s

11 - 0.5s

MMC_DLL_DLY[6:
0]

0x490[14:8]

OEM uSDHC Delay Line
settings

No 0000000 uSDHC Delay Line
settings

0x490[22:19] OEM Secondary boot
image offset

NA 0 n == 0: Offset =
4MB

n == 2: Offset =
1MB

Others & n <= 10 :
Offset = 1MB*2^n

Secondary boot
disables if n = fuse
value bigger than
10.

For FlexSPI NOR
boot, the valid
values are: 0, 1, 2,
3, 4, 5, 6, 7.

USDHC_PAD_SET
TINGS

0x490[31:24]

NAND_PAD_SETT
IN GS

0x4A0[31:24]

OEM Override values for
the SD/MMC and
NAND boot modes

No 00000000 Override the
following IO PAD
settings:

[1:0] Driver
Strength

[2] Slew Rate

[3] Hysteresis

[4] Pull/Keeper
select

[6:5] Pull up/down
config

[7] Reserved.

Device configuration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

98 NXP Semiconductors
Confidential Proprietary

1. This setting can be overridden by the GPIO settings when the BT_FUSE_SEL fuse is intact. See GPIO Boot Overrides for
the corresponding GPIO pin.

2. 0 = intact fuse and 1= blown fuse

4.3.2 GPIO boot overrides

This table provides a list of the GPIO boot overrides:

Table 4-3. GPIO override contact assignments

Package pin Direction on reset

BOOT_MODE0 Input

BOOT_MODE1 Input

BOOT_MODE2 Input

BOOT_MODE3 Input

The input pins provided are sampled at boot, and can be used to override the
corresponding eFUSE values, depending on the setting of the BT_FUSE_SEL and
FORCE_BT_FROM_FUSE fuse.

4.4 Device initialization
This section describes the details of the ROM and provides the initialization details.

This includes details on:

• The ROM memory map
• The RAM memory map
• On-chip blocks that the ROM must use or change the POR register default values
• Clock initialization
• Enabling the MMU/L2 cache
• Exception handling and interrupt handling

4.4.1 Internal ROM/RAM memory map

These figures show the iROM memory map:

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 99
Confidential Proprietary

ROM BOOTSTRAP CODE

0x00000000

0x000009F0

ROM Memory Map OCRAM Memory Map

0x00000400

0x00000800

0x00000900

0x00000980

0x0003FFFF

ROM API TABLE

HAB API TABLE

ROM VERSION AND
COPYRIGHT INFORMATION

ROM BOOTSTRAP CODE

VECTORS

OCRAM FREE AREA

RESERVED FOR ROM

0x0097FFFF

0x00910000

0x00900000

Figure 4-2. Internal ROM and RAM memory map

NOTE
If no ROM/HAB APIs are being used, the entire OCRAM
region can be used freely after the boot.

4.4.2 Boot block activation

The boot ROM affects a number of different hardware blocks which are activated and
play a vital role in the boot flow.

The ROM configures and uses the following blocks (listed in an alphabetical order)
during the boot process. Note that the blocks actually used depend on the boot mode and
the boot device selection:

• APBH—the DMA engine to drive the GPMI module
• BCH—62-bit error correction hardware engine with the AXI bus master and a

private connection to the GPMI
• CCM—Clock Control Module
• ECSPI—Enhanced Configurable Serial Peripheral Interface
• FlexSPI—Flexible SPI Interface which supports serial NOR devices
• GPMI—NAND controller pin interface
• OCOTP_CTRL—On-Chip OTP Controller; the OCOTP contains the eFUSEs

Device initialization

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

100 NXP Semiconductors
Confidential Proprietary

• IOMUXC—I/O Multiplexer Control which allows the GPIO use to override the
eFUSE boot settings;

• IOMUXC GPR—I/O Multiplexer Control General-Purpose Registers
• CAAM—Cryptographic Acceleration and Assurance Module
• SNVS—Secure Non-Volatile Storage
• SRC—System Reset Controller
• USB—used for the serial download of a boot device provisioning program
• USDHC—Ultra-Secure Digital Host Controller
• WDOG-1—Watchdog timer

4.4.3 Clocks at boot time

The table below show the various clocks and their sources used by the ROM.

After the reset, each Arm core has access to all peripherals. The ROM code disables the
clocks listed in the following table, except for the boot devices listed in the second
column.

Table 4-4. PLL setting by ROM

PLL name Frequency Comment

ARM_PLL 1000 MHz

SYS_PLL1 800 MHz

SYS_PLL2 1000 MHz

NOTE
All other PLLs are in the default status.

Table 4-5. Clock root setting by ROM

Clock Name Frequency (MHz) Source Enable

ARM_A53_ROOT 1000 arm_pll_clk Yes

ARM_M7_CLK_ROOT 200 system_pll2_200m_clk

AHB_CLK_ROOT 133 system_pll1_133m_clk Yes

MAIN_AXI_CLK_ROOT 333 system_pll2_333m_clk Yes

NAND_CLK_ROOT 500 system_pll2_500m_clk Enabled by driver

NAND_USDHC_BUS_CLK_R
OOT

266 system_pll1_266m_clk Enabled by driver

USB_BUS_CLK_ROOT system_pll2_500m_clk Enabled by driver

NOC_CLK_ROOT 400 system_pll1_800m_clk Yes

USDHC1_CLK_ROOT 200 system_pll1_400m_clk Enabled by driver

USDHC2_CLK_ROOT 200 system_pll1_400m_clk Enabled by driver

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 101
Confidential Proprietary

Table 4-5. Clock root setting by ROM (continued)

Clock Name Frequency (MHz) Source Enable

USDHC3_CLK_ROOT 200 system_pll1_400m_clk Enabled by driver

USB_PHY_REF_CLK_ROOT system_pll1_100m_clk Enabled by driver

ECSPI1_CLK_ROOT 50 system_pll2_200m_clk No

ECSPI2_CLK_ROOT 50 system_pll2_200m_clk No

ECSPI3_CLK_ROOT 50 system_pll2_200m_clk No

WRCLK_CLK_ROOT system_pll1_40m_clk No

NOTE
All other clock roots are in the default status.

Table 4-6. NAND_CLK_ROOT setting

NAND data rate NAND_CLK_ROOT source Frequency

Async/Legacy NAND system_pll1_400m_clk 25 MHz

Sync 40M system_pll1_400m_clk 40 MHz

Toggle/Sync 66M system_pll1_400m_clk 66 MHz

Toggle 80M system_pll1_400m_clk 80 MHz

Sync 100M system_pll1_400m_clk 100 MHz

Toggle/Sync 133M system_pll1_400m_clk 133 MHz

Sync 160M system_pll1_400m_clk 133 MHz

Toggle/Sync 200M system_pll1_400m_clk 200 MHz

NOTE
The NAND_CLK_ROOT source depends on the NAND data
rate.

The ROM code disables the clocks listed in the following table, except for the boot
devices listed in the "Enabled for boot device" column below.

Table 4-7. CCGR setting by ROM

Gating Register LPCG Enable Enabled for boot device

CCM_CCGR0 DVFS (GPC)

CCM_CCGR1 Anamix

CCM_CCGR2 CPU

CCM_CCGR3 CSU

CCM_CCGR4 Debug

CCM_CCGR5 DDR1

CCM_CCGR6 CM7 ATCLK

CCM_CCGR7 ECSPI1

Table continues on the next page...

Device initialization

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

102 NXP Semiconductors
Confidential Proprietary

Table 4-7. CCGR setting by ROM (continued)

Gating Register LPCG Enable Enabled for boot device

CCM_CCGR8 ECSPI2

CCM_CCGR9 ECSPI3

CCM_CCGR10 ENET1

CCM_CCGR11 GPIO1

CCM_CCGR12 GPIO2

CCM_CCGR13 GPIO3

CCM_CCGR14 GPIO4

CCM_CCGR15 GPIO5

CCM_CCGR16 GPT1

CCM_CCGR17 GPT2

CCM_CCGR18 GPT3

CCM_CCGR19 GPT4

CCM_CCGR20 GPT5

CCM_CCGR21 GPT6

CCM_CCGR22 HS

CCM_CCGR23 I2C1

CCM_CCGR24 I2C2

CCM_CCGR25 I2C3

CCM_CCGR26 I2C4

CCM_CCGR27 IOMUX

CCM_CCGR28 IOMUX1

CCM_CCGR29 IOMUX2

CCM_CCGR30 IOMUX3

CCM_CCGR31 IOMUX4

CCM_CCGR32 SNVSMIX

CCM_CCGR33 MU

CCM_CCGR34 OCOTP

CCM_CCGR35 OCRAM

CCM_CCGR36 OCRAM_s

CCM_CCGR37 Reserved

CCM_CCGR38 PERFMON1

CCM_CCGR39 PERFMON2

CCM_CCGR40 PWM1

CCM_CCGR41 PWM2

CCM_CCGR42 PWM3

CCM_CCGR43 PWM4

CCM_CCGR44 QoS

CCM_CCGR45 QoS_Dispmix

CCM_CCGR46 QoS_ENET

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 103
Confidential Proprietary

Table 4-7. CCGR setting by ROM (continued)

Gating Register LPCG Enable Enabled for boot device

CCM_CCGR47 QSPI

CCM_CCGR48 RAWNAND (APBHDMA, GPMI, BCH)

CCM_CCGR49 RDC

CCM_CCGR50 ROM

CCM_CCGR51 SAI1

CCM_CCGR52 SAI2

CCM_CCGR53 SAI3

CCM_CCGR54 SAI4

CCM_CCGR55 SAI5

CCM_CCGR56 SAI6

CCM_CCGR57 SCTR

CCM_CCGR58 SDMA1

CCM_CCGR59 SDMA2

CCM_CCGR60 SEC_DEBUG

CCM_CCGR61 SEMA1

CCM_CCGR62 SEMA2

CCM_CCGR63 SIM_display

CCM_CCGR64 SIM_ENET

CCM_CCGR65 SIM_m

CCM_CCGR66 SIM_main

CCM_CCGR67 SIM_s

CCM_CCGR68 SIM_wakeup

CCM_CCGR69 SIM_HSIO

CCM_CCGR70 Reserved

CCM_CCGR71 SNVS

CCM_CCGR72 Trace

CCM_CCGR73 UART1

CCM_CCGR74 UART2

CCM_CCGR75 UART3

CCM_CCGR76 UART4

CCM_CCGR77 USB

CCM_CCGR78 Reserved

CCM_CCGR79 GPU3D

CCM_CCGR80 Reserved

CCM_CCGR81 USDHC1

CCM_CCGR82 USDHC2

CCM_CCGR83 WDOG1

CCM_CCGR84 WDOG2

CCM_CCGR85 WDOG3

Table continues on the next page...

Device initialization

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

104 NXP Semiconductors
Confidential Proprietary

Table 4-7. CCGR setting by ROM (continued)

Gating Register LPCG Enable Enabled for boot device

CCM_CCGR86 Reserved

CCM_CCGR87 GPU bus

CCM_CCGR88 ASRC

CCM_CCGR89 Reserved

CCM_CCGR90 Reserved

CCM_CCGR91 PDM

CCM_CCGR92 GIC

CCM_CCGR93 Display

CCM_CCGR94 USDHC3

CCM_CCGR95 SDMA3

CCM_CCGR96 XTALOSC

CCM_CCGR97 PLL

CCM_CCGR98 TEMPSENSOR

CCM_CCGR99 Reserved

CCM_CCGR100 Reserved

CCM_CCGR101 SAI7

CCM_CCGR102 Reserved

4.4.4 Enabling MMU and caches

The boot ROM includes a feature that enables the Memory Management Unit (MMU)
and the caches to improve the boot speed.

The L1 instruction cache is enabled at the very beginning, unless the
ICACHE_DISABLE fuse is blown. The MMU is always enabled and ROM enables it at
the very beginning, after enabling the L1 ICACHE. The L1 data cache is enabled during
image authentication and will be disabled after the image authentication is completed.
The fuse, DCACHE_DIS, is used to control L1 DCACHE enable/disable. By default
(fuse not programmed), ROM enables the L1 DCACHE.

4.4.5 Exception handling

The exception vectors located at the start of the ROM are used to map all the Arm
exceptions (except the reset exception) to a duplicate exception vector table in the
internal RAM.

During the boot phase of CPU0, the RAM vectors point to the serial downloader in the
ROM.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 105
Confidential Proprietary

After the boot, the program image can overwrite the vectors as required. The code shown
below is used to map the ROM exception vector table to the duplicate exception vector
table in the RAM.

When an exception occurs, ROM does not move into USB serial download mode.
Instead, ROM will set a flag (EXCEPTION_OCCURED) in the SRC GPR, and then reset
the chip.

Mapping ROM Exception Vector Table

 rom_vectors
 B startup ; offset is 0x000
 ALIGN 0x80
 B default_exception_handler ; offset is 0x080
 ALIGN 0x80
 B default_exception_handler ; offset is 0x100
 ALIGN 0x80
 B default_exception_handler ; offset is 0x180
 ALIGN 0x80
 B sync_exception_handler ; offset is 0x200
 ALIGN 0x80
 B default_exception_handler ; offset is 0x280
 ALIGN 0x80
 B default_exception_handler ; offset is 0x300
 ALIGN 0x80
 B default_exception_handler ; offset is 0x380

4.4.6 Interrupt handling during boot

No special interrupt-handling routines are required during the boot process. The
interrupts are disabled during the boot ROM execution and may be enabled in a later boot
stage.

4.4.7 Persistent bits

Some modes of the boot ROM require the registers that keep their values after a warm
reset. The SRC General-Purpose registers are used for this purpose.

See this table for persistent bits list and description:

Table 4-8. Persistent bits

Bit name Bit location Description

- SRC_GPR2[31:0] Holds the FlexSPI NOR auto probe persistent
content.

PERSIST_EXCEPTION_OCCURED SRC_GPR10[17] Exception cause reset

Device initialization

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

106 NXP Semiconductors
Confidential Proprietary

4.5 Boot devices (internal boot)
The chip supports these boot flash devices:

• Serial NOR flash via FlexSPI interface
• Raw NAND (MLC and SLC), and Toggle-mode NAND flash through GPMI-2

interface, located at CS0. Page sizes of 2 KB, 4 KB, and 8 KB. The bus widths of 8-
bit with 2 through 62-bit BCH hardware ECC (Error Correction) are supported.

• SD/MMC/eSD/SDXC/eMMC4.4 via USDHC interface, supporting high capacity
cards.

The selection of the external boot device type is controlled by BOOT_MODE[3:0]. See
the table below for more details:

Table 4-9. Boot device selection

BOOT_MODE[3:0] Boot device

0000 Boot from internal fuses

0001 USB Serial Download

0010 eMMC boot - by default, boots from USDHC3 port. Can be
overridden by fuses settings.

0011 SD boot - by default, boots from USDHC2 port. Can be
overridden by fuses settings.

0100 NAND 8-bit single device - 256 pages in block

0101 NAND 8-bit single device - 512 pages in block

0110 FlexSPI - 3B Read

0111 FlexSPI - Hyperflash 3.3V

1000 eCSPI Boot

4.5.1 Serial NOR Flash Boot via FlexSPI

4.5.1.1 Serial NOR eFUSE Configuration
Table 4-10. Fuse definition for Serial NOR over FlexSPI

Fuse Config Config Definitions GPIO Shipped Value Settings

480[6:3] OEM xSPI FLASH
Dummy Cycle

Yes 0 0 – Dummy cycles
is auto-probed

Others – Actual
dummy cycles for
Read command

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 107
Confidential Proprietary

Table 4-10. Fuse definition for Serial NOR over FlexSPI (continued)

Fuse Config Config Definitions GPIO Shipped Value Settings

470[1:0] OEM xSPI FLASH Auto
Probe Type

Yes 0 0 – QuadSPI NOR

1 – MXIC Octal

2 – Micron Octal

3 – Reserved

480[19:18] OEM Hold time before
read from device

Yes 0 0 – 500us

1 – 1ms

2 – 3ms

3 – 10ms

470[2] OEM xSPI FLASH Auto
Probe

Yes 0 0 – Disabled

1 – Enabled

BOOT_MODE[5:0] OEM FlexSPI interface
selection

Yes 0 000110 – Flash
with 3B READ

000111 –
Hyperflash 3.3V

0x480[2:0] OEM xSPI FLASH
Frequency

No 0 0 - 100 MHz

1 - 133 MHz

2 - 166 MHz

3 - 200 MHz

4 - 80 MHz

5 - 20 MHz

Others – Reserved

NOTE
If the xSPI FLASH Auto Probe feature is enabled, the
following is the logic how this feature works with other fuse
combinations:

• Flash Type - If Flash type is 0, the "xSPI FLASH Auto
Probe Type" takes effect for the Flash type selection. If
Flash Type is greater than 1, the "Flash Type" Fuse is used
for Flash type selection, ROM will issue specific command
to probe the presence of Serial NOR FLASH.

• xSPI FLASH Frequency - This field is used for specifying
the Flash working frequency.

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

108 NXP Semiconductors
Confidential Proprietary

4.5.1.2 FlexSPI Serial NOR Flash Boot Operation

The Boot ROM attempts to boot from Serial NOR flash if the BOOT_CFG [7:6] fuses
are programmed to 0b’00 as shown in the Serial NOR eFUSE Configuration table, then
the ROM will initialize FlexSPI1 interface. FlexSPI interface initialization is a two-step
process.

The ROM expects the 512-byte FlexSPI NOR configuration parameters as explained in
next section to be present at offset 0x400 in Serial NOR flash. The ROM reads these
configuration parameters using the read command specified by BOOT_CFG [5:3] with
Serial clock operating at 30 MHz.

In the second step, ROM configures FlexSPI1 interface with the parameters provided in
configuration block read from Serial NOR flash and starts the boot procedure. Refer to
Table 25-14 for details regarding FlexSPI configuration parameters and to the FlexSPI
NOR boot flow chart for detailed boot flow chart of FlexSPI NOR.

Both booting an XIP and non XIP image are supported from Serial NOR Flash. For XIP
boot, the image has to be built for FlexSPI address space and for non XIP the image can
be built to execute from Internal RAM.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 109
Confidential Proprietary

4.5.1.3 FlexSPI NOR boot flow chart

Start

Configure FlexSPI Pinmux and
Clock to 30MHz to perform basic
read operation

Get Configuration parameter

Configure IOMUXC, LUT,
controller and clock based on the
configuration parameter read from
Flash device

Configure Flash device to desired
mode based on configuration
parameter

Set boot device parameter(initial
image address, memory range,
etc).

Image == XIP

Execute the image from FlexSPI1
address space

Yes

Copy image to OCRAM

Execute Image from
OCRAM

End

No

Figure 4-3. FlexSPI NOR boot flow

4.5.2 Serial NOR configuration based on FlexSPI interface

The ROM SW supports Serial NOR based on FlexSPI module, using a 448-bytes
common FlexSPI configuration block and several specified parameters for Serial NOR
respectively. See below sections for more details.

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

110 NXP Semiconductors
Confidential Proprietary

4.5.2.1 FlexSPI Configuration Block

FlexSPI Configuration block consists of parameters regarding specific Flash devices
including read command sequence, quad mode enablement sequence (optional), etc.

Table 4-11. FlexSPI Configuration block

Name Offset Size(bytes) Description

Tag 0x000 4 0x42464346, ascii:” FCFB”

Version 0x004 4 0x56010000

[07:00] bugfix = 0

[15:08] minor = 0

[23:16] major = 1

[31:24] ascii ‘V’

- 0x008 4 Reserved

readSampleClkSrc 0x00C 1 0 – internal loopback

1 – loopback from DQS pad

3 – Flash provided DQS

dataHoldTime 0x00D 1 Serial Flash CS Hold Time
Recommend default value is
0x03

dataSetupTime 0x00E 1 Serial Flash CS setup time

Recommended default value
is 0x03

columnAdressWidth 0x00F 1 3 – For HyperFlash

12/13 – For Serial NAND, see
datasheet to find correct value

0 – Other devices

deviceModeCfgEnable 0x010 1 Device Mode Configuration
Enable feature

0 – Disabled

1 – Enabled

- 0x011 3 Reserved

deviceModeSeq 0x014 4 Sequence parameter for
device mode configuration

deviceModeArg 0x018 4 Device Mode argument,
effective only when
deviceModeCfgEnable = 1

configCmdEnable 0x01C 1 Config Command Enable
feature

0 – Disabled

1 – Enabled

- 0x01D 3 Reserved

configCmdSeqs 0x020 16 Sequences for Config
Command, allow 4 separate

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 111
Confidential Proprietary

Table 4-11. FlexSPI Configuration block (continued)

Name Offset Size(bytes) Description

configuration command
sequences.

cfgCmdArgs 0x030 16 Arguments for each separate
configuration command
sequence.

controllerMiscOption 0x040 4 Bit0 – differential clock enable

Bit1 – CK2 enable, must set
to 0 in this silicon

Bit2 – ParallelModeEnable,
must set to 0 for this silicon

Bit3 –
wordAddressableEnable

Bit4 – Safe Configuration
Frequency enable set to 1 for
the devices that support DDR
Read instructions

Bit5 – Pad Setting Override
Enable

Bit6 – DDR Mode Enable, set
to 1 for device supports DDR
read command

deviceType 0x044 1 1 – Serial NOR

2 – Serial NAND

sflashPadType 0x045 1 1 – Single pad

2 – Dual pads

4 – Quad pads

8 – Octal pads

serialClkFreq 0x046 1 Chip specific value, for this
silicon

1 – 30 MHz

2 – 50 MHz

3 – 60 MHz

4 – 75 MHz

5 – 80 MHz

6 – 100 MHz

7 – 133 MHz

8 – 166 MHz

Other value: 30 MHz

lutCustomSeqEnable 0x047 1 0 – Use pre-defined LUT
sequence index and number

1 - Use LUT sequence
parameters provided in this
block

Table continues on the next page...

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

112 NXP Semiconductors
Confidential Proprietary

Table 4-11. FlexSPI Configuration block (continued)

Name Offset Size(bytes) Description

- 0x048 8 Reserved

sflashA1Size 0x050 4 For SPI NOR, need to fill with
actual size

For SPI NAND, need to fill
with actual size * 2

sflashA2Size 0x054 4 The same as above

sflashB1Size 0x058 4 The same as above

sflashB2Size 0x05C 4 The same as above

csPadSettingOverride 0x060 4 Set to 0 if it is not supported

sclkPadSettingOverride 0x064 4 Set to 0 if it is not supported

dataPadSettingOverride 0x068 4 Set to 0 if it is not supported

dqsPadSettingOverride 0x06C 4 Set to 0 if it is not supported

timeoutInMs 0x070 0 Maximum wait time during
read busy status

0 – Disabled timeout checking
feature Other value – Timeout
if the wait time exceeds this
value.

commandInterval 0x074 4 Unit: ns

Currently, it is used for SPI
NAND only at high frequency

dataValidTime 0x078 4 Time from clock edge to data
valid edge, unit ns. This field
is used when the FlexSPI
Root clock is less than 100
MHz and the read sample
clock source is device
provided DQS signal without
CK2 support.

[31:16] data valid time for
DLLB in terms of 0.1 ns

[15:0] data valid time for DLLA
in terms of 0.1 ns

busyOffset 0x07C 2 busy bit offset, valid range :
0-31

busyBitPolarity 0x07E 2 0 – busy bit is 1 if device is
busy

1 – busy bit is 0 if device is
busy

lookupTable 0x080 256 Lookup table

lutCustomSeq 0x180 48 Customized LUT sequence,
see below table for details.

0x1B0 16 Reserved for future use

Note:

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 113
Confidential Proprietary

1. To customize the LUT sequence for some specific device, users need to enable
“lutCustomSeqEnable” and fill in corresponding “lutCustomSeq” field specified by
command index below.

2. For Serial (SPI) NOR, the pre-defined LUT index is as follows:
Table 4-12. LUT sequence definition for Serial

NOR

Command Index Name Index in lookup table Description

0 Read 0 Read command
Sequence

1 ReadStatus 1 Read Status
command

2 WriteEnable 3 Write Enable
command sequence

3 EraseSector 5 Erase Sector
Command

4 PageProgram 9 Page Program
Command

5 ChipErase 11 Full Chip Erase

6 Dummy 15 Dummy Command as
needed

Reserved 2,4,6,7,8,10,12,13,14 All reserved indexes
can be freely used for
other purpose

4.5.2.2 Serial NOR configuration block (512 bytes)
Table 4-13. Serial NOR configuration block

Name Offset Size (Bytes) Description

memCfg 0 448 The common memory
configuration block, see
FlexSPI configuration block
for more details

pageSize 0x1C0 4 Page size in terms of bytes,
not used by ROM

sectorSize 0x1C4 4 Sector size in terms of bytes,
not used by ROM

ipCmdSerialClkFreq 0x1C8 4 Chip specific value, not used
by ROM For Ultra

0 – No change, keep current
serial clock unchanged

1 – 30 MHz

2 – 50 MHz

3 – 60 MHz

Table continues on the next page...

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

114 NXP Semiconductors
Confidential Proprietary

Table 4-13. Serial NOR configuration block (continued)

Name Offset Size (Bytes) Description

4 – 75 MHz

5 – 80 MHz

6 – 100 MHz

7 – 133 MHz

8 – 166 MHz

Reserved 0x1CC 52 Reserved for future use

4.5.3 NAND flash

The boot ROM supports a number of MLC/SLC NAND flash devices from different
vendors and LBA NAND flash devices. The Error Correction and Control (ECC)
subblock (BCH) is used to detect the errors.

4.5.3.1 NAND eFUSE configuration
The boot ROM determines the configuration of the external NAND flash by parameters,
either provided by the eFUSE, or sampled on the GPIO pins during boot. See the
Fusemap chapter in the Reference Manual for parameters details.

NOTE
BOOT_CFGx sampled on the GPIO pins depends on the
BT_FUSE_SEL setting. See Boot Fusemap for details.

Table 4-14. NAND boot eFUSE descriptions

Fuse Config Definition GPIO1 Shipped
value

Settings

4A0[15] OEM BT_TOGGLE_MODE Yes 0 0—raw NAND

1—toggle mode NAND

470[7:6] OEM Pages in block Yes 0 00—32 pages

01—64 pages

10—128 pages

11—32 pages

4B0[11:10] OEM Row address cycles Yes 00 00—3

01—2

10—4

11—5

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 115
Confidential Proprietary

Table 4-14. NAND boot eFUSE descriptions (continued)

Fuse Config Definition GPIO1 Shipped
value

Settings

4A0[12:9] OEM Toggle mode 33 MHz
preamble delay, read latency

Yes 000 0000—16 GPMICLK cycles

0001—1 GPMICLK cycles

0010—2 GPMICLK cycles

0011—3 GPMICLK cycles

0100—4 GPMICLK cycles

0101—5 GPMICLK cycles

0110—6 GPMICLK cycles

0111—7 GPMICLK cycles

1000—8 GPMICLK cycles

1001—9 GPMICLK cycles

1010—10 GPMICLK cycles

1011—11 GPMICLK cycles

1100—12 GPMICLK cycles

1101—13 GPMICLK cycles

1110—14 GPMICLK cycles

1111—15 GPMICLK cycles

4A0[14:13] OEM Boot search count Yes 00 00—2

01—2

10—4

11—8

0x4B0[7] OEM Override pad settings No 0 Override the NAND pad settings

0—use the default values

1—use the PAD_SETTINGS
value

0x4A0[31:24] OEM PAD_SETTINGS[7:0] No 0 NAND pad settings value

0x4B0[15:12] OEM READ_RETRY_SEQ_ID[3:0] No 0000 0000—don't use the ROM
embedded read-retry sequence

0001—use Micron 20 nm read-
retry sequence

0010—use Toshiba A19nm
read-retry sequence

0011—use Toshiba 19nm read-
retry sequence

0100—use SanDisk 19nm read-
retry sequence

0101—use SanDisk 1ynm read-
retry sequence

0110 to 1111—reserved

1. The setting can be overridden by the GPIO settings when the BT_FUSE_SEL fuse is intact. See Table 1 for the
corresponding GPIO pin.

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

116 NXP Semiconductors
Confidential Proprietary

4.5.3.2 NAND flash boot flow and Boot Control Blocks (BCB)

There are two BCB data structures:

• FCB
• DBBT

As a part of the NAND media initialization, the ROM driver uses safe NAND timings to
search for the Firmware Configuration Block (FCB) that contains the optimum NAND
timings, the page address of the Discovered Bad Block Table (DBBT) Search Area, and
the start page address of the primary and secondary firmware.

The hardware ECC level to use is embedded inside the FCB block. The FCB data
structure is also protected using the ECC. The driver reads raw 2112 bytes of the first
sector and runs through the software ECC engine that determines whether the FCB data is
valid or not.

If the FCB is found, the optimum NAND timings are loaded for further reads. If the ECC
fails, or the fingerprints do not match, the Block Search state machine increments the
page number to the Search Stride number of pages to read for the next BCB until the
SearchCount pages have been read.

If the search fails to find a valid FCB, the NAND driver responds with an error and the
boot ROM enters the serial download mode.

The FCB contains the page address of the DBBT Search Area, and the page address for
primary and secondary boot images. The DBBT is searched in the DBBT Search Area,
just like the FCB is searched. After the FCB is read, the DBBT is loaded, and the primary
or secondary boot image is loaded using the starting page address from the FCB.

This figure shows the state diagram of the FCB search:

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 117
Confidential Proprietary

START

Read 4K, ReadCount++

Is Valid FCB?

YES

NO

Current Page = 0,
Search Stride = Stride Size Fuse Value,

Search Count = Boot Search Count Fuse Value

Current Page += Search
Stride

NCB Found

Read Count <
Search Count

YES

Recovery Device/
Serial Loader

NO

Figure 4-4. FCB search flow

When the FCB is found, the boot ROM searches for the Discovered Bad Blocks Table
(DBBT). If the DBBT Search Area is 0 in the FCB, the ROM assumes that there are no
bad blocks on the NAND device boot area. See this figure for the DBBT search flow:

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

118 NXP Semiconductors
Confidential Proprietary

START

Read 4K, ReadCount++

Is Valid DBBT?

YES

NO

Current Page = DBBT Start Page,
Search Stride = Stride Size Fuse Value,

Search Count = 4

Current Page += Search
Stride

DBBT Found

Read Count <
Search Count

YES

DBBT Not Found

NO
DBBT Found, Copy to IRAM

Figure 4-5. DBBT search flow

The BCB search and load function also monitors the ECC correction threshold and sets
the PERSIST_BLOCK_REWRITE persistent bit if the threshold exceeds the maximum
ECC correction ability.

If there is a page with a number of errors higher than ECC can correct during the primary
image read, the boot ROM turns on the PERSIST_SECONDARY_BOOT bit and
performs the software reset (After the software reset, the secondary image is used).

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 119
Confidential Proprietary

If there is a page with number of errors higher than ECC can correct during secondary
image read, the boot ROM goes to the serial loader.

4.5.3.3 Firmware configuration block

The FCB is the first sector in the first good block. The FCB must be present at each
search stride of the search area.

The search area contains copies of the FCB at each stride distance, so, in case the first
NAND block becomes corrupted, the ROM finds its copy in the next NAND block. The
search area must span over at least two NAND blocks. The location information for the
DBBT search area, FW1, and FW2 are all specified in the FCB. This table shows the
flash control block structure:

Table 4-15. Flash control block structure

Name Start byte Size in bytes Description

Reserved 0 4 Reserved for Fingerprint #1(Checksum)

FingerPrint 4 4 32-bit word with a value of 0x20424346, in ascii
"FCB"

Version 8 4 32-bit version number; this version of FCB is
0x00000001

m_NANDTiming 12 8 8 B of data for eight NAND timing parameters

from the NAND datasheet. The eight
parameters are:

m_NandTiming[0]=data_setup,

m_NandTiming[1]=data_hold,

m_NandTiming[2]=address_setup,

m_NandTiming[3]=dsample_time,

m_NandTiming[4]=nand_timing_state,

m_NandTiming[5]=REA,

m_NandTiming[6]=RLOH,

m_NandTiming[7]=RHOH.

The ROM only uses the first four parameters,
but the FCB provides space for other four
parameters to be used by the bootloader or
other applications.

PageDataSize 20 4 The number of bytes of data in a page.
Typically, this is 2048 bytes for 2112 bytes
page size or 4096 bytes for 4314/4224 bytes
page size or 8192 for 8568 bytes page size.

TotalPageSize 24 4 The total number of bytes in a page. Typically,
2112 for 2-KB page or 4224 or 4314 for 4-KB
page or 8568 for 8-KB page.

Table continues on the next page...

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

120 NXP Semiconductors
Confidential Proprietary

Table 4-15. Flash control block structure (continued)

Name Start byte Size in bytes Description

SectorsPerBlock 28 4 The number of pages per block. Typically 64 or
128 or depending on the NAND device type.

NumberOfNANDs 32 4 Not used by ROM

TotalInternalDie 36 4 Not used by ROM

CellType 40 4 Not used by ROM

EccBlockNEccType 44 4 Value from 0 to is used to set the BCH Error
Corrrection level 0, 2, 4, .. or 62 for Block BN of
ECC page, used in configuring the BCH62
page layout registers.

EccBlock0Size 48 4 Size of block B0 used in configuring the BCH62
page-layout registers.

EccBlockNSize 52 4 Size of block BN used in configuring the
BCH62 page-layout registers.

EccBlock0EccType 56 4 Value from 0 to used to set the BCH Error
Corrrection level 0, 2, 4, .. or 62 for Block BN of
ECC page, used in configuring the BCH62
page layout registers.

MetadataBytes 60 4 Size of metadata bytes used in configuring the
BCH62 page-layout registers.

NumEccBlocksPerPage 64 4 Number of the ECC blocks BN not including
B0. This value is used in configuring the
BCH62 page-layout registers.

EccBlockNEccLevelSDK 68 4 Not used by ROM

EccBlock0SizeSDK 72 4 Not used by ROM

EccBlockNSizeSDK 76 4 Not used by ROM

EccBlock0EccLevelSDK 80 4 Not used by ROM

NumEccBlocksPerPageSDK 84 4 Not used by ROM

MetadataBytesSDK 88 4 Not used by ROM

EraseThreshold 92 4 Not used by ROM

Firmware1_startingPage 104 4 Page number address where the first copy of
bootable firmware is located.

Firmware2_startingPage 108 4 Page number address where the second copy
of bootable firmware is located.

PagesInFirmware1 112 4 Size of the first copy of firmware in pages.

PagesInFirmware2 116 4 Size of the second copy of firmware in pages.

DBBTSearchAreaStartAddress 120 4 Page address for the bad block table search
area.

BadBlockMarkerByte 124 4 This is an input offset in the BCH page for the
ROM to swap with the first byte of metadata
after reading a page using the BCH62. The
ROM supports the restoration of manufacturer-
marked bad block markers in the page and this
offset is the bad block marker offset location.

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 121
Confidential Proprietary

Table 4-15. Flash control block structure (continued)

Name Start byte Size in bytes Description

BadBlockMarkerStartBit 128 4 This is an input bit offset in the
BadBlockMarkerByte for the ROM to use when
swapping eight bits with the first byte of
metadata.

BBMarkerPhysicalOffset 132 4 This is the offset where the manufacturer
leaves the bad block marker on a page.

BCHType 136 4 0 for BCH20 and 1 for BCH62. The chip is
backwards compatible to BCH20 and this field
tells the ROM to use the BCH20 or BCH62
block.

TMTiming2_ReadLatency 140 4 Toggle mode NAND timing parameter read
latency, the ROM uses this value to configure
the timing2 register of the GPMI.

TMTiming2_PreambleDelay 144 4 Toggle mode NAND timing parameter
Preamble Delay. The ROM uses this value to
configure the timing2 register of the GPMI.

TMTiming2_CEDelay 148 4 Toggle mode NAND timing parameter CE
Delay. The ROM uses this value to configure
the timing2 register of the GPMI.

TMTiming2_PostambleDelay 152 4 Toggle mode NAND timing parameter
Postamble Delay. The ROM uses this value to
configure the timing2 register of the GPMI.

TMTiming2_CmdAddPause 156 4 Toggle mode NAND timing parameter Cmd
Add Pause. The ROM uses this value to
configure the timing2 register of the GPMI.

TMTiming2_DataPause 160 4 Toggle mode NAND timing parameter Data
Pause. The ROM uses this value to configure
the timing2 register of the GPMI.

TMSpeed 164 4 This is the toggle mode speed for the ROM to
configure the gpmi clock. 0 for 33 MHz, 1 for 40
MHz, and 2 for 66 MHz.

TMTiming1_BusyTimeout 168 4 Toggle mode NAND timing parameter Busy
Timeout. The ROM uses this value to configure
the timing1 register of the GPMI.

DISBBM 172 4 If 0, the ROM swaps the BadBlockMarkerByte
with metadata[0] after reading a page using the
BCH62. If the value is 1, the ROM does not
swap.

BBMark_spare_offset 176 4 The offset in the metadata place which stores
the data in the bad block marker place.

Onfi_sync_enable 180 4 Enable the Onfi nand sync mode support.

Onfi_sync_speed 184 4 Speed for the Onfi nand sync mode:

0 - 24 MHz, 1 - 33 MHz, 2 - 40 MHz, 3 - 50
MHz, 4 - 66 MHz, 5 - 80 MHz, 6 - 100 MHz, 7 -
133 MHz, 8 - 160 MHz, 9 - 200 MHz

Table continues on the next page...

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

122 NXP Semiconductors
Confidential Proprietary

Table 4-15. Flash control block structure (continued)

Name Start byte Size in bytes Description

Onfi_syncNANDData 188 28 The parameters for the Onfi nand sync mode
timing. They are read latency, ce_delay,
preamble_delay, postamble_delay,
cmdadd_pause, data_pause, and
busy_timeout.

DISBB_Search 216 4 Disable the bad block search function when
reading the firmware, only using DBBT.

The FCB data structure is protected using a 62-bit ECC. The layout of the FCB page is
illustrated in this figure:

D4

128B pa
rit

y D5

128B pa
rit

y D6

128B pa
rit

y D7

128B pa
rit

y

Meta

32B

D0

128B pa
rit

y D1

128B pa
rit

y D2

128B pa
rit

y D3

128B pa
rit

y

Figure 4-6. Layout of the FCB page

The detailed parameters of the FCB pages are listed in this table:

Table 4-16. Parameters setting for FCB page

Parameter Value

TotalPageSize 2048+64=2112

MetadataBytes 32

EccBlock0Size 128

EccBlock0EccType 31

BCHType 0

EccBlockNSize 128

EccBlockNEccType 31

NumEccBlocksPerPage 7

To reduce the disturbances caused by a neighboring cell in the FCB page in the NAND
chip, a randomizer is enabled when reading the FCB page. BCH ECC has a Randomizer
module that is interfaced through the GPMI APBHDMA chain. The Randomizer can
generate random data based on BCH ECC encoded/decoded data. It can be employed to
reduce the disturbances caused by a neighboring cell in the NAND chip, thus reducing bit
errors. The randomizer is used to reduce the bit errors in the FCB. Ensure that the
randomizer is enabled when burning the FCB pages in the NAND flash. To control the

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 123
Confidential Proprietary

randomizer for the pages (except for FCB), a new field called Randomizer_Enable is
added into the FCB structure. If the Randomizer_Enable field is set to 0, the randomizer
is disabled. Reading the pages (except for FCB) being set to a non-zero value enables the
randomizer. .

4.5.3.4 Discovered Bad Block Table (DBBT)

See this table for the DBBT format:

Table 4-17. DBBT structure

Name Start byte Size in bytes Description

reserved 0 4 -

FingerPrint 4 4 32-bit word with a value of 0x44424254,in
ascii "DBBT"

Version 8 4 32-bit version number; this version of
DBBT is 0x00000001

reserved 12 4 -

DBBT_NUM_OF_PAGES 16 4 Size of the DBBT in pages

reserved 20 4*PageSize-20 -

reserved 4*PageSize 4 -

Number of Entries 4*PageSize + 4 4 Number of bad blocks

Bad Block Number 4*PageSize + 8 4 First bad block number

Bad Block Number 4*PageSize + 12 4 Second bad block number

- - - Next bad block number

- - - -

Last bad block number - - Last bad block number

4.5.3.5 Bad block handling in ROM

During the firmware boot, at the block boundary, the Bad Block table is searched for a
match to the next block.

If no match is found, the next block can be loaded. If a match is found, the block must be
skipped and the next block checked.

If the Bad Block table start page is null, check the manufactory made Bad Block marker.
The location of the Bad Block maker is at the first three or last three pages in every block
of the NAND flash. The NAND manufacturers normally use one byte in the spare area of
certain pages within a block to mark that a block is bad or not. A value of 0xFF means
good block, non-FF means bad block.

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

124 NXP Semiconductors
Confidential Proprietary

To preserve the BI (bad block information), the flash updater or gang programmer
applications must swap the Bad Block Information (BI) data to byte 0 of the metadata
area for every page before programming the NAND flash. When the ROM loads the
firmware, it copies back the value at metadata[0] to the BI offset in the page data. This
figure shows how the factory bad block marker is preserved:

2 KB Main area

parity parity parity parity

Swap byte

meta
data

Bad block information at
column address 2048

Bad block information at
fourth block of data area

64 B
spare

512 main512 main512 main512 main

Figure 4-7. Factory bad block marker preservation

In the FCB structure, there are two elements (m_u32BadBlockMarkerByte and
m_u32BadBlockMarkerStartBit) to indicate the byte and bit place in the page data that
the manufacturer marked the bad block marker.

4.5.3.6 Toggle mode DDR NAND boot

If the BT_TOGGLEMODE efuse is blown, the ROM does the following to boot from the
Samsung's toggle mode DDR NAND.

4.5.3.6.1 GPMI and BCH clocks configuration

The ROM sets the clock source and the dividers in the CCM registers.

If the BOOT_CFG is set (toggle mode), the GPMI/BCH CLK source is PLL2PFD4, and
running at 66 MHz, otherwise the GPMI/ BCH CLK souce is PLL3, running at 24 MHz.
The ROM sets the default values to timing0, timing1, and timing2 gpmi registers for 24
MHz clock speed. It uses the BOOT_CFG fuse to configure the GPMI timing2 register
parameters preamble delay and read latency. The default value for these parameters is 2
when the fuses are not blown.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 125
Confidential Proprietary

The default timing parameter values used by the ROM for the toggle-mode device are:

• Timing0.ADDRESS_SETUP = 5
• Timing0.DATA_SETUP = 10
• Timing0.DATA_HOLD = 10
• Timing1.DEVICE_BUSY_TIMEOUT = 0 x 500
• Timing2.READ_LATENCY = BOOT_CFG if blown, otherwise 2
• Timing2.CE_DELAY = 2
• Timing2.PREAMBLE_DELAY = BOOT_CFG if blown, otherwise 2
• Timing2.POSTAMBLE_DELAY = 3
• Timing2.CMDADD_PAUSE = 4
• Timing2.DATA_PAUSE = 6

The default timing parameters can be overriden by the TMTiming2_ReadLatency,
TMTiming2_PreambleDelay, TMTiming2_CEDelay, TMTiming2_PostambleDelay,
TMTiming2_CmdAddPause, and TMTiming2_DataPause parameters of the FCB.

4.5.3.6.2 Setup DMA for DDR transfers

In the DMA descriptors, the GPMI is configured to read the page data at a double data
rate, the word length is set to 16, and the transfer count to a half of the page size.

4.5.3.6.3 Reconfigure timing and speed using values in FCB

After reading the FCB page with the GPMI set to default timings and a speed of 33 MHz,
the ROM reconfigures the CCM dividers to run the gpmi/bch clks to a desired speed
specified in the FCB for the rest of the boot process. The GPMI timing registers are also
reconfigured to the values specified in the FCB.

The GPMI speed can be configured using the FCB parameter TMSpeed:
• 0—25 MHz
• 1—33 MHz
• 2—40 MHz
• 3—50 MHz
• 4—66 MHz
• 5—80 MHz
• 6—100 MHz
• 7—133 MHz
• 8—133 MHz
• 9—200 MHz

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

126 NXP Semiconductors
Confidential Proprietary

The GPMI timing0 register fields data_setup, data_hold, and address_setup are set to the
values specified for the data_setup and data_hold and address_setup in the FCB member
m_NANDTiming.

The GPMI timing1.DEVICE_BUSY_TIMEOUT is set to the value specified in the FCB
member TMTiming1_BusyTimeout.

The GPMI timing2 register values are set using the FCB members
TMTiming2.READ_LATENCY, CE_DELAY, PREAMBLE_DELAY,
POSTAMBLE_DELAY, CMDADD_PAUSE, and DATA_PAUSE.

4.5.3.7 Typical NAND page organization

4.5.3.7.1 BCH ECC page organization

The first data block is called block 0 and the rest of the blocks are called block N. A
separate ECC level scan is used for block 0 and block N.

The metadata bytes must be located at the beginning of a page, starting at byte 0,
followed by the data block 0, the ECC bytes for data block 0, the block 1 and its ECC
bytes, and so on, up until the N data blocks. The ECC level for the block 0 can be
different from the ECC level for the rest of the blocks.

For the NAND boot with page-size restrictions and the data block size restricted to 512
B, only few combinations of the ECC for block 0 and block N are possible.

This figure shows the valid layout for 2112-byte sized page.

M
Block0

512 bytes EccB0
Block1

512 bytes EccBN
Block2

512 bytes EccBN
Block3

512 bytes EccBN

Figure 4-8. Valid layout for 2112-byte sized page

The example below is for 13 bits of parity (GF13). The number of ECC bits required for
a data block is calculated using the (ECC_Correction_Level * 13) bits.

In the above layout, the ECC size for EccB0 and EccBN must be selected to not exceed a
total page size of 2112 bytes. The EccB0 and EccBN can be one of the 2, 4, 6, 8, 10, 12,
14, 16, 18, and 20 bits on the ECC correction level. The total bytes are:

[M + (data_block_size x 4) + ([EccB0 + (EccBN x 3)] x 13) / 8] <= 2112;

M = metadata bytes and data_block_size is 512.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 127
Confidential Proprietary

There are four data blocks of 512 bytes each in a page of 2-KB page sized NAND. The
values of EccB0 and EccBN must be such that the above calculation does not result in a
value greater than 2112 bytes.

M
Block0

512 bytes EccB0
Block1

512 bytes EccBN
Block2

512 bytes EccBN
Block3

512 bytes EccBN

Block4
512 bytes EccBN

Block5
512 bytes EccBN

Block6
512 bytes EccBN

Block7
512 bytes EccBN

Figure 4-9. Valid layout for 4-KB sized page

Different NAND manufacturers have different sizes for a 4-KB page; 4314 bytes is
typical.

[M + (data_block_size x 8) + ([EccB0 + (EccBN x 7)] x 13) / 8] <= 4314;

M= metadata bytes and data_block_size is 512.

There are eight data blocks of 512 bytes each in a page of a 4-KB page sized NAND. The
values of the EccB0 and EccBN must be such that the above calculation does not result in
a value greater than the size of a page in a 4-KB page NAND.

4.5.3.7.2 Metadata

The number of bytes used for the metadata is specified in the FCB. The metadata for the
BCH encoded pages is placed at the beginning of a page. The ROM only cares about the
first byte of metadata to swap it with a bad block marker byte in the page data after each
page read; it is important to have at least one byte for the metadata bytes field in the FCB
data structure.

4.5.3.8 IOMUX configuration for NAND

The following table shows the RawNAND IOMUX pin configuration.

Table 4-18. NAND IOMUX pin configuration

Signal Pad name

NAND_ALE NAND_ALE.alt0

NAND_CE0_B NAND_CE0_B.alt0

NAND_CE1_B NAND_CE1_B.alt0

Table continues on the next page...

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

128 NXP Semiconductors
Confidential Proprietary

Table 4-18. NAND IOMUX pin configuration (continued)

Signal Pad name

NAND_CE2_B NAND_CE2_B.alt0

NAND_CE3_B NAND_CE3_B.alt0

NAND_CLE NAND_CLE.alt0

NAND_DATA00 NAND_DATA00.alt0

NAND_DATA01 NAND_DATA01.alt0

NAND_DATA02 NAND_DATA02.alt0

NAND_DATA03 NAND_DATA03.alt0

NAND_DATA04 NAND_DATA04.alt0

NAND_DATA05 NAND_DATA05.alt0

NAND_DATA06 NAND_DATA06.alt0

NAND_DATA07 NAND_DATA07.alt0

NAND_DQS NAND_DQS.alt0

NAND_RE_B NAND_RE_B.alt0

NAND_READY_B NAND_READY_B.alt0

NAND_WE_B NAND_WE_B.alt0

NAND_WP_B NAND_WP_B.alt0

4.5.4 Expansion device

The ROM supports booting from the MMC/eMMC and SD/eSD compliant devices.

4.5.4.1 Expansion device eFUSE configuration

The SD/MMC/eSD/eMMC/SDXC boot can be performed using either the USDHC ports,
based on the setting of the BOOT_CFG fuses or it is associated to the GPIO input value
at the boot.

All USDHC ports support the fast boot. See this table for details:

Table 4-19. USDHC boot eFUSE descriptions

Fuse Config Definition GPIO1 Shippe
d value

Settings

BOOT_MODE OEM Boot device selection Yes 0 0010 - eMMC boot, default from
USDHC3 port

0011 - SD boot, default from
USDHC2 port

0x470[10:9] OEM OVERRIDE_USDHC_B
T_SEL_VAL

Yes 00 00 -- USDHC1 SD

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 129
Confidential Proprietary

Table 4-19. USDHC boot eFUSE descriptions
(continued)

Fuse Config Definition GPIO1 Shippe
d value

Settings

The value to override
USDHC BT CFG

01 -- USDHC1 EMMC

10 -- USDHC2 EMMC

11 -- USDCH3 SD

0x470[11] OEM OVERRIDE_USDHC_B
T_SEL

Enable to override the
USDHC BT selection
from Boot Mode

Yes 0 0 - Do not override

1 - Override

490[6] OEM Fast boot support Yes 000 0 - Normal boot

1 - Fast boot

490[5:4] OEM Bus width Yes 000 00 - 8-bit

01 - 4-bit

10 - 8-bit DDR (MMC 4.4)

11 - 4-bit DDR (MMC 4.4)

490[3:2] OEM Speed mode Yes SD speed selection
00 - Normal/SDR12
01 - High/SDR25
10 - SDR50
11 - SDR104

MMC speed selection
00 - Normal
01 - High

490[1] OEM USDHC IO Voltage
Selection

Yes USDHC1 IO VOLTAGE
SELECTION (for Normal boot
mode)

0 - 3.3 V

1 - 1.8 V

490[7] OEM SD power cycle enable/
eMMC reset enable

Yes 0 SD power cycle/eMMC reset

0 - Disabled

1 - Enabled

0x490[14:8] OEM SD/MMC DLL DLY
config

No 0 Delay target for USDHC DLL, it is
applied to the slave mode target
delay or overrides the mode target
delay, depending on the DLL
override fuse bit value.

0x490[15] OEM USDHC DLL override
enabled

No 0 0 - No override

1 - Override

0x490[16] OEM USDHC DLL enabled No 0 0 - Disable the DLL for SD/eMMC

1 - Enable the DLL for SD/eMMC

0x490[18] OEM USDHC_IOMUX_SION_
BIT_ENABLE

No 0 0 - Disable

1 - Enable

Table continues on the next page...

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

130 NXP Semiconductors
Confidential Proprietary

Table 4-19. USDHC boot eFUSE descriptions
(continued)

Fuse Config Definition GPIO1 Shippe
d value

Settings

0x490[23] OEM Disable SDMMC
manufacture mode

No 0 0 - Enable

1 - Disable

0X490[31:24] OEM The low 8 bits of the
value of the USDHC pad
setting override

No 0 The low 8 bits of pad override
settings

0x4A0[0] OEM Fast boot acknowledge
enable

No 0 0 - Boot Ack disabled

1 - Boot Ack enabled

0x4A0[1] OEM The high 1 bit of the
USDHC pad override
settings.

NA 0 The High 1 bit of pad override
settings.

0x4A0[2] OEM uSDHC power-off
polarity selection

No 0 0 - Low

1 - High

0x4A0[3] OEM uSDHC power cycle
delay selection

No 0 0 - 5 ms

1 - 2.5 ms

0x4A0[5:4] OEM uSDHC power cycle
interval

No 0 00 - 20 ms

01 - 10 ms

10 - 5 ms

11 - 2.5 ms

1. The setting can be overridden by the GPIO settings when the BT_FUSE_SEL fuse is intact. See GPIO boot overrides for
the corresponding GPIO pin.

The boot code supports these standards:

• MMCv4.4 or less
• eMMCv5.1 or less
• SDv2.0 or less
• eSDv2.10 rev-0.9, with or without FAST_BOOT
• SDXCv3.0

The MMC/SD/eSD/SDXC/eMMC can be connected to any of the USDHC blocks and
can be booted by copying 4 KB of data from the MMC/SD/eSD/eMMC device to the
internal RAM. After checking the Image Vector Table header value (0xD1) from
program image, the ROM code performs a DCD check. After a successful DCD
extraction, the ROM code extracts from the Boot Data Structure the destination pointer
and length of image to be copied to the RAM device from where the code execution
occurs.

The maximum image size to load into the SD/MMC boot is 32 MB. This is due to a
limited number of uSDHC ADMA Buffer Descriptors allocated by the ROM.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 131
Confidential Proprietary

NOTE
The initial 4 KB of the program image must contain the IVT,
DCD, and the Boot Data structures.

Table 4-20. SD/MMC frequencies

SD MMC MMC (DDR mode)

Identification (KHz) 347.22

Normal-speed mode (MHz) 25 20 25

High-speed mode (MHz) 50 40 50

UHSI SDR50 (MHz) 100

UHSI SDR104 (MHz) 200

NOTE
The boot ROM code reads the application image length and the
application destination pointer from the image.

4.5.4.2 MMC and eMMC boot

This table provides the MMC and eMMC boot details.

Table 4-21. MMC and eMMC boot details

Normal boot mode During the initialization (normal boot mode), the MMC
frequency is set to 347.22 KHz. When the MMC card enters
the identification portion of the initialization, the voltage
validation is performed, and the ROM boot code checks the
high-voltage settings and the card capacity. The ROM boot
code supports both the high-capacity and low-capacity MMC/
eMMC cards. After the initialization phase is complete, the
ROM boot code switches to a higher frequency (20 MHz in
the normal boot mode or 40 MHz in the high-speed mode).
The eMMC is also interfaced via the USDHC and follows the
same flow as the MMC.

The boot partition can be selected for an MMC4.x card after
the card initialization is complete. The ROM code reads the
BOOT_PARTITION_ENABLE field in the Ext_CSD[179] to get
the boot partition to be set. If there is no boot partition
mentioned in the BOOT_PARTITION_ENABLE field or the
user partition was mentioned, the ROM boots from the user
partition.

eMMC4.3 or eMMC4.4 device supporting special boot mode If using an eMMC4.3 or eMMC4.4 device that supports the
special boot mode, it can be initiated by pulling the CMD line
low. If the BOOT ACK is enabled, the eMMC4.3/eMMC4.4
device sends the BOOT ACK via the DATA lines and the
ROM can read the BOOT ACK [S010E] to identify the
eMMC4.3/eMMC4.4 device. If the BOOT ACK is enabled, the
ROM waits 50 ms to get the BOOT ACK and if the BOOT
ACK is received by the ROM. If BOOT ACK is disabled ROM

Table continues on the next page...

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

132 NXP Semiconductors
Confidential Proprietary

Table 4-21. MMC and eMMC boot details (continued)
waits 1 second for data. If the BOOT ACK or data was
received, the eMMC4.3/eMMC4.4 is booted in the "boot
mode", otherwise the eMMC4.3/eMMC4.4 boots as a normal
MMC card from the selected boot partition. This boot mode
can be selected by the BOOT_CFG (fast boot) fuse. The
BOOT ACK is selected by the .

eMMC4.4 device If using the eMMC4.4 device, the Double Data Rate (DDR)
mode can be used. This mode can be selected by the
BOOT_CFG2[7:5] (bus width) fuse.

Check data bus width fuse. Accordingly .

eSDHC Software Reset, Set RSTA

Set Identification Frequency
(Approx 400 KHz)

Check MMC and Fast Boot
Selection Fuse

Set INITA to send 80 SDCLK to card

Card SW Reset (CMD0)

Command Successful?

Yes

No

Yes

No

Check SD/MMC Selection fuse
SD MMC

1

6

5

2

Start

do the IOMUX config

Figure 4-10. Expansion device boot flow (1 of 6)

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 133
Confidential Proprietary

2

Set Strong pull-up
For CMD line

Start GPT with 1s delay
for CMD1

Issue CMD1 with HV

Command Successful?

Busy Bit == 1

5

Loop Cntr < 3000 and
looping period < 1s

Increment loop counter

Is Response OCR for
HC

Card Is HC MMC

Card Is LC MMC

Yes
Yes Yes

Yes

No

No

No

Get CID from card (Issue
CMD2)

Command Successful?

Set RCA (Issue CMD3)

Command Successful?

Set Weak pull-up
For CMD line

Set MMC card CSD
(Issue CMD9)

Set operating frequency
to 20 MHz

Put card data Transfer
Mode (Issue CMD7)

Command Successful?

Send CMD13 to read
status

Card State ==
TRANS?5

Spec ver >= 4.0?

Send CMD8 to get
Ext_CSD

Extract the boot partition
to set

Got valid partition?

Send switch command
to select partitionSwitch Successful?

Send switch command
to set high frequency

Set operating frequency
to 40 MHz

Bus width
fuse <> 1?

Send switch command
to change bus width and

DDR mode

Switch Successful?

Change ESDHC bus
width

High Speed mode
fuse == 0?

4

No No

No

No

No

No

No

No

No

No
Yes

Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

MMC Boot
Voltage Validation

MMC Boot
Device Init

Send CMD6 with switch
argument

Command Successful?

Set CMD13 poll timeout
to 100ms

Send CMD13 to read
status

Command Successful?

Switch succeeded

End

Switch failed

Card State ==
TRANS?

CMD13 Poll
timeout?

Start

Switch failed

Yes

Yes

Yes Yes

No

No

No

MMC Boot
Switch Command

Figure 4-11. Expansion device (MMC) boot flow (2 of 6)

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

134 NXP Semiconductors
Confidential Proprietary

1

Issue CMD8 with HV
(3.3V)

Command Successful?
Issue CMD8 with LV

(1.8V) Command Successful?

Card is HC/LC HV SD
ver 2.x

FAST_BOOT
selected?

Set ACMD41 ARG to HV
and HC

Set ACMD41 ARG to LV
and HC

Card is LC SD
ver 2.x

Set ACMD41 ARG bit 29
for FAST BOOT

Start GPT delay of 1s for
ACMD41

Set ACMD41 ARG to HV
and LC

Card is LC SD
ver 1.x

Issue CMD55

Command Successful?

Issue ACMD41

Command Successful?

Busy Bit == 1

Is Response OCR for
HCCard is LC SD Card is HC SD

2
Loop Cntr < 3000 and

looping period < 1s

Issue ACMD41

SD Boot
Voltage Validation

No No

No

No

No

No

No

Yes Yes

Yes

Yes

Yes

Yes

UHSI mode
selected?

Set ACMD41 ARG bit 24
for 1.8v switch

Set ACMD41 ARG bit 28
for SDXC power control

Yes

No

UHSI mode
selected?

Bit 24 of response
0 set?

No Yes

Yes

2
No

Yes

8

Figure 4-12. Expansion device (SD/eSD/SDXC) boot flow (3 of 6) part 1

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 135
Confidential Proprietary

Send CMD11 to switch
voltage

Command Successful?

Switch succeeded

2

Switch failed

DATA lines
driven high?

8

Yes

Yes

Yes

No

No

SD Boot
Switch Voltage

DATA lines driven low?

switch supply voltage
to 1.8v

delay for 5ms

set DATA line voltage
high poll timeout to

1ms

Voltage high
poll timeout?

Yes

No
No

7

Figure 4-13. Expansion device (SD/eSD/SDXC) boot flow (3 of 6) part 2

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

136 NXP Semiconductors
Confidential Proprietary

7

Get CID from card (Issue
CMD2)

Command Successful? Get RCA (Issue CMD3) Command Successful?
Set operating frequency

to 20 MHz

Put card data Transfer
Mode (Issue CMD7)

Command Successful?

5

Send CMD13 to read
status

Card State ==
TRANS?

Send CMD43 to select
partition 1

Command Successful? 4

Card is eSD FAST_BOOT
selected?

Set CMD13 poll timeout
to 15ms

Set CMD13 poll timeout
to 1s

No No

No No

No

No

Yes Yes

Yes

Yes

Yes

Check Status

Bus width
fuse <> 1?

Send CMD55 Command Successful? Send ACMD6 with bus
width argument

Command Successful?

Set CMD13 poll timeout
to 100msCheck StatusSuccess?

High Speed mode
fuse == 0?

Send CMD6 with high
speed argument

Set operating frequency
to 40 MHz

Command Successful?

Change USDHC bus
width

Yes Yes

Yes

Yes

Yes

No

Yes
YesNo

No No

No

No

SD Boot
Device Initialization

UHSI mode selected?

No

9
Yes

10

Check response of
CMD7

Card is locked?

4

Init failed

9

NoYes

SD Boot
UHSI init

11

Send CMD55Command Successful?Send ACMD6 with
argument of 4 bit width

Command Successful?

No

YesNo

Change USDHC bus
width

Set CMD13 poll timeout
to 100ms Check Status Success?

Yes

Get clock speed from
fuse

No

Send CMD6 with clock
speed argument

Command Successful?
No

Change USDHC clock
speed

Yes

Loopback clock
fuse set?

Set loopback clock bit in
USDHC register

Yes

No

Yes

Figure 4-14. Expansion device (MMCSD/eSD/SDXC) boot flow (4 of 6)

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 137
Confidential Proprietary

Send CMD13 to read
status

Command Successful?

Success

End

Failure

Card State ==
TRANS?

CMD13 Poll
timeout?

Start

Failure

No

No

Yes

Yes

SD Boot
Check Status

4

Set block length 512
bytes (Issue CMD16)

DDR Mode Selected?

Command Successful?Init ADMA buffer
descriptors

Send CMD18 (multiple
block read)

Set CMD18 poll timeout
to 1s

Wait for command
completion or timeout

Command Successful?

End

5

SD/MMC Boot
Data Read

5

USB Flow
(Serial Boot)

No

Yes

Yes

Yes

No

No

USB Boot
Serial Boot

Figure 4-15. Expansion device (SD/eSD) boot flow (5 of 6)

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

138 NXP Semiconductors
Confidential Proprietary

6

High Speed mode
fuse == 0?

Set operating frequency
to 40 MHz

Set operating frequency
to 20 MHz

Change ESDHC bus
width and configure DLL

Setup ADMA BD[0]
length to 2K and BD[1]

to 32 bytes

Set CMD line low

Set ESDHC poll counter
to 50ms

Wait for acknowledge
token or timeout

Acknowledge token
accepted?

2

Set GPT poll counter to
1s

Wait for block gap or
timeout Reached block gap?

Wait for block gap or
timeout

Analyze IVT and setup
ADMA buffer descriptors

to final destination

Continue data trasmition

Wait for block gap or
timeout

End

eMMC 4.x Boot
Fast Boot

Get start point and
ramping step from fuse

11
SD Boot

sample point tuning

Set the USDHC into
tuning mode

Set the USDHC into
tuning mode

Set delay cell number to
current value

Configure the block
length and block number

Send CMD19 to request
the tuning block

Tuning passed?

Check the tuning status

Increase current value
with ramping step

Exceed limit?

Tuning failed

4

No

Yes

Set bottom boundary to
current value

Yes

No

Increase current value
with ramping step

Exceed limit?

Set upper boundary to
last value

Configure the block
length and block number

Send CMD19 to request
the tuning block

Check the tuning status

Tuning passed?

Yes

No

Yes

No

Set delay cell number to
average of bottom and
upper boundary value

Tuning passed

10

Figure 4-16. Expansion device boot flow (6 of 6)

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 139
Confidential Proprietary

4.5.4.3 SD, eSD, and SDXC

After the normal boot mode initialization begins, the SD/eSD/SDXC frequency is set to
347.22 kHz. During the identification phase, the SD/eSD/SDXC card voltage validation
is performed. During the voltage validation, the boot code first checks with the high-
voltage settings; if that fails, it checks with the low-voltage settings.

The capacity of the card is also checked. The boot code supports the high-capacity and
low-capacity SD/eSD/SDXC cards after the voltage validation card initialization is done.

During the card initialization, the ROM boot code attempts to set the boot partition for all
SD, eSD, and SDXC devices. If this fails, the boot code assumes that the card is a normal
SD or SDXC card. If it does not fail, the boot code assumes it is an eSD card. After the
initialization phase is over, the boot code switches to a higher frequency (25 MHz in the
normal-speed mode or 50 MHz in the high-speed mode). The ROM also supports the
FAST_BOOT mode booting from the eSD card. This mode can be selected by the
BOOT_CFG[4] (Fast Boot) fuse described in .

For the UHSI cards, the clock speed fuses can be set to SDR50 or SDR104 on ports. This
enables the voltage switch process to set the signaling voltage to 1.8 V during the voltage
validation. The bus width is fixed at a 4-bit width and a sampling point tuning process is
needed to calibrate the number of the delay cells. If the SD Loopback Clock eFuse is set,
the feedback clock comes directly from the loopback SD clock, instead of the card clock
(by default). The SD clock speed can be selected by the BOOT_CFG[3:2], and the SD
Loopback Clock is selected by the BOOT_CFG[0].

The UHSI calibration start value (MMC_DLL_DLY[6:0]) and the step value can be set
to optimize the sample point tuning process.

If the SD Power Cycle Enable eFuse is 1, the ROM sets the SD_RST pad low, waits for 5
ms, and then sets the SD_RST pad high. If the SD_RST pad is connected to the SD
power supply enable logic on board, it enables the power cycle of the SD card. This may
be crucial in case the SD logic is in the 1.8 V states and must be reset to the 3.3 V states.

4.5.4.4 IOMUX configuration for SD/MMC
Table 4-22. SD/MMC IOMUX pin configuration

Signal USDHC1 USDHC2 USDHC3

CLK SD1_CLK.alt0 SD2_CLK.alt0 NAND_WE_B.alt2

CMD SD1_CMD.alt0 SD2_CMD.alt0 NAND_WP_B.alt2

DATA0 SD1_DATA0.alt0 SD2_DATA0.alt0 NAND_DATA04.alt2

Table continues on the next page...

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

140 NXP Semiconductors
Confidential Proprietary

Table 4-22. SD/MMC IOMUX pin configuration (continued)

Signal USDHC1 USDHC2 USDHC3

DATA1 SD1_DATA1.alt0 SD2_DATA1.alt0 NAND_DATA05.alt2

DATA2 SD1_DATA2.alt0 SD2_DATA2.alt0 NAND_DATA06.alt2

DATA3 SD1_DATA3.alt0 SD2_DATA3.alt0 NAND_DATA07.alt2

DATA4 SD1_DATA4.alt0 - NAND_RE_B.alt2

DATA5 SD1_DATA5.alt0 - NAND_CE2_B.alt2

DATA6 SD1_DATA6.alt0 - NAND_CE3_B.alt2

DATA7 SD1_DATA7.alt0 - NAND_CLE.alt2

RESET_B SD1_RESET_B.alt5 SD2_RESET_B.alt5 GPIO1_IO09.alt4

VSELECT GPIO1_IO03.alt1 GPIO1_IO04.alt1 GPIO1_IO11.alt4

4.5.5 Serial NOR through SPI

The chip supports booting from serial memory devices, such as EEPROM and serial
flash, using the SPI.

These ports are available for serial boot: eCSPI (eCSPI1, eCSPI2, eCSPI3) interfaces.

4.5.5.1 Serial(SPI) NOR eFUSE configuration

The boot ROM code determines the type of device using the following parameters, either
provided by the eFUSE settings or sampled on the I/O pins, during boot.

See this table for details:

Table 4-23. Serial(SPI) NOR boot eFUSE descriptions

Fuse Config Definition GPIO1 Shipped
value

Settings

480[31:29] OEM ECSPI port selection Yes 000 000 - eCSPI1

001 - eCSPI2

010 - eCSPI3

480[28] OEM SPI addressing Yes 0 0 - 3 B (24-bit)

1 - 2 B (16-bit)

0x480[25] OEM Recovery boot enable No 0 0 – Disabled

1 – Enabled

480[27:26] OEM CS selection (SPI only) Yes 00 00 – CS#0

1. The setting can be overridden by the GPIO settings when the BT_FUSE_SEL fuse is intact. See Table 1 for the
corresponding GPIO pin.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 141
Confidential Proprietary

The ECPSI-1/ECPSI-2/ECPSI-3 block can be used as a boot device using the ECSPI
interface for the serial(SPI) NOR boot. The SPI interface is configured to operate at 20
MHz for 3-byte addressing devices and at 4 MHz for 2-byte addressing devices.

The boot ROM copies 4 KB of data from the serial ROM device to the internal RAM.
After checking the Image Vector Table header value (0xD1) from the program image, the
ROM code performs a DCD check. After a successful DCD extraction, the ROM code
extracts the destination pointer and length of image from the Boot Data Structure to be
copied to the RAM device from where the code execution occurs.

NOTE
The Initial 4 KB of program image must contain the IVT, DCD,
and the Boot Data Structures.

4.5.5.2 ECSPI boot

The Enhanced Configurable SPI (ECSPI) interface is configured in the master mode and
the EEPROM device is connected to the ECSPI interface as a slave.

The boot ROM code copies 4 KB of data from the EEPROM device to the internal RAM.
If the DCD verification is successful, the ROM code copies the initial 4 KB of data, as
well as the rest of the image extracted from the application image, directly to the
application destination. The ECSPI can read data from the EEPROM using 2- or 3-byte
addressing. Its burst length is 32 B.

When using the SPI as a boot device, the chip supports booting from both the serial
EEPROM and serial flash devices. The boot code determines which device is being used
by reading the appropriate eFUSE/I/O values at the boot (see Table 4-23 for details).

Boot devices (internal boot)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

142 NXP Semiconductors
Confidential Proprietary

EEPROM Read data

no

yes

Set instruction length
address cycle according

to fuses

Send read instruction to
read burst length of data

Read burst length of
data and copy to
destination pointer

yes

Increment destination
pointer and reduce
length of data read

NO

If read instruction status
is CSPI_SUCCESS

yes

Assign MSB as read

Send read instruction to
read remaining length

of data

Read remaining length
of data and copy to
destination pointer

yes

If read instruction status
is CSPI_SUCCESS

NO

NO
Disable CSPI

Configure CSPI clock
divider==success

If read data length>0

If read data length
greater than (burst
length-instruction

length)

B

B

END

instruction (0x30)
and other 2/3 byte dest
address in data pointer

END

Start

Assign MSB as read
instruction (0x30) and other

2/3 byte dest address
in data pointer

Figure 4-17. CSPI flow chart

4.5.5.2.1 ECSPI IOMUX pin configuration

The contacts assigned to the signals used by the CSPI blocks are shown in this table:

Table 4-24. ECSPI IOMUX pin configuration

Signal eCSPI1 eCSPI2 eCSPI3

MISO ECSPI1_MISO.alt0 ECSPI2_MISO.alt0 UART2_RXD.alt1

MOSI ECSPI1_MOSI.alt0 ECSPI2_MOSI.alt0 UART1_TXD.alt1

Table continues on the next page...

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 143
Confidential Proprietary

Table 4-24. ECSPI IOMUX pin configuration
(continued)

SCLK ECSPI1_SCLK.alt0 ECSPI2_SCLK.alt0 UART1_RXD.alt1

SS0 ECSPI1_SS0.alt0 ECSPI2_SS0.alt0 UART2_TXD.alt1

4.6 Boot image
After the initial image (4KB) is loaded, ROM will check the image header’s validity. The
header must meet the following requirements:

• Reserved1 and Reserved2 of IVT must be 0.
• Device Configuration Data (DCD) of IVT must be 0.
• TAG of IVT header must be 0xD120004x
• SPL image's entry, boot_data, self, CSF in IVT need in IRAM_FREE_SPACE or

FlexSPI space
• The address of the image’s entry, boot data and CSF (if CSF is not NULL) must be

out of IVT header range
• Image’s boot_data must be in initial 4k image
• Image target address should be 4 bytes aligned, and the image need in

IRAM_FREE_SPACE range or FlexSPI space. No plugin support.
• The first 4KB of IRAM_FREE_SPACE is used as an initial image buffer. If image

target address is not equal to the base address of IRAM_FREE_SPACE, it should be
out of the first 4KB range of IRAM_FREE_SPACE.

NOTE
The addresses referred in IVT header, boot data or CSF is from
the boot core’s view (A53 core).

4.6.1 Primary image offset and IVT offset

ROM supports one single image for all boot devices. The image offset and IVT offset for
the supported boot devices is provided below.

Table 4-25. Primary image offset and IVT offset details

Primary Image Offset IVT Offset

SD 32KB (for GPT) 0

EMMC 0, if the image is in boot partition and 32K if it is in user
partition

0

Table continues on the next page...

Boot image

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

144 NXP Semiconductors
Confidential Proprietary

Table 4-25. Primary image offset and IVT offset details (continued)

Primary Image Offset IVT Offset

NAND 0 0

FlexSPI 4KB 0

SPI 0 0

NOTE
• Primary Image Offset - The image offset on device against

to the beginning of boot device.
• IVT Offset - The IVT header offset in boot image against

to the beginning of boot image.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 145
Confidential Proprietary

4.6.2 Typical image placement in boot device

Primary Image Offset

IVT Header

...

SPL

IVT Header Offset

...

Secondary Image Offset

IVT Header

SPL

IVT Header Offset

The beginning of boot device

CSF
(for SPL and its header)

CSF
(for SPL and its header)

Others
(should be handled by SPL)

Others
(should be handled by SPL)

Figure 4-18. Typical image placement

• For the primary image offset and IVT offset details, please refer to Primary image
offset and IVT offset.

• The secondary image offset is specified by fuses, please refer to the fuse map
chapter.

Boot image

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

146 NXP Semiconductors
Confidential Proprietary

4.7 USB boot
ROM supports the USB OTG port for boot purposes, and the other USB ports on the chip
are not supported for boot purposes.

USB boot in ROM code works as a HID device. ROM takes USB as a normal boot
device. The difference from the SD card here is that the USB is a 'stream' device, which
is the same as eMMC fast boot. ROM must 'read' it one by one byte, and it can not
specify the offset for the reading. This means that the image for USB boot must be
continuous.

USB Serial Download boot can be disabled by fuse.

The USB HID device VID/PID and strings are listed in the following table:

Table 4-26. VID/PID and strings for USB HID device

Descriptor Value

VID 0x1FC9

PID 0x012FU

bcdDevice 0x0001

String Descriptor0 bLength : 0x04 (4 bytes)

bDescriptorType : 0x03 (String Descriptor)

Language ID[0] : 0x0409 (English - United States)

String Descriptor1 bLength : 0x3A (58 bytes)

bDescriptorType : 0x03 (String Descriptor)

Language 0x0409 : "NXP SemiConductor Inc "

String Descriptor2 bLength : 0x1E (30 bytes)

bDescriptorType : 0x03 (String Descriptor)

Language 0x0409 : "SE Blank 815"

String Descriptor4 bLength : 0x22 (34 bytes)

bDescriptorType : 0x03 (String Descriptor)

Language 0x0409 : This value depends on chip uuid.

4.8 Low-power boot
The ROM supports the low-power boot. If the LPB_BOOT fuses are blown, the chip
checks if there is a low-power condition via the pad. If there is a low-power boot
condition, the ROM applies division factors on the ARM, DDR, AXI, and AHB root

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 147
Confidential Proprietary

clocks based on the LPB_BOOT fuses value (see the table below). The polarity of the
low-power boot condition on the pad is set by the BT_LPB_POLARITY fuse (see the
following figure).

Table 4-27. Low-power boot frequencies

LPB_BOOT Boot Frequencies=0 Boot Frequencies=1

00 ARM_A53_CLK_ROOT= 1000 MHz

AHB_CLK_ROOT= 133 MHz

MAIN_AXI_CLK_ROOT= 333 MHz

ARM_A53_CLK_ROOT= 500 MHz

AHB_CLK_ROOT= 133 MHz

MAIN_AXI_CLK_ROOT= 166 MHz

01 ARM_A53_CLK_ROOT= 1000 MHz

AHB_CLK_ROOT= 133 MHz

MAIN_AXI_CLK_ROOT= 333 MHz

ARM_A53_CLK_ROOT= 500 MHz

AHB_CLK_ROOT= 133 MHz

MAIN_AXI_CLK_ROOT= 166 MHz

10 ARM_A53_CLK_ROOT= 500 MHz

AHB_CLK_ROOT= 133 MHz

MAIN_AXI_CLK_ROOT= 166 MHz

ARM_A53_CLK_ROOT= 250 MHz

AHB_CLK_ROOT= 133 MHz

MAIN_AXI_CLK_ROOT= 83.3 MHz

11 ARM_A53_CLK_ROOT= 250 MHz

AHB_CLK_ROOT= 133 MHz

MAIN_AXI_CLK_ROOT= 83.3 MHz

ARM_A53_CLK_ROOT= 125 MHz

AHB_CLK_ROOT= 133 MHz

MAIN_AXI_CLK_ROOT= 41.67 MHz

Start

LPB_BOOT fuses equal
00?

GPIO1_9 pad equals
LPB_POLARITY fuse?

No

Yes

End

Setup post dividers and root
clock selectors according to

Boot Freqiencies and
LPB_BOOT fuses

Enable PLLs

Setup post dividers and root
clock selectors according to

Boot Freqiencies fuse

Yes

No

Figure 4-19. Low-power boot flow

Low-power boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

148 NXP Semiconductors
Confidential Proprietary

4.9 SD/MMC manufacture mode
When the internal boot and recover boot (if enabled) failed, the boot goes to the
SD/MMC manufacture mode before the serial download mode. In the manufacture mode,
one bit bus width is used despite of the fuse setting.

By default, the SD/MMC manufacture mode is enabled. Blow the fuse of the
DISABLE_SDMMC_MFG to disable it.

NOTE
A secondary boot is not supported in the SD/MMC manufacture
mode.

Figure 4-20. SD/MMC manufacture boot flow

4.9.1 Using manufacture mode / serial download mode with
eMMC

Manufacture mode is intended to allow a system to boot from a SD/MMC card on a
board with unprogrammed boot media or to upgrade the image on a boot device. For
manufacture mode, the boot ROM assumes if there is a SD/MMC card present indicated
by the uSDHC card detect (CD) signal pulled low, then there is a valid image on the card.

If an unprogrammed eMMC device is connected to the uSDHC port(s) on which
manufacture mode is supported and the CD signal is low, the ROM will attempt
manufacturing mode with the eMMC device, which does not contain a valid image. The
ROM loads the invalid image, and this will cause the ROM code to fail to enter serial
download mode, resulting in a reset of the system by the ROM. To enter serial download
mode in this case, the CD pin should be pulled up so the ROM does not detect a eMMC
device present and will bypass the manufacture mode to enter serial download mode.

4.10 High-Assurance Boot (HAB)
The High Assurance Boot (HAB) component of the ROM protects against the potential
threat of attackers modifying the areas of code or data in the programmable memory to
make it behave in an incorrect manner. The HAB also prevents the attempts to gain
access to features which must not be available.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 149
Confidential Proprietary

The integration of the HAB feature with the ROM code ensures that the chip does not
enter an operational state if the existing hardware security blocks detected a condition
that may be a security threat or if the areas of memory deemed to be important were
modified. The HAB uses the RSA digital signatures to enforce these policies.

S
N

V
S

CAAM

Core Processor H
A

B

R
O

M

Flash

RAM

Figure 4-21. Secure boot components

The figure above illustrates the components used during a secure boot using HAB. The
HAB interfaces with the SNVS to make sure that the system security state is as expected.
The HAB also uses the CAAM hardware block to accelerate the SHA-256 message
digest operations performed during the signature verifications and AES-128 operations
for the encrypted boot operations. The HAB also includes a software implementation of
SHA-256 for cases where a hardware accelerator can't be used. The RSA key sizes
supported are 1024, 2048, 3072, and 4096 bits. The RSA signature verification operations
are performed by a software implementation contained in the HAB library. The main
features supported by the HAB are:

• X.509 public key certificate support
• CMS signature format support
• Proprietary encrypted boot support. Note that the encrypted boot depends on the

CAAM hardware module. When the CAAM is disabled (when the
EXPORT_CONTROL fuse is blown), the encrypted boot is not available.

NOTE
NXP provides the reference Code Signing Tool (CST) for key
generation and code signing for use with the HAB library. The
CST can be found by searching for "IMX_CST_TOOL" at
http://www.nxp.com.

High-Assurance Boot (HAB)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

150 NXP Semiconductors
Confidential Proprietary

NOTE
For further details on using the secure boot feature using HAB,
refer to Secure Boot on i.MX 50, i.MX 53, i.MX 6 and i.MX 7
Series using HABv4 (AN4581).

4.10.1 HAB API vector table addresses

For devices that perform a secure boot, the HAB library may be called by the boot stages
that execute after the ROM code.

NOTE
For additional information on the secure boot including the
HAB API, refer to HABv4 RVT Guidelines and
Recommendations (AN12263).

4.11 Boot information for software
To address the requirement that the boot image may need to get the basic boot
information when getting out of the boot process, the boot software information
(Boot_SW_Info) is provisioned by the ROM.

The software must read the ROM address 0x9e8 to get the base address of the
Boot_SW_Info data structure, and parse the Boot_SW_Info content to get the boot
information.

Table 4-28. Boot_SW_Info structure

Offset Byte3 Byte2 Byte1 Byte0

0x0 Reserved Boot Device Type Boot Device Instance Reserved

0x4 Arm core frequency (in Hz)

0x8 AXI bus frequency (in Hz)

0xC DDR frequency (in Hz)

0x10 GPT1 input clock frequency (in Hz)

0x14 Reserved

0x18

0x1C

NOTE
The boot ROM sets the GPT1 in a free-running mode with a
32-kHz input clock.

Chapter 4 System Boot

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 151
Confidential Proprietary

Boot device type mapping:
• 0x1 - SD card or eSD chip
• 0x2 - MMC card or eMMC chip
• 0x3 - NAND chip
• 0x4 - FLEXSPI NOR
• 0x6 - ECSPI EEPROM

Boot device instance: The instance index of the boot device, starting from 0.

Boot information for software

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

152 NXP Semiconductors
Confidential Proprietary

Chapter 5
Fusemap

5.1 Boot Fusemap
The boot mode utilizes 4 dedicated BOOT_MODE (BOOT_MODE[3:0]) pins and 2
functional pins (SAI3_TXD and SAI2_TXD0). The following section details the various
modes and selection of the required boot devices.

Table 5-1. Boot Device Select

Boot Device Select BOOT
CODE

BOOT_M
ODE[5]

(SAI3_TX
D)

BOOT_M
ODE[4]

(SAI2_TX
D0)

BOOT_M
ODE[3]

BOOT_M
ODE[2]

BOOT_M
ODE[1]

BOOT_M
ODE[0]

Boot from internal fuses 0x00 0 0 0 0 0 0

USB Serial Download 0x01 0 0 0 0 0 1

USDHC3 (eMMC boot only, SD3 8-
bit)

0x02 0 0 0 0 1 0

USDHC2 (SD boot only, SD2) 0x03 0 0 0 0 1 1

NAND 8-bit single device, 256
pages

0x04 0 0 0 1 0 0

NAND 8-bit single device, 512
pages

0x05 0 0 0 1 0 1

FlexSPI 3B Read 0x06 0 0 0 1 1 0

FlexSPI Hyperflash 3.3V 0x07 0 0 0 1 1 1

eCSPI Boot 0x08 0 0 1 0 0 0

NOTE
Fuses marked as “Reserved” are reserved for NXP internal (and
future) use only. Customers should not attempt to burn these, as
the IC behavior may be unpredictable. The reserved fuses can
be read as either 0 or 1.

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 153
Confidential Proprietary

Table 5-2. Boot Fusemap

Addr 7 6 5 4 3 2 1 0

0x470[7:0] OVERRIDE_NAND_PG_
PER_BLK_VAL

00 - 32 pages

01 - 64 pages

10 - 128 pages

11 - 32 pages

OVERRIDE
FLEXSPI

BT_SEL

0 - Do not
override

1 - Override

OVERRIDE_FLEXSPI_B
T_SEL_VAL

00 - FlexSPI (Hyperflash
1.8V)

01 - FlexSPI (Flash with
4B READ (1x13 default

supported))

10 - Default Octal mode
(Micron)

11 - Default Octal mode
(Mxic)

FLEXSPI_A
UTO_PROB

E_EN

0 - Disable

1 - Enable

FLEXSPI_AUTO_PROBE
_TYPE

00 - QuadSPI NOR

01 - MxicOctal

10 - MicronOctal

11 - AdestoOctal

0x470[15:8] BOOT_MODE_FUSES

Boot Rom will retrieve boot mode from these fuses
instead of BOOT_MODE pins if:

* BOOT_MODE_PINS=0x0

or

* BT_FUSE_SEL blown

OVERRIDE
_USDHC_B

T_SEL

0 - Do not
override

1 - Override

OVERRIDE_USDHC_BT
_SEL_VAL

00 - uSDHC1 SD

01 - uSDHC1 eMMC

10 - uSDHC2 eMMC

11 - uSDHC3 SD

OVERRIDE
_NAND_PG
_PER_BLK

0 - Do not
override

1 - Override

0x480[7:0] Reserved FLEXSPI_DUMMY_CYCLE_SEL FLEXSPI_FEQ_SEL

000 - 100 MHz

001 - 133 MHz

010 - 166 MHz

011 - 200 MHz

100 - 80 MHz

101 - 20 MHz

0x480[15:8] BT_LPB (Core/DDR/Bus)

'00'/'01' - LPB Disable

'10' - Div by 2

'11' - Div by 4

BT_LPB_P
OLARITY

(GPIO
polarity)

ICACHE_DI
S

L1 I-Cache
DISABLE

TZASC_EN WDOG_EN

'0' -
Disabled

'1' - Enabled

BT_FREQ_
SEL (ARM/

DDR)

0 - 800 /
800 MHz

1 - 400 /
400 MHz

DCACHE_D
IS

0x480[23:16] NOC_ID_R
EMAP_BYP

ASS

ROM_NO_L
OG

If blown,
ROM will
not log

event to log
buffer.

SDP_DISA
BLE

Disable
USB serial
download

FORCE_BT
_FROM_FU

SE

Boot from
programme
d fuses, not
Boot Mode

Pins

FLEXSPI_HOLD_TIME_
SEL

00 - 500us

01 - 1ms

10 - 3ms

11 - 10ms

WDOG_TIMEOUT_SELE
CT

00 - 2.0s

01 - 1.5s

10 - 1.0s

11 - 0.5s

0x480[31:24] ECSPI_PORT_SEL

000 - eCSPI1

001 - eCSPI2

010 - eCSPI3

ECSPI_AD
DR_SEL

0 - 3-bytes
(24-bit)

ECSPI_CS_SEL (SPI
only)

00 - CS#0 (default)

01 - CS#1

RECOVER_
ECSPI_BO

OT_EN

'0' -
Disabled

DCACHE_B
YPASS_DI

S

Table continues on the next page...

Boot Fusemap

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

154 NXP Semiconductors
Confidential Proprietary

Table 5-2. Boot Fusemap (continued)

Addr 7 6 5 4 3 2 1 0

1 - 2-bytes
(16-bit)

10 - CS#2

11 - CS#3

'1' - Enabled

0x490[7:0] USDHC_P
WR_EN

0 - No
power cycle

1 - Enabled

EMMC_FA
ST_BT

0 - Regular

1 - Fast
Boot

SDMMC_BUS_WIDTH

00 - 8-bit

01 - 4-bit

10 - 8-bit DDR (MMC 4.4)

11 - 4-bit DDR (MMC 4.4)

SD_SPEED:

00 - Normal/SDR12

01 - High/SDR25

10 - SDR50

11 - SDR104

EMMC_SPEED:

00 - Normal

01 - High

USDHC_V
OL_SEL

For Normal
Boot Mode
IO Voltage

0 - 3.3V

1 - 1.8V

USDHC_M
FG_VOL_S

EL

For Mfg
Mode IO
Voltage

0 - 3.3V

1 - 1.8V

0x490[15:8] USDHC_DL
L_SEL

0 - DLL
Slave Mode

1 - DLL
Override

Mode

SDMMC_DLL_DLY[6:0]

Delay target for USDHC DLL, it is applied to slave mode target delay or override mode target
delay depends on DLL Override fuse bit value.

0x490[23:16] RECOVER
Y_SDMMC
_BOOT_DI

S

0 - Enable

1 - Disable

IMG_CNTN_SET1_OFFSET USDHC_PA
D_SION_E

N

0 - Disable

1 - Enable

Reserved USDHC_DL
L_EN

0 - Disable
DLL for SD/

eMMC

1 - Enable
DLL for SD/

eMMC

0x490[31:24] USDHC_OVRD_PAD_SETTING_LOW8 [7:0]

0x4A0[7:0] SD_CALI_STEP

'00' - 1

USDHC_PWR_INTERVA
L

00 - 20ms

01 - 10ms

10 - 5ms

11 - 2.5

USDHC_P
WR_DELAY

0 - 5ms

1 - 2.5ms

USDHC_P
WR_POLA

RITY

0 - Low

1 - High

USDHC_O
VRD_PAD_
SETTING_

UP1

EMMC_FA
ST_BT_AC

K

0 - Boot Ack
Disabled

1 - Boot Ack
Enabled

0x4A0[15:8] BT_TOGGL
E_MODE

NAND_FCB_SERCH_CO
UNT

00 - 2

01 - 2

10 - 4

11 - 8

NAND_TG_PREAMBLE_RD_LATENCY

(Toggle Mode 33MHz Preamble Delay, Read
Latency)

'000' - 16 GPMICLK cycles.

'001' - 1 GPMICLK cycles.

'010' - 2 GPMICLK cycles.

'011' - 3 GPMICLK cycles.

'100' - 4 GPMICLK cycles.

'101' - 5 GPMICLK cycles.

NAND_RST
_TIME

Table continues on the next page...

Chapter 5 Fusemap

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 155
Confidential Proprietary

Table 5-2. Boot Fusemap (continued)

Addr 7 6 5 4 3 2 1 0

'110' - 6 GPMICLK cycles.

'111' - 7 GPMICLK cycles.

'1111'- 15 GPMICLK cycles.

0x4A0[23:16] Reserved

0x4A0[31:24] NAND_OVERRIDE_PAD_SETTING[7:0]

0x4B0[7:0] Reserved NAND_GPMI_DDR_DLL_VAL (GPMI Read DDR
DLL Target Value)

0000 - 7

0001 - 1

0111 - 0

1111 - 15

Reserved NAND_CS_NUM (Nand
Number Of Devices)

00 - 1

01 - 2

10 - 4

11 - Reserved

0x4B0[15:8] NAND_READ_RETRY_SEQ_ID[3:0]

0000 - Do not use read retry (RR) sequence
embedded in ROM

0001 - Micron 20nm RR sequence

0010 - Toshiba A19nm RR sequence

0011 - Toshiba 19nm RR sequence

0100 - SanDisk 19nm RR sequence

0101 - SanDisk 1ynmRR sequence

0110 - Hynix 20nm A Die RR sequence

0111 - Hynix 26nm RR sequence

1000 - Hynix 20nm B Die RR sequence

1001 - Hynix 20nm C Die RR sequence

Others - Reserved

NAND_ROW_ADDR_BY
TES

00 - 3

01 - 2

10 - 4

11 - 5

Reserved Reserved

0x4B0[23:16] Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

0x4B0[31:24] RNG_TRIM[7:0]

5.2 Lock Fusemap
Table 5-3 describes the functions of various lock fuses.

Table 5-3. Lock Fuses

Addr 7 6 5 4 3 2 1 0

0x400[7:0] Reserved Reserved BOOT_CFG_LOCK

1x - OP

x1 - WP

TESTER_LOCK

1x - OP

x1 - WP

Table continues on the next page...

Lock Fusemap

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

156 NXP Semiconductors
Confidential Proprietary

Table 5-3. Lock Fuses (continued)

Addr 7 6 5 4 3 2 1 0

0x400[15:8] MAC_ADDR_LOCK

1x - OP

x1 - WP

USB_ID_LOCK

1x - WP + OP

01 - WP

Reserved SJC_RESP
_LOCK

WRP,OP,R
DP

SRK_LOCK

1 - WP, OP

Reserved

0x400[23:16] GP2_LOCK

1x - OP

x1 - WP

GP1_LOCK

1x - OP

x1 - WP

Reserved Reserved Reserved

0x400[31:24] Reserved GP5_LOCK

1x – OP

x1 – WP

NOTE
TESTER_LOCK programmed by NXP / set at factory

5.3 Fusemap Descriptions Table
NOTE

Definitions for fuse settings are as follows:
• Unlock - The controlled field can be read, sensed, burned,

or overridden in the corresponding OCOTP shadow
register.

• Lock - The controlled field cannot be read, burned, or
overridden.

• Override Protect (OP) - The controlled field can be read,
sensed, or burned in the corresponding OCOTP shadow
register.

• Write Protect (WP) - The controlled field can be read,
sensed, or overridden in the corresponding OCOTP shadow
register.

• OP + WP - The controlled field can only be read or sensed
in the corresponding OCOTP shadow register. It cannot be
burned or overridden in the corresponding OCOTP shadow
register.

Chapter 5 Fusemap

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 157
Confidential Proprietary

Table 5-4. Fusemap Descriptions

Fuse
Address

Fuses Name Numbe
r of

Fuses

Fuses Function Setting Used by

0x400[1:0] TESTER_LOCK 2 Lock for tester related fuses
at 0x410-0x460.

00 - Unlock

10 - OP

01 - WP

11 - OP + WP

OCOTP

0x400[3:2] BOOT_CFG_LOCK 2 Lock for BOOT related fuses
at 0x470-4B0.

00 - Unlock

10 - OP

01 - WP

11 - OP + WP

OCOTP

0x400[8:4] Reserved 5 Reserved Reserved Reserved

0x400[9] SRK_LOCK 1 Lock for SRK_HASH[255:0]
fuses.

0 - Unlock

1 - OP + WP

OCOTP

0x400[10] SJC_RESP_LOCK 1 Lock for SJC_RESP[55:0]
fuses.

0 - Unlock

1 - Lock

OCOTP

0x400[11] Reserved 1 Reserved Reserved Reserved

0x400[13:12] USB_ID_LOCK 2 Lock for USB_PID and
USB_VID fuses.

00 - Unlock

01 - WP

11 - OP + WP

OCOTP

0x400[15:14] MAC_ADDR_LOCK 2 Lock for MAC_ADDR fuses. 00 - Unlock

10 - OP

01 - WP

11 - OP + WP

OCOTP

0x400[19:16] Reserved 4 Reserved Reserved Reserved

0x400[21:20] GP1_LOCK 2 Lock for GP1[63:0] fuses. 00 - Unlock

10 - OP

01 - WP

11 - OP + WP

OCOTP

0x400[23:22] GP2_LOCK 2 Lock for GP2 fuses. 00 - Unlock

10 - OP

01 - WP

11 - OP + WP

OCOTP

0x400[25:24] GP5_LOCK 2 Lock for GP5 fuses. 00 - Unlock

10 - OP

01 - WP

11 - OP + WP

OCOTP

0x400[31:26] Reserved 6 Reserved Reserved Reserved

0x410-0x420 SJC_CHALL[63:0] /
UNIQUE_ID[63:0]

32 The SJC CHALLENGE /
Unique ID

- SJC, SW

Table continues on the next page...

Fusemap Descriptions Table

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

158 NXP Semiconductors
Confidential Proprietary

Table 5-4. Fusemap Descriptions (continued)

Fuse
Address

Fuses Name Numbe
r of

Fuses

Fuses Function Setting Used by

0x430 Reserved 32 Reserved Reserved Reserved

0x440[3:0] Reserved 4 Reserved Reserved Reserved

0x440[7:4] Reserved 4 Reserved Reserved Reserved

0x440[13:8] SPEED_GRADING[
5:0]

6 Burned by tester program,
for indicating IC core speed.
(Hot burn may not be used).

SPE
ED_
GRA
DIN
G[5:
4]

SPE
ED_
GRA
DIN
G[3:
0]

MHz P/N
Cod

e

xx 0000 2300 23

xx 0001 2200 22

xx 0010 2100 21

xx 0011 2000 20

xx 0100 1900 19

xx 0101 1800 18

xx 0110 1700 17

xx 0111 1600 16

xx 1000 1500 15

xx 1001 1400 14

xx 1010 1300 13

xx 1011 1200 12

xx 1100 1100 11

xx 1101 1000 10

xx 1110 900 09

xx 1111 800 08

PROD / SW

0x440[31:14] Reserved 18 Reserved Reserved Reserved

0x450[1:0] NUM_A53_CORES 2 Number of A53 CPU cores
available.

00 - 4 cores

01 - Reserved

10 - 2 cores

11 - 1 core

SRC, SJC, SW

0x450[7:2] Reserved 6 Reserved Reserved Reserved

0x450[8] M7_DISABLE 1 Disable M7 Core. 0 - enabled

1 - disabled

M7

0x450[9] M7_MPU_DISABLE 1 Disable M7 MPU IP. 0 - enabled

1 - disabled

M7

0x450[10] M7_FPU_DISABLE 1 Disable M7 FPU IP. 0 - enabled

1 - disabled

M7

Table continues on the next page...

Chapter 5 Fusemap

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 159
Confidential Proprietary

Table 5-4. Fusemap Descriptions (continued)

Fuse
Address

Fuses Name Numbe
r of

Fuses

Fuses Function Setting Used by

0x450[11] USB_OTG1_DISAB
LE

1 Disable USB OTG1 IP. 0 - enabled

1 - disabled

USB OTG1

0x450[15:12] Reserved 4 Reserved Reserved Reserved

0x450[16] EXPORT_CONTRO
L

1 Used for disabling CAAM
and SNVS encryption

0 - Secure part

1 - Security disable (CAAM
encryption disabled)

CAAM,
SW(ROM)

0x450[17] SEC_CONFIG[0] 1 Security Configuration Mode,
and block off debugging of
security HW, by JTAG.

Combined with
SEC_CONFIG[1], provide
FAB/Open/Close security
states:

00 - FAB (Open)

01 - Open - allows any code
to be flashed and executed,
even if it has no valid
signature.

1x - Closed (Security On)

Also - used for 'blocking'
debug of security modules,
when burned.

SJC, SNVS, ,
SRC, TPSMP

0x450[23:18] Reserved 6 Reserved. Reserved Reserved

0x450[24] GPU3D_DISABLE 1 Disable GPU 3D IP. 0 - enabled

1 - disabled

GPU

0x450[27:25] Reserved 3 Reserved Reserved Reserved

0x450[28] MIPI_DSI_DISABL
E

1 Disable MIPI DSI IP. 0 - enabled

1 - disabled

MIPI DSI

0x450[29] ENET_DISABLE 1 Disable ENET IP. 0 - enabled

1 - disabled

ENET

0x450[30] MIPI_CSI_DISABL
E

1 Disable MIPI CSI IP. 0 - enabled

1 - disabled

MIPI CSI

0x450[31] ASRC_DISABLE 1 Disable Audio ASRC IP. 0 - enabled

1 - disabled

ASRC

0x460[31:0] Reserved 32 Reserved Reserved Reserved

0x470[15:0] BOOT_CFG 16 BOOT configuration register,
Usage varies, depending on
selected boot device.

See boot fusemap for
details.

SRC SW(ROM)

0x470[24:16] Reserved 9 Reserved Reserved Reserved

0x470[19:16] Reserved 4 Reserved Reserved Reserved

0x470[20] KTE 1 Kill Trace Enable. Enables
tracing capability on ETM,
and other modules.

0 - Bus tracing is allowed

1 - Bus tracing is allowed in
case security state as
defined by Secure JTAG

SJC

Table continues on the next page...

Fusemap Descriptions Table

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

160 NXP Semiconductors
Confidential Proprietary

Table 5-4. Fusemap Descriptions (continued)

Fuse
Address

Fuses Name Numbe
r of

Fuses

Fuses Function Setting Used by

allows it (for example,
JTAG_ENABLE or
NO_DEBUG)

0x470[21] SJC_DISABLE 1 Disable/Enable the Secure
JTAG Controller module.
This fuse is used to create
highest JTAG security level,
where JTAG is totally
blocked.

0 - Secure JTAG Controller
is enabled

1 - Secure JTAG Controller
is disabled

SJC

0x470[23:22] JTAG_SMODE 2 JTAG Security Mode.
Controls the security mode
of the JTAG debug interface

00 - JTAG enable mode

01 - Secure JTAG mode

11 - No debug mode

SJC

0x470[24] Reserved 1 Reserved Reserved Reserved

0x470[25] SEC_CONFIG[1] 1 Security Configuration (with
SEC_CONFIG[0])

00 - FAB (Open)

01 - Open - allows any code
to be flashed and executed,
even if it has no valid
signature.

1x - Closed (Security On)

SW (ROM), SRC,
SNVS, TPSMP

0x470[26] JTAG_HEO 1 JTAG HAB Enable Override.
Disallows HAB JTAG
enabling. The HAB may
normally enable JTAG
debugging by means of the
OCOTP[HAB_JDE] bit. The
JTAG_HEO bit can override
this behavior.

0 - HAB may enable JTAG
debug access

1 - HAB JTAG enable is
overridden (HAB may not
enable JTAG debug access)

OCOTP

0x470[27] Reserved 1 Reserved Reserved Reserved

0x470[28] BT_FUSE_SEL 1 Determines, whether using
fuses for boot configuration,
or GPIO /Serial loader.

If boot_mode="00"
(Development)

0=Boot mode configuration
is taken from GPIOs.

1=Boot mode configuration
is taken from fuses.

If boot_mode="10"
(Production)

0 - Boot using Serial Loader
(USB)

1- Boot mode configuration
is taken from fuses.

SRC SW(ROM)

0x470[29] FORCE_COLD_BO
OT(SBMR)

1 Force cold boot when A7
core come out of reset.
Reflected in SBMR reg of
SRC

Fuse Function:

0 – Default behavior allowing
a fast recovery from low
power modes. That is, the
ROM is allowed to jump to

SRC SW(ROM)

Table continues on the next page...

Chapter 5 Fusemap

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 161
Confidential Proprietary

Table 5-4. Fusemap Descriptions (continued)

Fuse
Address

Fuses Name Numbe
r of

Fuses

Fuses Function Setting Used by

the address previously
programmed in the SRC
persistent register.

1 – Fast recovery path in the
ROM is not allowed and a
cold boot is always
performed. Customers
wanting a higher level of
security should burn this
fuse.

0x470[31:30] Reserved 2 Reserved Reserved Reserved

0x480[31:0] BOOT_CFG_PARA
METER

32 BOOT configuration
parameters, Usage varies,
depending on selected boot
device.

See boot fusemap for
details.

SW (ROM)

0x490[31:0] BOOT_CFG_PARA
METER

32 BOOT configuration
parameters, Usage varies,
depending on selected boot
device.

See boot fusemap for
details.

SW (ROM)

0x4A0[31:0] BOOT_CFG_PARA
METER

32 BOOT configuration
parameters, Usage varies,
depending on selected boot
device.

See boot fusemap for
details.

SW (ROM)

0x4B0[31:0] BOOT_CFG_PARA
METER

32 BOOT configuration
parameters, Usage varies,
depending on selected boot
device.

See boot fusemap for
details.

SW (ROM)

0x4C0-0x500 Reserved 384 Reserved Reserved Reserved

0x580[31:0] SRK_HASH[255:0] 256 SRK key, no HW visible
lines. NO HW Visible signals
available

- SW (HAB)

0x600[23:0] SJC_RESP[55:0] 56 Response reference value
for the secure JTAG
controller

- SJC

0x610[31:24] Reserved 8 Reserved Reserved Reserved

0x620[15:0] USB_VID[31:0] 16 USB VID - SW

0x620[31:16] USB_PID[31:0] 16 USB PID - SW

0x630[0] FIELD_RETURN 1 Configure device for field
return testing. Fuse burning
is protected by CSF
command, with proper
parameter passed. Non-
lockable

0 - Device is in functional /
secure mode.

1 - Device is open for 'field-
return' testing.

SW (ROM),
SNVS_HP, SRC,
TPSMP, Security
Logic

0x630[31:1] Reserved 31 Reserved Reserved Reserved

0x640[15:0] MAC_ADDR[47:0] 48 Reserved for customers/SW - SW

0x650[31:16] Reserved 48 Reserved Reserved Reserved

Table continues on the next page...

Fusemap Descriptions Table

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

162 NXP Semiconductors
Confidential Proprietary

Table 5-4. Fusemap Descriptions (continued)

Fuse
Address

Fuses Name Numbe
r of

Fuses

Fuses Function Setting Used by

0x670[3:0] SRK_REVOKE 4 SRK keys recokation Full support to revoke up to
4 SRK keys.

0000 - No Revoke

0001 - Key 1

0010 - Key 2

0011 - Key 1 and 2

0100 - Key 3

0101 - Key 1 and 2

0110 - Key 2 and 3

0111 - Key 1, 2, and 3

1000 - Key 4

1001 - Key 1 and 4

...

1111 - All Keys

SW(HAB)

0x670[7:4] Reserved 4 Reserved Reserved Reserved

0x670[15:8] MC_ERA 8 SNVS Monolitic Counter Era
value

See SNVS spec SNVS

0x670[31:16] AP_BI_VER 16 Application Processor Boot
Image Version. Indicate the
version of the code image
authenticated by the High
Assurance Boot. The fuse
value must match the
version of the image stored
in non-volatile memory.

- SW

0x670-0x6F0 Reserved 256 Reserved Reserved Reserved

0x700[31:0] Reserved 256 Reserved Reserved Reserved

0x780[31:0] GP1[63:0] 64 General Purpose fuse
register #1

- SW

0x7A0[31:0] GP2[63:0] 64 General Purpose fuse
register #2

- SW

0x7C0-0x7F0 Reserved 128 Reserved Reserved Reserved

0x800[31:0] GP5[383:0] 384 General Purpose fuse
register #5

- SW

0x8C0[31:0] Reserved 128 Reserved Reserved Reserved

0x900-0x13F
0

Reserved 5632 Reserved Reserved Reserved

Chapter 5 Fusemap

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 163
Confidential Proprietary

Fusemap Descriptions Table

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

164 NXP Semiconductors
Confidential Proprietary

Chapter 6
On-Chip OTP Controller (OCOTP_CTRL)

6.1 Overview
This section contains information describing the requirements for the on-chip eFuse OTP
controller along with details about the block functionality and implementation.

In this document, the words "eFuse" and "OTP" are interchangeable. OCOTP refers to
the hardware block itself.

6.1.1 Features

The OCOTP provides the following features:

• Loading and housing of fuse content into shadow registers.
• Generation of HWV_FUSE (hardware visible fuse bus) and the HWV_REG bus

which is made up of volatile PIO register based "fuses". The HWV_REG bits come
from the SCS (Software Controllable Signals) register.

• Generation of STICKY_REG which is consist of sticky register bits.
• Provide program-protect and read-protect eFuse.
• Provide override and read protection of shadow register.

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 165
Confidential Proprietary

6.2 Top-Level Symbol and Functional Overview
The figure found here shows the OCOTP system level diagram.

OCOTP Controller/State Machine

Shadow Regs

OCOTP control register 5

APB Interface

HWV_REG Bus

STICKY_REG Bus

HW Capability Bus

ip2apb

Other
Blocks

To SJC
Blocks

Other
Blocks

IP
 b

u
s

OTP
FUSE

OCOTP_CTRL

Figure 6-1. OCOTP System Level Diagram

6.2.1 Operation

The IP bus interface of the OCOTP provides two functions.

• Configure control registers for programming and reading fuse .
• Override and read shadow registers.

6.2.1.1 Shadow Register Reload

All fuse words in are shadowed. Therefore, fuse information is available through memory
mapped shadow registers. If fuses are subsequently programmed, the shadow registers
should be reloaded to keep them coherent with the fuse bank arrays.

Top-Level Symbol and Functional Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

166 NXP Semiconductors
Confidential Proprietary

The "reload shadows" feature allows the user to force a reload of the shadow registers
(including HW_OCOTP_LOCK) without having to reset the device. To force a reload,
complete the following steps:

1. Check that HW_OCOTP_CTRL[BUSY] and HW_OCOTP_CTRL[ERROR] are
clear. Overlapped accesses are not supported by the controller. Any pending write ,
read or reload must be completed before a new access can be requested.

2. Set the HW_OCOTP_CTRL[RELOAD_SHADOWS] bit. OCOTP will read all the
fuse one by one and put it into corresponding shadow register.

3. Wait for HW_OCOTP_CTRL[BUSY] and
HW_OCOTP_CTRL[RELOAD_SHADOWS] to be cleared by the controller.

The controller will automatically clear the HW_OCOTP_CTRL[RELOAD_SHADOWS]
bit after the successful completion of the operation.

6.2.1.2 Fuse and Shadow Register Read

All shadow registers are always readable through the APB bus except some secret keys
regions. When their corresponding fuse lock bits are set, the shadow registers also
become read locked. After read locking, reading from these registers will return
0xBADABADA.

In addition HW_OCOTP_CTRL[ERROR] will be set. It must be cleared by software
before any new write , read or reload access can be issued. Subsequent reads to unlocked
shadow locations will still work successfully however.

To read fuse words directly from correctly complete the following steps:

1. Check that HW_OCOTP_CTRL[BUSY] and HW_OCOTP_CTRL[ERROR] are
clear. Overlapped accesses are not supported by the controller. Any pending write,
read or reload must be completed before a read access can be requested.

2. Write the requested to HW_OCOTP_CTRL[ADDR].

6.2.1.3 Fuse and Shadow Register Writes

Shadow register bits can be overridden by software until the corresponding fuse lock bit
for the region is set. When the lock shadow bit is set, the shadow registers for that lock
region become write locked. The LOCK shadow register also has no shadow or fuse lock
bits but it is always read only.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 167
Confidential Proprietary

In order to avoid "rogue" code performing erroneous writes to OTP, a special unlocking
sequence is required for writes to the fuse banks. To program fuse bank correctly
complete the following steps:

1. Program HW_OCOTP_TIMING[STROBE_PROG] and fields with timing values to
match the current frequency of the ipg_clk. OTP writes will work at maximum bus
frequencies as long as the parameters are set correctly.

2. Check that HW_OCOTP_CTRL[BUSY] and HW_OCOTP_CTRL[ERROR] are
clear. Overlapped accesses are not supported by the controller. Any pending write or
reload must be completed before a write access can be requested.

3. Write the requested to HW_OCOTP_CTRL[ADDR] and program the unlock code
into HW_OCOTP_CTRL[WR_UNLOCK]. This must be programmed for each write
access. The lock code is documented in the register description. Both the unlock code
and address can be written in the same operation.

It should be noted that write latencies to OTP are numbers of 10 micro-seconds. Write
latencies is based on amount of bit filed which is 1. For example : program half fuse bits
in one word need 10 us x 16.

For further details of OTP read/write operations see [eFUSE].

HW_OCOTP_CTRL[ERROR] will be set under the following conditions:

• A write is performed to a shadow register during a shadow reload (essentially, while
HW_OCOTP_CTRL[RELOAD_SHADOWS] is set. In addition, the contents of the
shadow register shall not be updated.

• A write is performed to a shadow register which has been locked.
• A read is performed to from a shadow register which has been read locked.
• A program is performed to a fuse which has been .
• A read is performed to from a fuse which has been read locked.

6.2.1.4 Write Postamble

Due to internal electrical characteristics of the OTP during writes, all OTP operations
following a write must be separated by 2 us after the clearing of
HW_OCOTP_CTRL_BUSY following the write. This guarantees programming voltages
on-chip to reach a steady state when exiting a write sequence. This includes reads,
shadow reloads, or other writes.

A recommended software sequence to meet the postamble requirements is as follows:

• Issue the write and poll for BUSY (as per Fuse Shadow Memory Footprint).
• After BUSY is clear, wait an additional 2 us.
• Perform the next OTP operation.

Top-Level Symbol and Functional Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

168 NXP Semiconductors
Confidential Proprietary

6.2.2 Fuse Shadow Memory Footprint

The OTP memory footprint shows in the following figure. The registers are grouped by
lock region. Their names correspond to the PIO register and fusemap names.

USB_ID

SJC

SJC

SRK

SRK

SRK

SRK

SRK

SRK

SRK

SRK

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

BOOT_CFG

BOOT_CFG

TESTER

TESTER

TESTER

TESTER

LOCK

0x27

0x26

0x25

0x24

0x23

0x22

0x21

0x20

0x1F

0x1E

0x1D

0x1C

0x1B

0x1A

0x19

0x18

0x17

0x16

0x15

0x14

0x13

0x12

0x11

0x10

0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

MAC

MAC RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

FIELD_RETURN

0x37

0x36

0x35

0x34

0x33

0x32

0x31

0x30

0x2F

0x2E

0x2D

0x2C

0x2A

0x29

0x28

0x2B

Shadow
Regs

MAC

0xFF

0xFE

GP2

GP1

TESTER

BOOT_CFG

BOOT_CFG

BOOT_CFG

TESTER

GP1

GP2

0x3F

0x3E

0x3D

0x3C

0x3A

0x39

0x38

0x3B

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

SRK_REVOKERESERVED

RESERVED

RESERVED

RESERVED

Figure 6-2. OTP Memory Footprint

6.2.3 OTP Read/Write Timing Parameters

There are timing fields contained in the HW_OCOTP_TIMING register that specify
counter limit values, which are used to specify the signal timing.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 169
Confidential Proprietary

Both two timing parameters are specified in ipg_clk cycles. Since the ipg_clk frequency
can be set to a range of values, these parameters must be adjusted with the clock to yield
the appropriate delay.

6.2.4 Hardware Visible Fuses

The hwv_fuse bus emanates from the OCOTP block and goes to various other blocks
inside the chip. This bus is made up of the shadow register bits for .

Only a subset of these fuse bits are currently used by the hardware. The fuse bits are
initially copied from the banks after reset is deasserted. When all fuse bits are loaded into
their shadow registers, the OCOTP asserts the fuse_latched output signal.

The hwv_reg bus also comes from the OCOTP. Its source is the HW_OCOTP_SCS
register. This register has 1 defined bit, the HAB_JDE bit, that is connected to the SJC
block. The SCS bits are intended to be used as volatile fuse bits under software control.
Additional bits will be defined as needed in future implementations.

The system-wide reset sequence must be coordinated by the system reset controller, so
that the hwv_fuse and hwv_reg buses are stable and reflect the values of the fuses before
they are used by the rest of the system.

6.2.5 Behavior During Reset

The OCOTP is always active. The shadow registers automatically load the appropriate
OTP contents after reset is deasserted. During this load-time
HW_OCOTP_CTRL_BUSY is set. The load time is similar to that of a "reload shadow"
operation.

6.2.6 Secure JTAG control

The JTAG control fuses are used to allow or disallow JTAG access to secured resources.

Three JTAG security levels are envisioned, as shown in the table below.

Table 6-1. JTAG Security Level Control Bits

Security Mode JTAG_SMODE Description

No Debug 2'b11 The highest security level.

Secure JTAG 2'b01 Limit the JTAG access by using key based authentication
mechanism.

JTAG Enable 2'b00 Low Security, all JTAG features are enabled.

Top-Level Symbol and Functional Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

170 NXP Semiconductors
Confidential Proprietary

6.3 Fuse Map
See the Fusemap chapter of this reference manual for more information.

6.4 OCOTP Memory Map/Register Definition
NOTE

When write/read unimplemented register address in ocotp_ctrl,
ocotp_ctrl will not send error and read data will be 0.

OCOTP Hardware Register Format Summary

OCOTP memory map

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

0
OTP Controller Control Register
(OCOTP_HW_OCOTP_CTRL)

32 R/W 0000_0000h 6.4.1/174

4
OTP Controller Control Register
(OCOTP_HW_OCOTP_CTRL_SET)

32 R/W 0000_0000h 6.4.1/174

8
OTP Controller Control Register
(OCOTP_HW_OCOTP_CTRL_CLR)

32 R/W 0000_0000h 6.4.1/174

C
OTP Controller Control Register
(OCOTP_HW_OCOTP_CTRL_TOG)

32 R/W 0000_0000h 6.4.1/174

10
OTP Controller Timing Register
(OCOTP_HW_OCOTP_TIMING)

32 R/W 0400_0000h 6.4.2/175

20
OTP Controller Write Data Register
(OCOTP_HW_OCOTP_DATA)

32 R/W 0000_0000h 6.4.3/176

30
OTP Controller Write Data Register
(OCOTP_HW_OCOTP_READ_CTRL)

32 R/W 0000_0000h 6.4.4/177

40
OTP Controller Read Data Register
(OCOTP_HW_OCOTP_READ_FUSE_DATA)

32 R/W 0000_0000h 6.4.5/178

50 Sticky bit Register (OCOTP_HW_OCOTP_SW_STICKY) 32 R/W 0000_0000h 6.4.6/179

60
Software Controllable Signals Register
(OCOTP_HW_OCOTP_SCS)

32 R/W 0000_0000h 6.4.7/180

64
Software Controllable Signals Register
(OCOTP_HW_OCOTP_SCS_SET)

32 R/W 0000_0000h 6.4.7/180

68
Software Controllable Signals Register
(OCOTP_HW_OCOTP_SCS_CLR)

32 R/W 0000_0000h 6.4.7/180

6C
Software Controllable Signals Register
(OCOTP_HW_OCOTP_SCS_TOG)

32 R/W 0000_0000h 6.4.7/180

Table continues on the next page...

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 171
Confidential Proprietary

OCOTP memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

90
OTP Controller Version Register
(OCOTP_HW_OCOTP_VERSION)

32 R/W 0148_1299h 6.4.8/181

400
Value of OTP Bank0 Word0 (Lock controls)
(OCOTP_HW_OCOTP_LOCK)

32 R/W 0000_0000h 6.4.9/182

410
Value of OTP Bank0 Word1 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER0)

32 R/W 0000_0000h 6.4.10/184

420
Value of OTP Bank0 Word2 (tester Info.)
(OCOTP_HW_OCOTP_TESTER1)

32 R/W 0000_0000h 6.4.11/184

430
Value of OTP Bank0 Word3 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER2)

32 R/W 0000_0000h 6.4.12/185

440
Value of OTP Bank1 Word0 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER3)

32 R/W 0000_0000h 6.4.13/185

450
Value of OTP Bank1 Word1 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER4)

32 R/W 0000_0000h 6.4.14/186

460
Value of OTP Bank1 Word2 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER5)

32 R/W 0000_0000h 6.4.15/186

470
Value of OTP Bank1 Word3 (Boot Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG0)

32 R/W 0000_0000h 6.4.16/187

480
Value of OTP Bank2 Word0 (Boot Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG1)

32 R/W 0000_0000h 6.4.17/187

490
Value of OTP Bank2 Word1 (Boot Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG2)

32 R/W 0000_0000h 6.4.18/188

4A0
Value of OTP Bank2 Word2 (Boot Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG3)

32 R/W 0000_0000h 6.4.19/188

4B0
Value of OTP Bank2 Word3 (BOOT Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG4)

32 R/W 0000_0000h 6.4.20/189

580
Shadow Register for OTP Bank6 Word0 (SRK Hash)
(OCOTP_HW_OCOTP_SRK0)

32 R/W 0000_0000h 6.4.21/189

590
Shadow Register for OTP Bank6 Word1 (SRK Hash)
(OCOTP_HW_OCOTP_SRK1)

32 R/W 0000_0000h 6.4.22/190

5A0
Shadow Register for OTP Bank6 Word2 (SRK Hash)
(OCOTP_HW_OCOTP_SRK2)

32 R/W 0000_0000h 6.4.23/190

5B0
Shadow Register for OTP Bank6 Word3 (SRK Hash)
(OCOTP_HW_OCOTP_SRK3)

32 R/W 0000_0000h 6.4.24/191

5C0
Shadow Register for OTP Bank7 Word0 (SRK Hash)
(OCOTP_HW_OCOTP_SRK4)

32 R/W 0000_0000h 6.4.25/191

5D0
Shadow Register for OTP Bank7 Word1 (SRK Hash)
(OCOTP_HW_OCOTP_SRK5)

32 R/W 0000_0000h 6.4.26/192

5E0
Shadow Register for OTP Bank7 Word2 (SRK Hash)
(OCOTP_HW_OCOTP_SRK6)

32 R/W 0000_0000h 6.4.27/192

5F0
Shadow Register for OTP Bank7 Word3 (SRK Hash)
(OCOTP_HW_OCOTP_SRK7)

32 R/W 0000_0000h 6.4.28/193

600
Value of OTP Bank8 Word0 (Secure JTAG Response Field)
(OCOTP_HW_OCOTP_SJC_RESP0)

32 R/W 0000_0000h 6.4.29/193

Table continues on the next page...

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

172 NXP Semiconductors
Confidential Proprietary

OCOTP memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

610
Value of OTP Bank8 Word1 (Secure JTAG Response Field)
(OCOTP_HW_OCOTP_SJC_RESP1)

32 R/W 0000_0000h 6.4.30/194

620
Value of OTP Bank8 Word2 (USB ID info)
(OCOTP_HW_OCOTP_USB_ID)

32 R/W 0000_0000h 6.4.31/194

630
Value of OTP Bank8 Word3 (Field Return)
(OCOTP_HW_OCOTP_FIELD_RETURN)

32 R/W 0000_0000h 6.4.32/195

640
Value of OTP Bank9 Word0 (MAC Address)
(OCOTP_HW_OCOTP_MAC_ADDR0)

32 R/W 0000_0000h 6.4.33/195

650
Value of OTP Bank9 Word1 (MAC Address)
(OCOTP_HW_OCOTP_MAC_ADDR1)

32 R/W 0000_0000h 6.4.34/196

660
Value of OTP Bank9 Word2 (MAC Address)
(OCOTP_HW_OCOTP_MAC_ADDR2)

32 R/W 0000_0000h 6.4.35/196

780
Value of OTP Bank14 Word0 ()
(OCOTP_HW_OCOTP_GP10)

32 R/W 0000_0000h 6.4.36/197

790
Value of OTP Bank14 Word1 ()
(OCOTP_HW_OCOTP_GP11)

32 R/W 0000_0000h 6.4.37/197

7A0
Value of OTP Bank14 Word2 ()
(OCOTP_HW_OCOTP_GP20)

32 R/W 0000_0000h 6.4.38/197

7B0
Value of OTP Bank14 Word3 ()
(OCOTP_HW_OCOTP_GP21)

32 R/W 0000_0000h 6.4.39/198

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 173
Confidential Proprietary

6.4.1 OTP Controller Control Register (OCOTP_HW_OCOTP_CTRLn)

The OCOTP Control and Status Register provides the necessary software interface for
performing read and write operations to the On-Chip OTP (One-Time Programmable
ROM). The control fields such as WR_UNLOCK, ADDR and BUSY/ERROR may be
used in conjuction with the HW_OCOTP_DATA register to perform write operations.
Read operations to the On-Chip OTP are involving ADDR, BUSY/ERROR bit field and
HW_OCOTP_READ_CTRL register. Read value is saved in
HW_OCOTP_READ_FUSE_DATA register.

Address: 0h base + 0h offset + (4d × i), where i=0d to 3d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

WR_UNLOCK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

Reserved

R
E

LO
A

D
_S

H
A

D
O

W
S

E
R

R
O

R

B
U

S
Y

ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

174 NXP Semiconductors
Confidential Proprietary

OCOTP_HW_OCOTP_CTRLn field descriptions

Field Description

31–16
WR_UNLOCK

Write 0x3E77 to enable OTP write accesses. NOTE: This register must be unlocked on a write-by-write
basis (a write is initiated when HW_OCOTP_DATA is written), so the UNLOCK bitfield must contain the
correct key value during all writes to HW_OCOTP_DATA, otherwise a write shall not be initiated. This field
is automatically cleared after a successful write completion (clearing of BUSY).

15–11
-

This field is reserved.
Reserved

10
RELOAD_
SHADOWS

Set to force re-loading the shadow registers (HW/SW capability and LOCK). This operation will
automatically set BUSY. Once the shadow registers have been re-loaded, BUSY and
RELOAD_SHADOWS are automatically cleared by the controller.

9
ERROR

Set by the controller when an access to a locked region(OTP or shadow register) is requested. Must be
cleared before any further access can be performed. This bit can only be set by the controller. This bit is
also set if the Pin interface is active and software requests an access to the OTP. In this instance, the
ERROR bit cannot be cleared until the Pin interface access has completed. Reset this bit by writing a one
to the SCT clear address space and not by a general write.

8
BUSY

OTP controller status bit. When active, no new write access or read access to OTP(including
RELOAD_SHADOWS) can be performed. Cleared by controller when access complete. After reset (or
after setting RELOAD_SHADOWS), this bit is set by the controller until the HW/SW and LOCK registers
are successfully copied, after which time it is automatically cleared by the controller.

ADDR OTP write and read access address register. Specifies one of 128 word address locations (0x00 - 0x7f). If
a valid access is accepted by the controller, the controller makes an internal copy of this value. This
internal copy will not update until the access is complete.

6.4.2 OTP Controller Timing Register (OCOTP_HW_OCOTP_TIMING)

This register specifies timing parameters for programming and reading the OCOTP fuse
array.

Address: 0h base + 10h offset = 10h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RSRVD0
WAIT STROBE_READ RELAX STROBE_PROG

W

Reset 0 0 0 0 0 1 0

OCOTP_HW_OCOTP_TIMING field descriptions

Field Description

31–28
RSRVD0

These bits always read back zero.

27–22
WAIT

This count value specifies time interval between auto read and write access in one time program. It is
given in number of ipg_clk periods.

21–16
STROBE_READ

This count value specifies the strobe period in one time read OTP. Trd = ((STROBE_READ+1)- 2*(RELAX
+1)) /ipg_clk_freq. It is given in number of ipg_clk periods.

Table continues on the next page...

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 175
Confidential Proprietary

OCOTP_HW_OCOTP_TIMING field descriptions (continued)

Field Description

15–12
RELAX

This count value specifies the time to add to all default timing parameters other than the Tpgm and Trd. It
is given in number of ipg_clk periods.

STROBE_PROG This count value specifies the strobe period in one time write OTP. Tpgm = ((STROBE_PROG+1)-
2*(RELAX+1)) /ipg_clk_freq. It is given in number of ipg_clk periods.

6.4.3 OTP Controller Write Data Register
(OCOTP_HW_OCOTP_DATA)

This register is used in conjuction with HW_OCOTP_CTRL to perform one-time writes
to the OTP.

Address: 0h base + 20h offset = 20h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DATAW

Reset 0

OCOTP_HW_OCOTP_DATA field descriptions

Field Description

DATA Used to initiate a write to OTP.

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

176 NXP Semiconductors
Confidential Proprietary

6.4.4 OTP Controller Write Data Register
(OCOTP_HW_OCOTP_READ_CTRL)

This register is used in conjuction with HW_OCOTP_CTRL to perform one time read to
the OTP.

Address: 0h base + 30h offset = 30h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RSVD0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RSVD0

R
E

A
D

_F
U

S
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OCOTP_HW_OCOTP_READ_CTRL field descriptions

Field Description

31–1
RSVD0

Reserved

0
READ_FUSE

Used to initiate a read to OTP.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 177
Confidential Proprietary

6.4.5 OTP Controller Read Data Register
(OCOTP_HW_OCOTP_READ_FUSE_DATA)

The data read from OTP

Address: 0h base + 40h offset = 40h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DATAW

Reset 0

OCOTP_HW_OCOTP_READ_FUSE_DATA field descriptions

Field Description

DATA The data read from OTP

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

178 NXP Semiconductors
Confidential Proprietary

6.4.6 Sticky bit Register (OCOTP_HW_OCOTP_SW_STICKY)

Some sticky bits are used by SW to lock some fuse area , shadow registers and other
features.

Address: 0h base + 50h offset = 50h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RSVD2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RSVD2

D
IS

A
B

LE
_R

E
A

D
_G

R
O

U
P

_M
A

S
K

JT
A

G
_B

LO
C

K
_R

E
LE

A
S

E

R
S

V
D

1

F
IE

LD
_R

E
T

U
R

N
_L

O
C

K RSVD0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 179
Confidential Proprietary

OCOTP_HW_OCOTP_SW_STICKY field descriptions

Field Description

31–6
RSVD2

Reserved

5
DISABLE_

READ_GROUP_
MASK

Shadow register write and OTP write lock for GROUP_MASK region. When set, the writing of this region's
shadow register and OTP fuse word are blocked. Once this bit is set, it is always high unless a POR is
issued.

4
JTAG_BLOCK_

RELEASE

Set by Arm during Boot after DTCP is initialized and before test mode entry. * 0 (Default) - JTAG is
blocked (subject to other conditions).* 1 - JTAG block is released (subject to other controls). Once this bit
is set, it is always high unless a POR is issued.

3
RSVD1

Reserved

2
FIELD_

RETURN_LOCK

Shadow register write and OTP write lock for FIELD_RETURN region. When set, the writing of this
region's shadow register and OTP fuse word are blocked.Once this bit is set, it is always high unless a
POR is issued.

RSVD0 Reserved

6.4.7 Software Controllable Signals Register
(OCOTP_HW_OCOTP_SCSn)

This register holds volatile configuration values that can be set and locked by trusted
software. All values are returned to their defualt values after POR.

Address: 0h base + 60h offset + (4d × i), where i=0d to 3d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

LO
C

K

SPARE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

SPARE

H
A

B
_J

D
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OCOTP_HW_OCOTP_SCSn field descriptions

Field Description

31
LOCK

When set, all of the bits in this register are locked and can not be changed through SW programming. This
bit is only reset after a POR is issued.

Table continues on the next page...

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

180 NXP Semiconductors
Confidential Proprietary

OCOTP_HW_OCOTP_SCSn field descriptions (continued)

Field Description

30–1
SPARE

Unallocated read/write bits for implementation specific software use.

0
HAB_JDE

HAB JTAG Debug Enable. This bit is used by the HAB to enable JTAG debugging, assuming that a
properlay signed command to do so is found and validated by the HAB. The HAB must lock the register
before passing control to the OS whether or not JTAG debugging has been enabled. Once JTAG is
enabled by this bit, it can not be disabled unless the system is reset by POR. 0: JTAG debugging is not
enabled by the HAB (it may still be enabled by other mechanisms). 1: JTAG debugging is enabled by the
HAB (though this signal may be gated off).

6.4.8 OTP Controller Version Register
(OCOTP_HW_OCOTP_VERSION)

This register indicates the RTL version in use.

Address: 0h base + 90h offset = 90h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MAJOR MINOR STEP

W

Reset 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1

OCOTP_HW_OCOTP_VERSION field descriptions

Field Description

31–24
MAJOR

Fixed read-only value reflecting the MAJOR field of the RTL version.

23–16
MINOR

Fixed read-only value reflecting the MINOR field of the RTL version.

STEP Fixed read-only value reflecting the stepping of the RTL version.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 181
Confidential Proprietary

6.4.9 Value of OTP Bank0 Word0 (Lock controls)
(OCOTP_HW_OCOTP_LOCK)

Shadowed memory mapped access to OTP Bank 0, word 0.

Address: 0h base + 400h offset = 400h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

Reserved

GP2 GP1

Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

182 NXP Semiconductors
Confidential Proprietary

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

M
A

C
_A

D
D

R

USB_ID

R
es

er
ve

d

S
JC

_R
E

S
P

SRK

Reserved

BOOT_CFG TESTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OCOTP_HW_OCOTP_LOCK field descriptions

Field Description

31–24
-

This field is reserved.
Reserved

23–22
GP2

Status of shadow register and OTP write lock for gp2 region. When bit 1 is set, the writing of this region's
shadow register is blocked. When bit 0 is set, the writing of this region's OTP fuse word is blocked.

21–20
GP1

Status of shadow register and OTP write lock for gp1 region. When bit 1 is set, the writing of this region's
shadow register is blocked. When bit 0 is set, the writing of this region's OTP fuse word is blocked.

19–16
-

This field is reserved.
Reserved

15–14
MAC_ADDR

Status of shadow register and OTP write lock for mac_addr region. When bit 1 is set, the writing of this
region's shadow register is blocked. When bit 0 is set, the writing of this region's OTP fuse word is
blocked.

13–12
USB_ID

Status of shadow register and OTP write lock for usb_id region. When bit 1 is set, the writing of this
region's shadow register is blocked. When bit 0 is set, the writing of this region's OTP fuse word is
blocked.

11
-

This field is reserved.
Reserved

Table continues on the next page...

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 183
Confidential Proprietary

OCOTP_HW_OCOTP_LOCK field descriptions (continued)

Field Description

10
SJC_RESP

Status of shadow register read and write, OTP read and write lock for sjc_resp region. When set, the
writing of this region's shadow register and OTP fuse word are blocked. The read of this region's shadow
register and OTP fuse word are also blocked.

9
SRK

Status of shadow register and OTP write lock for srk region. When set, the writing of this region's shadow
register and OTP fuse word are blocked.

8–4
-

This field is reserved.
Reserved

3–2
BOOT_CFG

Status of shadow register and OTP write lock for boot_cfg region. When bit 1 is set, the writing of this
region's shadow register is blocked. When bit 0 is set, the writing of this region's OTP fuse word is
blocked.

TESTER Status of shadow register and OTP write lock for tester region. When bit 1 is set, the writing of this region's
shadow register is blocked. When bit 0 is set, the writing of this region's OTP fuse word is blocked.

6.4.10 Value of OTP Bank0 Word1 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER0)

Shadowed memory mapped access to OTP Bank 0, word 1.

Address: 0h base + 410h offset = 410h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_TESTER0 field descriptions

Field Description

BITS Reflects value of OTP Bank 0, word 1. These bits become read-only after the
HW_OCOTP_LOCK_TESTER[1] bit is set.

6.4.11 Value of OTP Bank0 Word2 (tester Info.)
(OCOTP_HW_OCOTP_TESTER1)

shadowed memory mapped access to OTP Bank 0, word 2.

Address: 0h base + 420h offset = 420h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

184 NXP Semiconductors
Confidential Proprietary

OCOTP_HW_OCOTP_TESTER1 field descriptions

Field Description

BITS Reflects value of OTP Bank 0, word 2. These bits become read-only after the
HW_OCOTP_LOCK_TESTER[1] bit is set.

6.4.12 Value of OTP Bank0 Word3 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER2)

Shadowed memory mapped access to OTP Bank 0, word 3.

Address: 0h base + 430h offset = 430h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_TESTER2 field descriptions

Field Description

BITS Reflects value of OTP Bank 0, word 3. These bits become read-only after the
HW_OCOTP_LOCK_TESTER[1] bit is set.

6.4.13 Value of OTP Bank1 Word0 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER3)

Non-shadowed memory mapped access to OTP Bank 1, word 0.

Address: 0h base + 440h offset = 440h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_TESTER3 field descriptions

Field Description

BITS Reflects value of OTP Bank 1, word 0. These bits become read-only after the
HW_OCOTP_LOCK_TESTER[1] bit is set.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 185
Confidential Proprietary

6.4.14 Value of OTP Bank1 Word1 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER4)

Shadowed memory mapped access to OTP Bank 1, word 1.

Address: 0h base + 450h offset = 450h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_TESTER4 field descriptions

Field Description

BITS Reflects value of OTP Bank 1, word 1. These bits become read-only after the
HW_OCOTP_LOCK_TESTER[1] bit is set.

6.4.15 Value of OTP Bank1 Word2 (Tester Info.)
(OCOTP_HW_OCOTP_TESTER5)

Shadowed memory mapped access to OTP Bank 1, word 2.

Address: 0h base + 460h offset = 460h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_TESTER5 field descriptions

Field Description

BITS Reflects value of OTP Bank 1, word 2. These bits become read-only after the
HW_OCOTP_LOCK_TESTER[1] bit is set.

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

186 NXP Semiconductors
Confidential Proprietary

6.4.16 Value of OTP Bank1 Word3 (Boot Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG0)

Shadowed memory mapped access to OTP Bank 1, word 3.

Address: 0h base + 470h offset = 470h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_BOOT_CFG0 field descriptions

Field Description

BITS Reflects value of OTP Bank 1, word 3. These bits become read-only after the
HW_OCOTP_LOCK_BOOT_CFG[1] bit is set.

6.4.17 Value of OTP Bank2 Word0 (Boot Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG1)

Shadowed memory mapped access to OTP bank 2, word 0.

Address: 0h base + 480h offset = 480h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_BOOT_CFG1 field descriptions

Field Description

BITS Reflects value of OTP bank 2, word 0. These bits become read-only after the
HW_OCOTP_LOCK_BOOT_CFG[1] bit is set.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 187
Confidential Proprietary

6.4.18 Value of OTP Bank2 Word1 (Boot Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG2)

Shadowed memory mapped access to OTP bank 2, word 1.

Address: 0h base + 490h offset = 490h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_BOOT_CFG2 field descriptions

Field Description

BITS Reflects value of OTP bank 2, word 1. These bits become read-only after the
HW_OCOTP_LOCK_BOOT_CFG[1] bit is set.

6.4.19 Value of OTP Bank2 Word2 (Boot Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG3)

Shadowed memory mapped access to OTP bank 2, word 2.

Address: 0h base + 4A0h offset = 4A0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_BOOT_CFG3 field descriptions

Field Description

BITS Reflects value of OTP bank 2, word 2. These bits become read-only after the
HW_OCOTP_LOCK_BOOT_CFG[1] bit is set.

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

188 NXP Semiconductors
Confidential Proprietary

6.4.20 Value of OTP Bank2 Word3 (BOOT Configuration Info.)
(OCOTP_HW_OCOTP_BOOT_CFG4)

Shadowed memory mapped access to OTP bank 2, word 3.

Address: 0h base + 4B0h offset = 4B0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_BOOT_CFG4 field descriptions

Field Description

BITS Reflects value of OTP bank 2, word 3. These bits become read-only after the
HW_OCOTP_LOCK_BOOT_CFG[1] bit is set.

6.4.21 Shadow Register for OTP Bank6 Word0 (SRK Hash)
(OCOTP_HW_OCOTP_SRK0)

Shadowed memory mapped access to OTP Bank 6, word 0.

Address: 0h base + 580h offset = 580h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SRK0 field descriptions

Field Description

BITS Shadow register for the hash of the Super Root Key word0 (Copy of OTP Bank 6, word 0). These bits
become read-only after the HW_OCOTP_LOCK_SRK bit is set.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 189
Confidential Proprietary

6.4.22 Shadow Register for OTP Bank6 Word1 (SRK Hash)
(OCOTP_HW_OCOTP_SRK1)

Shadowed memory mapped access to OTP Bank 6, word 1.

Address: 0h base + 590h offset = 590h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SRK1 field descriptions

Field Description

BITS Shadow register for the hash of the Super Root Key word1 (Copy of OTP Bank 6, word 1). These bits
become read-only after the HW_OCOTP_LOCK_SRK bit is set.

6.4.23 Shadow Register for OTP Bank6 Word2 (SRK Hash)
(OCOTP_HW_OCOTP_SRK2)

Shadowed memory mapped access to OTP Bank 6, word 2.

Address: 0h base + 5A0h offset = 5A0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SRK2 field descriptions

Field Description

BITS Shadow register for the hash of the Super Root Key word2 (Copy of OTP Bank 6, word 2). These bits
become read-only after the HW_OCOTP_LOCK_SRK bit is set.

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

190 NXP Semiconductors
Confidential Proprietary

6.4.24 Shadow Register for OTP Bank6 Word3 (SRK Hash)
(OCOTP_HW_OCOTP_SRK3)

Shadowed memory mapped access to OTP Bank 6, word 3.

Address: 0h base + 5B0h offset = 5B0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SRK3 field descriptions

Field Description

BITS Shadow register for the hash of the Super Root Key word3 (Copy of OTP Bank 6, word 3). These bits
become read-only after the HW_OCOTP_LOCK_SRK bit is set.

6.4.25 Shadow Register for OTP Bank7 Word0 (SRK Hash)
(OCOTP_HW_OCOTP_SRK4)

Shadowed memory mapped access to OTP Bank 7, word 0.

Address: 0h base + 5C0h offset = 5C0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SRK4 field descriptions

Field Description

BITS Shadow register for the hash of the Super Root Key word4 (Copy of OTP Bank 7, word 0). These bits
become read-only after the HW_OCOTP_LOCK_SRK bit is set.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 191
Confidential Proprietary

6.4.26 Shadow Register for OTP Bank7 Word1 (SRK Hash)
(OCOTP_HW_OCOTP_SRK5)

Shadowed memory mapped access to OTP Bank 7, word 1.

Address: 0h base + 5D0h offset = 5D0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SRK5 field descriptions

Field Description

BITS Shadow register for the hash of the Super Root Key word5 (Copy of OTP Bank 7, word 1). These bits
become read-only after the HW_OCOTP_LOCK_SRK bit is set.

6.4.27 Shadow Register for OTP Bank7 Word2 (SRK Hash)
(OCOTP_HW_OCOTP_SRK6)

Shadowed memory mapped access to OTP Bank 7, word 2.

Address: 0h base + 5E0h offset = 5E0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SRK6 field descriptions

Field Description

BITS Shadow register for the hash of the Super Root Key word6 (Copy of OTP Bank 7, word 2). These bits
become read-only after the HW_OCOTP_LOCK_SRK bit is set.

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

192 NXP Semiconductors
Confidential Proprietary

6.4.28 Shadow Register for OTP Bank7 Word3 (SRK Hash)
(OCOTP_HW_OCOTP_SRK7)

Shadowed memory mapped access to OTP Bank 7, word 3.

Address: 0h base + 5F0h offset = 5F0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SRK7 field descriptions

Field Description

BITS Shadow register for the hash of the Super Root Key word7 (Copy of OTP Bank 7, word 3). These bits
become read-only after the HW_OCOTP_LOCK_SRK bit is set.

6.4.29 Value of OTP Bank8 Word0 (Secure JTAG Response Field)
(OCOTP_HW_OCOTP_SJC_RESP0)

Shadowed memory mapped access to OTP Bank 8, word 0.

Address: 0h base + 600h offset = 600h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SJC_RESP0 field descriptions

Field Description

BITS Shadow register for the SJC_RESP Key word0 (Copy of OTP Bank 8, word 0). These bits can be not read
and wrotten after the HW_OCOTP_LOCK_SJC_RESP bit is set. If read, returns 0xBADA_BADA and sets
HW_OCOTP_CTRL[ERROR].

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 193
Confidential Proprietary

6.4.30 Value of OTP Bank8 Word1 (Secure JTAG Response Field)
(OCOTP_HW_OCOTP_SJC_RESP1)

Shadowed memory mapped access to OTP Bank 8, word 1.

Address: 0h base + 610h offset = 610h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_SJC_RESP1 field descriptions

Field Description

BITS Shadow register for the SJC_RESP Key word1 (Copy of OTP Bank 8, word 1). These bits can be not read
and wrotten after the HW_OCOTP_LOCK_SJC_RESP bit is set. If read, returns 0xBADA_BADA and sets
HW_OCOTP_CTRL[ERROR].

6.4.31 Value of OTP Bank8 Word2 (USB ID info)
(OCOTP_HW_OCOTP_USB_ID)

Shadowed memory mapped access to OTP Bank 8, word 2.

Address: 0h base + 620h offset = 620h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_USB_ID field descriptions

Field Description

BITS Reflects value of OTP Bank 8, word 2.

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

194 NXP Semiconductors
Confidential Proprietary

6.4.32 Value of OTP Bank8 Word3 (Field Return)
(OCOTP_HW_OCOTP_FIELD_RETURN)

Shadowed memory mapped access to OTP Bank 8, word 3.

Address: 0h base + 630h offset = 630h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_FIELD_RETURN field descriptions

Field Description

BITS Reflects value of OTP Bank 8, word 3.

6.4.33 Value of OTP Bank9 Word0 (MAC Address)
(OCOTP_HW_OCOTP_MAC_ADDR0)

Shadowed memory mapped access to OTP Bank 9, word 0.

Address: 0h base + 640h offset = 640h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_MAC_ADDR0 field descriptions

Field Description

BITS Reflects value of OTP Bank 9, word 0.

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 195
Confidential Proprietary

6.4.34 Value of OTP Bank9 Word1 (MAC Address)
(OCOTP_HW_OCOTP_MAC_ADDR1)

Shadowed memory mapped access to OTP Bank 9, word 1.

Address: 0h base + 650h offset = 650h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_MAC_ADDR1 field descriptions

Field Description

BITS Reflects value of OTP Bank 9, word 1.

6.4.35 Value of OTP Bank9 Word2 (MAC Address)
(OCOTP_HW_OCOTP_MAC_ADDR2)

Shadowed memory mapped access to OTP Bank 9, word 2.

Address: 0h base + 660h offset = 660h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_MAC_ADDR2 field descriptions

Field Description

BITS Reflects value of OTP Bank 9, word 2.

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

196 NXP Semiconductors
Confidential Proprietary

6.4.36 Value of OTP Bank14 Word0 () (OCOTP_HW_OCOTP_GP10)

Shadowed memory mapped access to OTP Bank 14, word 0.

Address: 0h base + 780h offset = 780h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_GP10 field descriptions

Field Description

BITS Reflects value of OTP Bank 14, word 0.

6.4.37 Value of OTP Bank14 Word1 () (OCOTP_HW_OCOTP_GP11)

Shadowed memory mapped access to OTP Bank 14, word 1.

Address: 0h base + 790h offset = 790h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_GP11 field descriptions

Field Description

BITS Reflects value of OTP Bank 14, word 1.

6.4.38 Value of OTP Bank14 Word2 () (OCOTP_HW_OCOTP_GP20)

Shadowed memory mapped access to OTP Bank 14, word 2.

Address: 0h base + 7A0h offset = 7A0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

Chapter 6 On-Chip OTP Controller (OCOTP_CTRL)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 197
Confidential Proprietary

OCOTP_HW_OCOTP_GP20 field descriptions

Field Description

BITS Reflects value of OTP Bank 14, word 2.

6.4.39 Value of OTP Bank14 Word3 () (OCOTP_HW_OCOTP_GP21)

Shadowed memory mapped access to OTP Bank 14, word 3.

Address: 0h base + 7B0h offset = 7B0h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BITSW

Reset 0

OCOTP_HW_OCOTP_GP21 field descriptions

Field Description

BITS Reflects value of OTP Bank 14, word 3.

OCOTP Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

198 NXP Semiconductors
Confidential Proprietary

Chapter 7
Central Security Unit (CSU)

7.1 Overview
The CSU manages the system security policy for peripheral access on the SoC. The CSU
allows trusted code to set individual security access privileges on each of the peripherals,
using one of eight security access privilege levels. Also, according to programmed
policy, the CSU may assign bus master security privileges during bus transactions.

7.1.1 Features

The Central Security Unit (CSU) sets the access control policies between the bus masters
and bus slaves, allowing for peripherals to be separated into distinct security domains.
This protects against unauthorized access to data, for example, when the software
programs a DMA bus master to access the addresses that the software is prohibited from
accessing directly. By configuring the DMA bus master privileges in the CSU to be
consistent with the software privileges defends against such access attempts.
Additionally, the CSU manages the system security alarms. These alarms are signals
routed from various SoC peripherals and I/Os that indicate security-violation conditions.

The CSU has these security-related features:

• Peripheral access policy—the appropriate bus master privilege and identity are
required to access each peripheral.

• Masters privilege policy—the CSU overrides the bus master privilege signals (user/
supervisor, secure/non-secure) according to the access control policy.

7.2 Functional description
The CSU enables the secure software to set the bus privilege security policy within the
platform.

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 199
Confidential Proprietary

The security policies may be set, and optionally locked in the CSU registers. The
examples of a secure software include the Command Sequence File (CSF) processed by
the High Assurance Boot (HAB) or the HAB-authenticated image which executes after
the boot ROM.

7.2.1 Peripheral access policy

According to its programmed policy, the CSU determines the bus master privileges and
the masters that are allowed to access each of the slave peripherals.

There are four security modes of operation (bus privileges) in the system distinguished by
the security (TrustZone/non-TrustZone) and privilege (Supervisor/User) setting of the
module. This is the list of these security modes, organized from the highest security level
to the lowest:

• TrustZone (secure) privilege (supervisor) mode—highest security level
• TrustZone (secure) non-privilege (user) mode—medium security level
• Non-TrustZone (regular) privilege (supervisor) mode—medium security level
• Non-TrustZone (regular) non-privilege (user) mode—lowest security level

This functionality is implemented as follows:

The Configure Slave Level (CSL) Register value for a specified peripheral resource
defines the output signal (csu_sec_level) for that peripheral. The value of this signal
determines the master privileges that can access the peripheral. The relationship between
the value of the csu_sec_level signal and the security operation mode is shown in this
table:

Table 7-1. Access permissions

CSU_SEC_LEVEL[2:
0]

Non-secure user
mode

Non-secure
SPVR mode

Secure (TZ) user
mode

Secure (TZ)
SPVR mode

CSL register
value

(0) 000 RD+WR RD+WR RD+WR RD+WR 8'b1111_1111

(1) 001 None RD+WR RD+WR RD+WR 8'b1011_1011

(2) 010 RD RD RD+WR RD+WR 8'b0011_1111

(3) 011 None RD RD+WR RD+WR 8'b0011_1011

(4) 100 None None RD+WR RD+WR 8'b0011_0011

(5) 101 None None None RD+WR 8'b0010_0010

(6) 110 None None RD RD 8'b0000_0011

(7) 111 None None None None Any other value

Functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

200 NXP Semiconductors
Confidential Proprietary

7.2.2 Initialization policy

The recommended initialization procedure is as follows:

1. Write the CSU_CSL register field value to indicate each peripheral's privilege mode.
2. Write the HP register field value to override the master's privilege mode.

NOTE
After programming, the register lock bit must be set to prevent
further modifications to a register value.

Programmable Registers

The following sections provide a detailed description of the CSU registers and their
respective bit and field assignments. Assume that the base address is 021C.

• The CSU registers: CSU_CSL, CSU_HP, CSU_SA , and CSU_HPCONTROL can
only be written in the secure supervisor mode. (Note: These registers are also
referred to as the security control registers (or SCRs) in this document)

• The previous cycle's lock bit is checked while writing to a register. If the lock bit was
cleared in the previous cycle and is being set during the current cycle, then the
register fields covered by that lock bit may be written during the current cycle.

CSU memory map

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303E_0000 Config security level register (CSU_CSL0) 32 R/W 0033_0033h 7.3.1/203

303E_0004 Config security level register (CSU_CSL1) 32 R/W 0033_0033h 7.3.1/203

303E_0008 Config security level register (CSU_CSL2) 32 R/W 0033_0033h 7.3.1/203

303E_000C Config security level register (CSU_CSL3) 32 R/W 0033_0033h 7.3.1/203

303E_0010 Config security level register (CSU_CSL4) 32 R/W 0033_0033h 7.3.1/203

303E_0014 Config security level register (CSU_CSL5) 32 R/W 0033_0033h 7.3.1/203

303E_0018 Config security level register (CSU_CSL6) 32 R/W 0033_0033h 7.3.1/203

303E_001C Config security level register (CSU_CSL7) 32 R/W 0033_0033h 7.3.1/203

303E_0020 Config security level register (CSU_CSL8) 32 R/W 0033_0033h 7.3.1/203

303E_0024 Config security level register (CSU_CSL9) 32 R/W 0033_0033h 7.3.1/203

303E_0028 Config security level register (CSU_CSL10) 32 R/W 0033_0033h 7.3.1/203

303E_002C Config security level register (CSU_CSL11) 32 R/W 0033_0033h 7.3.1/203

303E_0030 Config security level register (CSU_CSL12) 32 R/W 0033_0033h 7.3.1/203

Table continues on the next page...

7.3

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 201
Confidential Proprietary

CSU memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303E_0034 Config security level register (CSU_CSL13) 32 R/W 0033_0033h 7.3.1/203

303E_0038 Config security level register (CSU_CSL14) 32 R/W 0033_0033h 7.3.1/203

303E_003C Config security level register (CSU_CSL15) 32 R/W 0033_0033h 7.3.1/203

303E_0040 Config security level register (CSU_CSL16) 32 R/W 0033_0033h 7.3.1/203

303E_0044 Config security level register (CSU_CSL17) 32 R/W 0033_0033h 7.3.1/203

303E_0048 Config security level register (CSU_CSL18) 32 R/W 0033_0033h 7.3.1/203

303E_004C Config security level register (CSU_CSL19) 32 R/W 0033_0033h 7.3.1/203

303E_0050 Config security level register (CSU_CSL20) 32 R/W 0033_0033h 7.3.1/203

303E_0054 Config security level register (CSU_CSL21) 32 R/W 0033_0033h 7.3.1/203

303E_0058 Config security level register (CSU_CSL22) 32 R/W 0033_0033h 7.3.1/203

303E_005C Config security level register (CSU_CSL23) 32 R/W 0033_0033h 7.3.1/203

303E_0060 Config security level register (CSU_CSL24) 32 R/W 0033_0033h 7.3.1/203

303E_0064 Config security level register (CSU_CSL25) 32 R/W 0033_0033h 7.3.1/203

303E_0068 Config security level register (CSU_CSL26) 32 R/W 0033_0033h 7.3.1/203

303E_006C Config security level register (CSU_CSL27) 32 R/W 0033_0033h 7.3.1/203

303E_0070 Config security level register (CSU_CSL28) 32 R/W 0033_0033h 7.3.1/203

303E_0074 Config security level register (CSU_CSL29) 32 R/W 0033_0033h 7.3.1/203

303E_0078 Config security level register (CSU_CSL30) 32 R/W 0033_0033h 7.3.1/203

303E_007C Config security level register (CSU_CSL31) 32 R/W 0033_0033h 7.3.1/203

303E_0080 Config security level register (CSU_CSL32) 32 R/W 0033_0033h 7.3.1/203

303E_0084 Config security level register (CSU_CSL33) 32 R/W 0033_0033h 7.3.1/203

303E_0088 Config security level register (CSU_CSL34) 32 R/W 0033_0033h 7.3.1/203

303E_008C Config security level register (CSU_CSL35) 32 R/W 0033_0033h 7.3.1/203

303E_0090 Config security level register (CSU_CSL36) 32 R/W 0033_0033h 7.3.1/203

303E_0094 Config security level register (CSU_CSL37) 32 R/W 0033_0033h 7.3.1/203

303E_0098 Config security level register (CSU_CSL38) 32 R/W 0033_0033h 7.3.1/203

303E_009C Config security level register (CSU_CSL39) 32 R/W 0033_0033h 7.3.1/203

303E_00A0 Config security level register (CSU_CSL40) 32 R/W 0033_0033h 7.3.1/203

303E_00A4 Config security level register (CSU_CSL41) 32 R/W 0033_0033h 7.3.1/203

303E_00A8 Config security level register (CSU_CSL42) 32 R/W 0033_0033h 7.3.1/203

303E_00AC Config security level register (CSU_CSL43) 32 R/W 0033_0033h 7.3.1/203

303E_00B0 Config security level register (CSU_CSL44) 32 R/W 0033_0033h 7.3.1/203

303E_00B4 Config security level register (CSU_CSL45) 32 R/W 0033_0033h 7.3.1/203

303E_00B8 Config security level register (CSU_CSL46) 32 R/W 0033_0033h 7.3.1/203

303E_00BC Config security level register (CSU_CSL47) 32 R/W 0033_0033h 7.3.1/203

303E_00C0 Config security level register (CSU_CSL48) 32 R/W 0033_0033h 7.3.1/203

303E_00C4 Config security level register (CSU_CSL49) 32 R/W 0033_0033h 7.3.1/203

303E_00C8 Config security level register (CSU_CSL50) 32 R/W 0033_0033h 7.3.1/203

Table continues on the next page...

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

202 NXP Semiconductors
Confidential Proprietary

CSU memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303E_00CC Config security level register (CSU_CSL51) 32 R/W 0033_0033h 7.3.1/203

303E_00D0 Config security level register (CSU_CSL52) 32 R/W 0033_0033h 7.3.1/203

303E_00D4 Config security level register (CSU_CSL53) 32 R/W 0033_0033h 7.3.1/203

303E_00D8 Config security level register (CSU_CSL54) 32 R/W 0033_0033h 7.3.1/203

303E_00DC Config security level register (CSU_CSL55) 32 R/W 0033_0033h 7.3.1/203

303E_00E0 Config security level register (CSU_CSL56) 32 R/W 0033_0033h 7.3.1/203

303E_00E4 Config security level register (CSU_CSL57) 32 R/W 0033_0033h 7.3.1/203

303E_00E8 Config security level register (CSU_CSL58) 32 R/W 0033_0033h 7.3.1/203

303E_00EC Config security level register (CSU_CSL59) 32 R/W 0033_0033h 7.3.1/203

303E_00F0 Config security level register (CSU_CSL60) 32 R/W 0033_0033h 7.3.1/203

303E_00F4 Config security level register (CSU_CSL61) 32 R/W 0033_0033h 7.3.1/203

303E_00F8 Config security level register (CSU_CSL62) 32 R/W 0033_0033h 7.3.1/203

303E_00FC Config security level register (CSU_CSL63) 32 R/W 0033_0033h 7.3.1/203

303E_0200 HP0 register (CSU_HP0) 32 R/W 0000_0000h 7.3.2/207

303E_0204 HP1 register (CSU_HP1) 32 R/W 0000_0000h 7.3.3/211

303E_0218 Secure access register (CSU_SA) 32 R/W 0000_0000h 7.3.4/211

303E_0358 HPCONTROL0 register (CSU_HPCONTROL0) 32 R/W 0000_0000h 7.3.5/215

303E_035C HPCONTROL1 register (CSU_HPCONTROL1) 32 R/W 0000_0000h 7.3.6/219

7.3.1 Config security level register (CSU_CSLn)

There are several config security level (CSU_CSL0-CSU_CSLn) registers. Each
CSU_CSL comprises of two fields, with each field used to determine the read and write
access permissions for a slave peripheral. These 8-bit fields for the first and second slaves
are located in b23-b16 and bits b7-b0, respectively.

The permission access table Table 7-1 shows the security levels and the csu_sec_level
signal levels corresponding to different values of the 8-bit CSU_CSL field for a given
slave.

Most slaves have unique CSL registers. Some slaves are grouped together in USB,
Timers, PowerUp, and Audio groups. The following table shows the allocation of the
CSL register per slave or a group of slave modules.

CSLn register CSL[2n] field (index) Slave module CSL[2n+1] field
(index)

Slave module

0 0 GPIO1 1 GPIO2

1 2 GPIO3 3 GPIO4

Table continues on the next page...

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 203
Confidential Proprietary

CSLn register CSL[2n] field (index) Slave module CSL[2n+1] field
(index)

Slave module

2 4 GPIO5 5 Reserved

3 6 ANA_TSENSOR 7 ANA_OSC

4 8 WDOG1 9 WDOG2

5 10 WDOG3 11 Reserved

6 12 SDMA2 13 GPT1

7 14 GPT2 15 GPT3

8 16 Reserved 17 ROMCP

9 18 LCDIF 19 IOMUXC

10 20 IOMUXC_GPR 21 OCOTP_CTRL

11 22 ANA_PLL 23 SNVS_HP

12 24 CCM 25 SRC

13 26 GPC 27 SEMAPHORE1

14 28 SEMAPHORE2 29 RDC

15 30 CSU 31 Reserved

16 32 DC_MST0 33 DC_MST1

17 34 DC_MST2 35 DC_MST3

18 36 Reserved 37 Reserved

19 38 PWM1 39 PWM2

20 40 PWM3 41 PWM4

21 42 System_Counter_RD 43 System_Counter_CMP

22 44 System_Counter_CTRL 45 Reserved

23 46 GPT6 47 GPT5

24 48 GPT4 49 Reserved

25 50 Reserved 51 Reserved

26 52 Reserved 53 Reserved

27 54 Reserved 55 Reserved

28 56 TZASC 57 Reserved

29 58 Reserved 59 MTR

30 60 PERFMON1 61 PERFMON2

31 62 PLATFORM_CTRL 63 QoSC

32 64 MIPI_PHY 65 MIPI_DSI

33 66 I2C1 67 I2C2

34 68 I2C3 69 I2C4

35 70 UART4 71 MIPI_CSI1

36 72 MIPI_CSI_PHY1 73 CSI1

37 74 MU_A 75 MU_B

38 76 SEMAPHORE_HS 77 Reserved for SDMA2
internal memory

39 78 SAI1 79 Reserved

40 80 SAI6 81 SAI5

Table continues on the next page...

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

204 NXP Semiconductors
Confidential Proprietary

CSLn register CSL[2n] field (index) Slave module CSL[2n+1] field
(index)

Slave module

41 82 SAI4 83 Reserved for SDMA2
internal memory

42 84 uSDHC1 85 uSDHC2

43 86 MIPI_CSI2 87 MIPI_CSI_PHY2

44 88 CSI2 89 Reserved for SDMA2
internal memory

45 90 SPBA2 91 QSPI

46 92 Reserved 93 SDMA1

47 94 ENET1 95 Reserved

48 96 Reserved for SDMA
internal memory

97 SPDIF1

49 98 eCSPI1 99 eCSPI2

50 100 eCSPI3 101 Reserved

51 102 UART1 103 Reserved for SDMA
internal registers

52 104 UART3 105 UART2

53 106 SPDIF2 107 SAI2

54 108 SAI3 109 Reserved

55 110 Reserved for SDMA
internal registers

111 SPBA1

56 112 module_en_glbl[0] 113 module_en_glbl[0]

57 114 CAAM 115 Reserved

58 116 Reserved 117 Reserved

59 118 Reserved 119 Reserved

60 120 Reserved 121 Reserved

61 122 Reserved 123 Reserved

62 124 Reserved 125 Reserved

63 126 Reserved 127 Reserved

Address: 303E_0000h base + 0h offset + (4d × i), where i=0d to 63d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

Reserved

LO
C

K
_S

1

N
S

W
_S

1

N
U

W
_S

1

S
S

W
_S

1

S
U

W
_S

1

N
S

R
_S

1

N
U

R
_S

1

S
S

R
_S

1

S
U

R
_S

1

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

Reserved

LO
C

K
_S

2

N
S

W
_S

2

N
U

W
_S

2

S
S

W
_S

2

S
U

W
_S

2

N
S

R
_S

2

N
U

R
_S

2

S
S

R
_S

2

S
U

R
_S

2

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 205
Confidential Proprietary

CSU_CSLn field descriptions

Field Description

31–25
-

This field is reserved.
Reserved.

24
LOCK_S1

The lock bit corresponding to the first slave. It is written by the secure software.

0 Not locked. The bits 16-23 can be written by the software.
1 The bits 16-23 are locked and can't be written by the software.

23
NSW_S1

Non-secure supervisor write access control for the first slave

0 The non-secure supervisor write access is disabled for the first slave.
1 The non-secure supervisor write access is enabled for the first slave

22
NUW_S1

Non-secure user write access control for the first slave

0 The non-secure user write access is disabled for the first slave.
1 The non-secure user write access is enabled for the first slave.

21
SSW_S1

Secure supervisor write access control for the first slave

0 The secure supervisor write access is disabled for the first slave.
1 The secure supervisor write access is enabled for the first slave.

20
SUW_S1

Secure user write access control for the first slave

0 The secure user write access is disabled for the first slave.
1 The secure user write access is enabled for the first slave.

19
NSR_S1

Non-secure supervisor read access control for the first slave

0 The non-secure supervisor read access is disabled for the first slave.
1 The non-secure supervisor read access is enabled for the first slave.

18
NUR_S1

Non-secure user read access control for the first slave

0 The non-secure user read access is disabled for the first slave.
1 The non-secure user read access is enabled for the first slave.

17
SSR_S1

Secure supervisor read access control for the first slave

0 The secure supervisor read access is disabled for the first slave.
1 The secure supervisor read access is enabled for the first slave.

16
SUR_S1

Secure user read access control for the first slave

0 The secure user read access is disabled for the first slave.
1 The secure user read access is enabled for the first slave.

15–9
-

This field is reserved.
Reserved

8
LOCK_S2

The lock bit corresponding to the second slave. It is written by the secure software.

0 Not locked. Bits 7-0 can be written by the software.
1 Bits 7-0 are locked and cannot be written by the software

7
NSW_S2

Non-secure supervisor write access control for the second slave

0 The non-secure supervisor write access is disabled for the second slave.
1 The non-secure supervisor write access is enabled for the second slave.

Table continues on the next page...

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

206 NXP Semiconductors
Confidential Proprietary

CSU_CSLn field descriptions (continued)

Field Description

6
NUW_S2

Non-secure user write access control for the second slave

0 The non-secure user write access is disabled for the second slave.
1 The non-secure user write access is enabled for the second slave.

5
SSW_S2

Secure supervisor write access control for the second slave

0 The secure supervisor write access is disabled for the second slave.
1 The secure supervisor write access is enabled for the second slave.

4
SUW_S2

Secure user write access control for the second slave

0 The secure user write access is disabled for the second slave.
1 The secure user write access is enabled for the second slave.

3
NSR_S2

Non-secure supervisor read access control for the second slave

0 The non-secure supervisor read access is disabled for the second slave.
1 The non-secure supervisor read access is enabled for the second slave.

2
NUR_S2

Non-secure user read access control for the second slave

0 The non-secure user read access is disabled for the second slave.
1 The non-secure user read access is enabled for the second slave.

1
SSR_S2

Secure supervisor read access control for the second slave

0 The secure supervisor read access is disabled for the second slave.
1 The secure supervisor read access is enabled for the second slave.

0
SUR_S2

Secure user read access control for the second slave

0 The secure user read access is disabled for the second slave.
1 The secure user read access is enabled for the second slave.

7.3.2 HP0 register (CSU_HP0)

The SCU_HP0 and SCU_HP1 registers can be programmed to determine the privilege
(either the user mode or the supervisor mode) for 17 different master groups. The
privilege of the particular master group can be overridden by muxing it with the
corresponding bit in this register.

The even bit positions (CSU_HP0[30,28,...0] and CSU_HP1[0]) in the registers hold the
privilege indicator bits, while the odd bit positions (CSU_HP0[31,29,...,1] and
CSU_HP1[1]) contain the lock bits which enable/disable writing to the corresponding
privilege indicator bits.

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 207
Confidential Proprietary

Address: 303E_0000h base + 200h offset = 303E_0200h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
L_

S
D

M
A

2

H
P

_S
D

M
A

2

L_
D

A
P

HP_
DAP

L_
H

U
G

O

H
P

_H
U

G
O

L_
U

S
D

H
C

3

H
P

_U
S

D
H

C
3

L_
U

S
D

H
C

2

H
P

_U
S

D
H

C
2

L_
U

S
D

H
C

1

H
P

_U
S

D
H

C
1

L_
E

N
E

T
1

H
P

_E
N

E
T

1

L_
A

P
B

H
D

M
A

_
R

A
W

N
A

N
D

H
P

_A
P

B
H

D
M

A
_

R
A

W
N

A
N

D

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

L_
G

P
U

HP_
GPU

L_
V

P
U

_D
ec

od
er

s

H
P

_V
P

U
_D

ec
od

er
s

L_
T

P
S

M
P

_P
C

IE
_

C
T

R
L1

_C
T

R
L2

H
P

_T
P

S
M

P
_P

C
IE

_
C

T
R

L1
_C

T
R

L2

L_
U

S
B

1_
U

S
B

2

H
P

_U
S

B
1_

U
S

B
2

L_
LC

D
IF

_C
S

1_
C

S
2

H
P

_L
C

D
IF

_C
S

1_
C

S
2

L_
S

D
M

A
1

H
P

_S
D

M
A

1

L_
M

4 HP_
M4

Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CSU_HP0 field descriptions

Field Description

31
L_SDMA2

Lock bit set by the TZ software for the HP_SDMA2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

30
HP_SDMA2

Indicates the privilege/user mode for the SDMA2

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

29
L_DAP

Lock bit set by the TZ software for the HP_DAP

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

28
HP_DAP

Indicates the privilege/user mode for the DAP

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

27
L_HUGO

Lock bit set by the TZ software for the HP_HUGO

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

26
HP_HUGO

Indicates the privilege/user mode for the HUGO

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

25
L_USDHC3

Lock bit set by the TZ software for the HP_USDHC3

Table continues on the next page...

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

208 NXP Semiconductors
Confidential Proprietary

CSU_HP0 field descriptions (continued)

Field Description

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

24
HP_USDHC3

Indicates the privilege/user mode for the USDHC3

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

23
L_USDHC2

Lock bit set by the TZ software for the HP_USDHC2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

22
HP_USDHC2

Indicates the privilege/user mode for the USDHC2

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

21
L_USDHC1

Lock bit set by the TZ software for the HP_USDHC1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

20
HP_USDHC1

Indicates the privilege/user mode for the USDHC1

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

19
L_ENET1

Lock bit set by the TZ software for the HP_ENET1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

18
HP_ENET1

Indicates the privilege/user mode for the ENET

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

17
L_APBHDMA_

RAWNAND

Lock bit set by the TZ software for the HP_APBHDMA_RAWNAND

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

16
HP_APBHDMA_

RAWNAND

Indicates the privilege/user mode for the RawNAND

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

15
L_GPU

Lock bit set by the TZ software for the HP_GPU

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

14
HP_GPU

Indicates the privilege/user mode for the GPU

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

13
L_VPU_
Decoders

Lock bit set by the TZ software for the HP_VPU_Decoders

Table continues on the next page...

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 209
Confidential Proprietary

CSU_HP0 field descriptions (continued)

Field Description

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

12
HP_VPU_
Decoders

Indicates the privilege/user mode for the VPU

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

11
L_TPSMP_

PCIE_CTRL1_
CTRL2

Lock bit set by the TZ software for the HP_TPSMP_PCIE_CTRL1_CTRL2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

10
HP_TPSMP_

PCIE_CTRL1_
CTRL2

Indicates the privilege/user mode for the PCIE

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

9
L_USB1_USB2

Lock bit set by the TZ software for the HP_USB1_USB2.

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

8
HP_USB1_USB2

Indicates the privilege/user mode for the USB

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

7
L_LCDIF_CS1_

CS2

Lock bit set by the TZ software for the HP_LCDIF_CS1_CS2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

6
HP_LCDIF_CS1_

CS2

Indicates the privilege/user mode for the LCDIF

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

5
L_SDMA1

Lock bit set by the TZ software for the HP_SDMA1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

4
HP_SDMA1

Indicates the privilege/user mode for the SDMA1

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

3
L_M4

Lock bit set by the TZ software for the HP_M4

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

2
HP_M4

Indicates the privilege/user mode for the M4

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

- This field is reserved.

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

210 NXP Semiconductors
Confidential Proprietary

7.3.3 HP1 register (CSU_HP1)

The SCU_HP1 register is an expansion of the SCU_HP0 register. See the SCU_HP0
register definition.

Address: 303E_0000h base + 204h offset = 303E_0204h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

Reserved
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

Reserved

L_
C

A
A

M

H
P

_C
A

A
M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CSU_HP1 field descriptions

Field Description

31–2
-

This field is reserved.
Reserved

1
L_CAAM

Lock bit set by the TZ software for the CAAM

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

0
HP_CAAM

Indicates the privilege/user mode for the CAAM

0 User mode for the corresponding master
1 Supervisor mode for the corresponding master

7.3.4 Secure access register (CSU_SA)

The secure access register can be programmed to specify the access policy (either secure
or non-secure) for up to 16 different masters. This register is used to set the access policy
for the type-1 masters which are not capable of setting the policy by themselves.

The 16 even bit positions (CSU_SA[30,28,...,0]) in the register hold the policy indicator
bits, while the odd bit positions (CSU_SA[31,29,...,1]) contain lock bits which enable/
disable writing to the corresponding policy indicator bits.

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 211
Confidential Proprietary

Address: 303E_0000h base + 218h offset = 303E_0218h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
L_

S
D

M
A

2

N
S

A
_S

D
M

A
2

L_
D

A
P

N
S

A
_D

A
P

L_
H

U
G

O

N
S

A
_H

U
G

O

L_
U

S
D

H
C

3

N
S

A
_U

S
D

H
C

3

L_
U

S
D

H
C

2

N
S

A
_U

S
D

H
C

2

L_
U

S
D

H
C

1

N
S

A
_U

S
D

H
C

1

L_
E

N
E

T
1

N
S

A
_E

N
E

T
1

L_
A

P
B

H
D

M
A

_
R

A
W

N
A

N
D

N
S

A
_A

P
B

H
D

M
A

_
R

A
W

N
A

N
D

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

L_
G

P
U

N
S

A
_G

P
U

L_
V

P
U

_D
ec

od
er

s

N
S

A
_V

P
U

_D
ec

od
er

s

L_
T

P
S

M
P

_P
C

IE
_

C
T

R
L1

_C
T

R
L2

N
S

A
_T

P
S

M
P

_P
C

IE
_

C
T

R
L1

_C
T

R
L2

L_
U

S
B

1_
U

S
B

2

N
S

A
_U

S
B

1_
U

S
B

2

L_
LC

D
IF

_C
S

1_
C

S
2

N
S

A
_L

C
D

IF
_C

S
1_

C
S

2

L_
S

D
M

A
1

N
S

A
_S

D
M

A
1

L_
M

4

N
S

A
_M

4

Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CSU_SA field descriptions

Field Description

31
L_SDMA2

Lock bit set by the TZ software for the NSA_SDMA2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

30
NSA_SDMA2

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the SDMA2

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

29
L_DAP

Lock bit set by the TZ software for the NSA_DAP

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

28
NSA_DAP

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the DAP

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

27
L_HUGO

Lock bit set by the TZ software for the NSA_HUGO

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

26
NSA_HUGO

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the HUGO

Table continues on the next page...

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

212 NXP Semiconductors
Confidential Proprietary

CSU_SA field descriptions (continued)

Field Description

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

25
L_USDHC3

Lock bit set by the TZ software for the NSA_USDHC3

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

24
NSA_USDHC3

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the USDHC3

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

23
L_USDHC2

Lock bit set by the TZ software for the NSA_USDHC2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

22
NSA_USDHC2

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the USDHC2

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

21
L_USDHC1

Lock bit set by the TZ software for the NSA_USDHC1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

20
NSA_USDHC1

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the USDHC1

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

19
L_ENET1

Lock bit set by the TZ software for the NSA_ENET1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

18
NSA_ENET1

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the ENET

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

17
L_APBHDMA_

RAWNAND

Lock bit set by the TZ software for the NSA_APBHDMA_RAWNAND

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

16
NSA_

APBHDMA_
RAWNAND

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the RawNAND

Table continues on the next page...

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 213
Confidential Proprietary

CSU_SA field descriptions (continued)

Field Description

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

15
L_GPU

Lock bit set by the TZ software for the NSA_GPU

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

14
NSA_GPU

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the GPU

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

13
L_VPU_
Decoders

Lock bit set by the TZ software for the NSA_VPU_Decoders

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

12
NSA_VPU_
Decoders

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the VPU

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

11
L_TPSMP_

PCIE_CTRL1_
CTRL2

Lock bit set by the TZ software for the NSA_TPSMP_PCIE_CTRL1_CTRL2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

10
NSA_TPSMP_
PCIE_CTRL1_

CTRL2

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the PCIE

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

9
L_USB1_USB2

Lock bit set by the TZ software for the NSA_USB1_USB2.

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

8
NSA_USB1_

USB2

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the USB

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

7
L_LCDIF_CS1_

CS2

Lock bit set by the TZ software for the NSA_LCDIF_CS1_CS2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

6
NSA_LCDIF_

CS1_CS2

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the LCDIF

Table continues on the next page...

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

214 NXP Semiconductors
Confidential Proprietary

CSU_SA field descriptions (continued)

Field Description

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

5
L_SDMA1

Lock bit set by the TZ software for the NSA_SDMA1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

4
NSA_SDMA1

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the SDMA1

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

3
L_M4

Lock bit set by the TZ software for the NSA_M4

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

2
NSA_M4

Non-secure access policy indicator bit

Indicates the access type (secure/non-secure) to the M4

0 Secure access for the corresponding type-1 master
1 Non-secure access for the corresponding type-1 master

- This field is reserved.

7.3.5 HPCONTROL0 register (CSU_HPCONTROL0)

The HP control registers CSU_HPCONTROL0 and CSU_HPCONTROL1 enable the
CSU to control the USER/SUPERVISOR mode state for the specified masters. The
register toggles the csu_hprot1 output signal for the system masters. The two possible
sources for the csu_hprot1 output are:

1. The hprot1 input signal
2. The corresponding bit in the HP register

The even bits in the registers are used to lock the control bit values.

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 215
Confidential Proprietary

Address: 303E_0000h base + 358h offset = 303E_0358h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
L_

S
D

M
A

2

H
P

C
_S

D
M

A
2

L_
D

A
P

H
P

C
_D

A
P

L_
H

U
G

O

H
P

C
_H

U
G

O

L_
U

S
D

H
C

3

H
P

C
_U

S
D

H
C

3

L_
U

S
D

H
C

2

H
P

C
_U

S
D

H
C

2

L_
U

S
D

H
C

1

H
P

C
_U

S
D

H
C

1

L_
E

N
E

T
1

H
P

C
_E

N
E

T
1

L_
A

P
B

H
D

M
A

_
R

A
W

N
A

N
D

H
P

C
_A

P
B

H
D

M
A

_
R

A
W

N
A

N
D

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

L_
G

P
U

H
P

C
_G

P
U

L_
V

P
U

_D
ec

od
er

s

H
P

C
_V

P
U

_D
ec

od
er

s

L_
T

P
S

M
P

_P
C

IE
_

C
T

R
L1

_C
T

R
L2

H
P

C
_T

P
S

M
P

_P
C

IE
_

C
T

R
L1

_C
T

R
L2

L_
U

S
B

1_
U

S
B

2

H
P

C
_U

S
B

1_
U

S
B

2

L_
LC

D
IF

_C
S

1_
C

S
2

H
P

C
_L

C
D

IF
_C

S
1_

C
S

2

L_
S

D
M

A
1

H
P

C
_S

D
M

A
1

L_
M

4

H
P

C
_M

4

Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CSU_HPCONTROL0 field descriptions

Field Description

31
L_SDMA2

Lock bit set by the TZ software for the HPC_SDMA2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

30
HPC_SDMA2

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the
SDMA2

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

29
L_DAP

Lock bit set by the TZ software for the HPC_DAP

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

28
HPC_DAP

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the DAP

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

27
L_HUGO

Lock bit set by the TZ software for the HPC_HUGO

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

26
HPC_HUGO

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the
HUGO

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

Table continues on the next page...

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

216 NXP Semiconductors
Confidential Proprietary

CSU_HPCONTROL0 field descriptions (continued)

Field Description

25
L_USDHC3

Lock bit set by the TZ software for the HPC_USDHC3

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

24
HPC_USDHC3

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the
USDHC3

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

23
L_USDHC2

Lock bit set by the TZ software for the HPC_USDHC2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

22
HPC_USDHC2

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the
USDHC2

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

21
L_USDHC1

Lock bit set by the TZ software for the HPC_USDHC1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

20
HPC_USDHC1

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the
USDHC1

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

19
L_ENET1

Lock bit set by the TZ software for the HPC_ENET1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

18
HPC_ENET1

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the ENET

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

17
L_APBHDMA_

RAWNAND

Lock bit set by the TZ software for the HPC_APBHDMA_RAWNAND

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

16
HPC_

APBHDMA_
RAWNAND

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of thee
RawNAND

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

15
L_GPU

Lock bit set by the TZ software for the HPC_GPU

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

14
HPC_GPU

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the GPU

Table continues on the next page...

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 217
Confidential Proprietary

CSU_HPCONTROL0 field descriptions (continued)

Field Description

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

13
L_VPU_
Decoders

Lock bit set by the TZ software for the HPC_VPU_Decoders

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

12
HPC_VPU_
Decoders

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the VPU

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

11
L_TPSMP_

PCIE_CTRL1_
CTRL2

Lock bit set by the TZ software for the HPC_TPSMP_PCIE_CTRL1_CTRL2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

10
HPC_TPSMP_
PCIE_CTRL1_

CTRL2

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the PCIE

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

9
L_USB1_USB2

Lock bit set by the TZ software for the HPC_USB1_USB2.

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

8
HPC_USB1_

USB2

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the USB

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

7
L_LCDIF_CS1_

CS2

Lock bit set by the TZ software for the HPC_LCDIF_CS1_CS2

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

6
HPC_LCDIF_

CS1_CS2

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the
LCDIF

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

5
L_SDMA1

Lock bit set by the TZ software for the HPC_SDMA1

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

4
HPC_SDMA1

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the
SDMA1

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

3
L_M4

Lock bit set by the TZ software for the HPC_M4

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

Table continues on the next page...

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

218 NXP Semiconductors
Confidential Proprietary

CSU_HPCONTROL0 field descriptions (continued)

Field Description

2
HPC_M4

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the M4

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

- This field is reserved.

7.3.6 HPCONTROL1 register (CSU_HPCONTROL1)

The SCU_HPCONTROL1 register is an expansion of the SCU_HPCONTROL0 register.
See the SCU_HPCONTROL0 register definition.

Address: 303E_0000h base + 35Ch offset = 303E_035Ch

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

-

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

-

L_
C

A
A

M

H
P

C
_C

A
A

M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CSU_HPCONTROL1 field descriptions

Field Description

31–2
-

Reserved

1
L_CAAM

Lock bit set by the TZ software for the CAAM.

0 No lock—the adjacent (next lower) bit can be written by the software.
1 Lock—the adjacent (next lower) bit can't be written by the software.

0
HPC_CAAM

Determines whether the register value of the corresponding HP field is passed as the hprot[1] of the
CAAM.

0 The hprot1 input signal value is routed to the csu_hprot1 output for the corresponding master.
1 The HP register bit is routed to the csu_hprot1 output for the corresponding master.

Chapter 7 Central Security Unit (CSU)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 219
Confidential Proprietary

Programmable Registers

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

220 NXP Semiconductors
Confidential Proprietary

Chapter 8
Resource Domain Controller (RDC)

8.1 Overview
The Resource Domain Controller (RDC) provides robust support for the isolation of
destination memory mapped locations such as peripherals and memory to a single core, a
bus master, or set of cores and bus masters.

Many of today's processors have multiple cores for increased performance and flexibility.
In some cases, the cores serve different functions (e.g. user level applications versus real
time machine control) and in such cases the software for each core may be developed by
different providers.

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 221
Confidential Proprietary

Figure 8-1. Dedicated and Shared Peripherals

For efficiency reasons the code on the cores may share chip resources such as peripherals
and memory. The sharing of chip resources between the somewhat independent
processing domains allows for the opportunity of data collisions where information
stored in peripherals or memory by a process on one core is overwritten by software
running on another core. Without careful collaboration between the two operating
systems inadvertent malfunction or degradation in performance may result.

The RDC provides a mechanism to allow boot time configuration code to establish
resource domains by assigning cores, bus masters, peripherals and memory regions to
domain identifiers. Once configured, bus transactions are monitored to restrict accesses
initiated by cores and bus masters to their respective peripherals and memory.

For shared peripherals, the RDC provides a semaphore-based locking mechanism to
provide for temporary exclusivity while the domain software uses the peripheral. Once
the software of one domain has finished the task and finished with the peripheral then it
may release the semaphore making the peripheral available to the other domain.

8.1.1 Features

Resource domain subsystem has the following features:

Overview

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

222 NXP Semiconductors
Confidential Proprietary

• Assignment of cores, bus masters, peripherals, and memory regions to a resource
domain

• Fixed memory resolution of 128 Bytes for small address spaces and 4 KB for large
address spaces

• Four resource domain identifiers
• Memory read/write access controls for each resource domain and region
• Optional semaphore-based, hardware-enforced exclusive access of shared peripherals

to a resource domain
• Prioritized access permissions for overlapping memory regions
• Automatic restoration of resource domain access permissions to memory regions in

the power-down domain

8.2 Functional Description
The RDC is the central location for creation of isolated resource domains and for the
enablement of semaphore-based access also known as “safe sharing”. Configuration
software assigns one of four resource domain identifiers to each core and bus master, and
allocates each memory region and peripheral to one or more resource domains.

Memory Read or Write access privileges for each resource domain are declared for each
memory region. In addition, the software configuration determines which shared
peripherals (those peripherals allocated to more than one domain) require safe sharing by
setting the semaphore-required configuration for each peripheral.

The RDC configuration information is sent to the fabric ports, memories gaskets,
semaphore controller, and peripherals to control access based on domain assignments.
The fabric uses the domain identifier associated with each port to include this information
along with the bus transaction. When the slave gasket encounters a bus transaction it
makes a comparison of the transaction domain ID to the RDC-provided list of allowed
domains. If the transaction domain ID is on the list then access may be permitted.

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 223
Confidential Proprietary

D0 Core

main
fabric

DSEC

DEXSC

TZASC

AHB Slave

OCRAM

DDRC

CAAM
Secure RAM

switch
fabric

DEXSC

DEXSC

AIPS-TZ

SEMA42
(Shared)

D0 Periph

D1 Periph

D1 Core switch
fabric

Master to Domain Assignment

Gate
Locks

Peripheral Permissions

Memory Region Bounds

Allowed
Domains

SPBA Periph

RDC
(D0 TZ
Locked)

Figure 8-2. Example RDC Connections

For shared peripherals, RDC permits more than one domain access to a single peripheral.
RDC also provides three ways to control synchronized use of shared peripherals. These
methods include hardware-enforced synchronization, software-based semaphores, or no
synchronization. The latter may be suitable for well-tuned multi-core operating systems
that handle synchronization in the core platform, for instance.

For hardware-enforced synchronization, also known as "safe sharing", ownership of the
peripheral must be claimed in the semaphore controller before access is allowed to the
shared peripheral. The "semaphore required" bit (SREQ) is set in the PDAP register
corresponding to the shared peripheral which causes the RDC to require that a semaphore
is obtained by a domain before access by that domain to the shared peripheral is allowed.
During the time that the domain has the semaphore in possession its bus masters have
exclusive access to the peripheral.

Functional Description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

224 NXP Semiconductors
Confidential Proprietary

When the semaphore is released then no domain masters have access until the semaphore
is obtained again. When the SREQ is set, RDC does not allow masters to obtain
semaphores of peripherals to which it is not allocated; the master must have designated
access in the D-registers of the corresponding PDAP register (e.g. D3R bit set for
Domain 3 access of the shared peripheral). There is a one-to-one mapping between the
semaphore controller gate and the resource domain controller peripheral. The mapping of
PDAP registers and peripherals can be found in the Peripheral Map section of the RDC
chapter.

8.2.1 Domain ID

The RDC provides for an isolation of domain resources by use of a identifier called the
Domain ID (DID). A core and its resources including memory, bus masters, and
peripherals are all associated with a single DID. When software or a DMA attempts to
access a peripheral or memory, the corresponding bus transaction includes the DID along
with the other bus control information such as Read, Write, and privilege mode.

8.2.2 Resource Assignment

The RDC allows assignment of peripherals and memories to one or more domains while
each bus master or core is placed in one of four domains. The masters are assigned a
domain in the MDA register. A peripheral is given R/W access permissions to each
domain in the PDAP register. Memory regions are bound by address space in start and
end registers, the MRSA and MREA. Each memory region is assigned one or more
allowed domains and R/W permissions in the MRC control register. Memory regions
must be enabled before the permissions are active. Otherwise the permissions are not
restricted.

The RDC itself should be isolated to ensure that only a trustworthy resource manager can
configure the RDC registers. This process may either be present initially, during secure
boot, or during the runtime in the secure world, for example. If the operating system does
not support a runtime trusted execution then during the secure boot process the RDC
configuration can be locked to prevent further modification after the operating systems
are running.

NOTE
The CCM supports multicore awareness based on resource
domain assignments programmed into the RDC. Refer to the
CCM chapter regarding the relationship between core resource
domains and their respective CCM resources. Failing to follow

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 225
Confidential Proprietary

the proper sequence when updating the resource domain
assignments of the core can result in clocks being inadvertently
gated.

8.2.3 Safe Sharing

For shared peripherals, the RDC can be configured to require a domain to obtain a
semaphore lock before access to the peripheral is allowed. This feature helps prevent
collisions from processes on separate cores that may want to use the same peripheral at
the same time. The RDC sends a list of eligible domains to the semaphore module for
each gate/peripheral. The eligible domains are those that are set in the peripheral domain
access permissions (PDAP) registers. There is a one-to-one correspondence between
semaphore gates and peripherals so each gate in the semaphore block represents a
peripheral. The RDC receives semaphore locks from the hardware semaphore module
(SEMA42). A semaphore lock is acquired when a core or bus master from a given
domain requests a lock for a particular gate. The semaphore module compares the
request's domain ID against the list of eligible domain IDs. If the domain ID is on the list
and the lock is available then the lock is set and a signal is sent back to the RDC module
indicating a lock has been acquired for a particular gate and to which domain ID the lock
belongs. The RDC then restricts access to the corresponding peripheral to only
transactions originating from the domain that has the lock. Another domain, though on
the shared list to access the peripheral, must then wait until the lock is released before
acquiring the lock and gaining access to the peripheral. To enable this feature of
hardware enforcement for the semaphore locks, the SREQ bit is set in the RDC resource
register.

If the SREQ is set, then when a process determines it needs a shared peripheral, it must
first lock the resource in the semaphore module. Once the resource is locked, the
semaphore module sends a signal to the RDC indicating the domain has access to the
resource. The RDC will then set the access permissions to allow that domain access to the
peripheral.

For a domain to acquire a lock on a peripheral, the domain must have been assigned to
the peripheral in the RDC Peripheral Domain Access Permissions register (PDAP). The
semaphore module only allows safe-sharing locks for those domains that are assigned to
the peripheral. The semaphore module does not consider the access type (Read or Write)
when allowing domains to acquire locks.

The SEMA42 module implements hardware-enforced semaphores as an IPS-mapped
slave peripheral device. The feature set includes:

Functional Description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

226 NXP Semiconductors
Confidential Proprietary

• Module definition supporting 64 hardware-enforced gates in a multi-processor
configuration, where up to 15 processors can be supported; cpX is meant to represent
core processor X

• Gates appear as an n-entry byte-size array with read and write accesses (n = 16,
32, 64).

• Processors lock gates by writing "Master_index" to the appropriate gate and
must read back the gate value to verify the lock operation was successful.
The Master_index value for the processors can be found in the Master Index
Allocation table, which can be found in the AIPSTZ block.. Also note that
after locking, the gate register contains the master_id value of the locking
processor (in bits [3:0]), and also the value of the locking domain (in bits
[5:4]).

• Once locked, the gate is unlocked by a write of zeroes from the locking
processor.

• The number of implemented gates is specified by a hardware configuration
define.

• Each hardware gate appears as a 16-state, 4-bit state machine.

• 16-state implementation

if gate = 0x0, then state = unlocked
if gate = 0x1, then state = locked by processor (master_index) 0
if gate = 0x2, then state = locked by processor (master_index) 1
…
if gate = 0xF, then state = locked by processor (master_index) 14

• Uses the logical bus master number (master_index) as a reference attribute
plus the specified data patterns to validate all write operations.

• Once locked, the gate can (and must) be unlocked by a write of zeroes from
the locking processor.

• Secure reset mechanisms are supported to clear the contents of individual gates,
as well as a clear_all capability.

• Memory-mapped IPS slave peripheral platform module

• Interface to the IPS bus for programming-model accesses

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 227
Confidential Proprietary

8.2.4 Resource Domain Control and Security Considerations

Conceptually, the RDC configuration is independent of the processor privilege mode and
security domain. It is intended to allow for isolation between core processing
environments to prevent collisions and increase reliability. Access between resource
domains is mutually exclusive and each domain should be in control of its own privilege
modes and access rights.

However, it is important to realize multi-core processors may have a multiple resource
domains but only one overarching security domain. Chip security controls reside in one
resource domain. In this configuration, a domain can affect at least one level of access
privileges in the other domain. This may be acceptable but clarity and care is needed to
ensure expected functionality.

Figure 8-3. Access Control to Memory

Therefore, access to the security controls should be restricted to the most trustworthy
operating mode of the core and privilege levels should be coordinated to ensure that
shared peripherals and memory regions are accessible by both cores. For instance, if a
memory region is designated for secure accesses then all domain masters that share that
region must have secure privileges.

Functional Description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

228 NXP Semiconductors
Confidential Proprietary

8.3 Modes of Operation
The RDC provides access controls to the resource domain subsystem. When the device is
in a low power mode then some memory regions in the subsystem may be powered off.
RDC responds to the impacted memory regions by automatically reconfiguring the
memory regions once power returns and blocking access to those memory regions until
the reconfiguration process is complete.

8.3.1 Low Power Modes

The RDC loads configuration information for memory regions (MRSA, MRSE, MRC)
into access control mechanisms (gaskets) at the memory interface. The location of this
configuration information may reside inside power domains that lose power during sleep
modes for energy savings. To restore configuration information upon return from sleep
mode, the RDC receives a global power control signal indicating power is restored. The
RDC then automatically reconfigures the memory regions with the configuration
information.

During reconfiguration, access is blocked to the previously powered down memories.
When the RDC completes reconfiguration it issues an interrupt and allows access to the
memory regions. Only the powered down regions are blocked during the reconfiguration.
Memory regions in the "always-on" power domain (still powered during sleep mode)
remain available according to the programmed access rights. If no memory regions were
enabled then the powered down regions are available immediately when power is
restored.

The figure below shows the Global Power Control signal which RDC uses to invalidate
the configuration upon deassertion and to restore the configuration when re-asserted. The
configuration is valid and bus transactions allowed once the memory regions have been
restored.

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 229
Confidential Proprietary

Global Power
Control

RDC

Higher Power
Memory ON

Configuration
Invalid

Memory Region
Restoration Interface

Memory Regions

Higher Power
Memory

System Bus

Figure 8-4. Memory Restoration Signaling

8.4 Programming Interface
This section provides product specific details describing the mapping of resources -
peripherals, bus masters, and memory regions - to corresponding resource domain
controls RDC registers.

The RDC and RDC_SEMA42 register maps are combined in this chapter. The base
address for the one RDC map and two SEMA42 maps are each separated by 4KB. While
there are two SEMA42 submodules and therefore two sets of SEMA42 registers, this
chapter describes one. Please refer to the peripheral memory map for the base addresses
of the RDC and SEMA42 modules.

8.4.1 Master Assignment Registers

Table 8-1. Master Assignment Mapping

Master RDC MDA Register

Quad A53 RDC_MDA0

Table continues on the next page...

Programming Interface

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

230 NXP Semiconductors
Confidential Proprietary

Table 8-1. Master Assignment Mapping (continued)

Master RDC MDA Register

M7 RDC_MDA1

Reserved RDC_MDA2

SDMA3 (p) RDC_MDA3

Reserved RDC_MDA4

LCDIF RDC_MDA5

ISI RDC_MDA6

SDMA3 (b) RDC_MDA7

Coresight RDC_MDA8

DAP RDC_MDA9

CAAM RDC_MDA10

SDMA1 (p) RDC_MDA11

SDMA1 (b) RDC_MDA12

APBHDMA RDC_MDA13

NAND RDC_MDA14

uSDHC1 RDC_MDA15

uSDHC2 RDC_MDA16

uSDHC3 RDC_MDA17

GPU RDC_MDA18

USB1 RDC_MDA19

Reserved RDC_MDA20

TESTPORT RDC_MDA21

ENET1_TX RDC_MDA22

ENET1_RX RDC_MDA23

SDMA2 (p) RDC_MDA24

SDMA2 (b) RDC_MDA24

SDMA2 to SPBA2 RDC_MDA24

SDMA3 to SPBA2 RDC_MDA25

SDMA1 to SPBA1 RDC_MDA26

8.4.2 Peripheral Mapping

Each peripheral has a corresponding resource domain assignment register in the RDC and
semaphore lock register in the RDC_SEMA42 module. The following table shows
allocation of the RDC PDAP and RDC_SEMA4 GATE registers for peripheral resource
domain assignment.

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 231
Confidential Proprietary

NOTE
Access control of the RDC registers can be programmed using
the respective PDAP register. The default setting of the PDAP
register for the RDC allows access from all domains. Use
caution when restricting access of the RDC registers to avoid
conditions where access to the RDC registers is needed but no
master is assigned to a domain with access rights to the RDC.

Table 8-2. RDC Peripheral Mapping

Peripheral RDC PDAP register RDC_SEMA42 block/gate register

GPIO1 RDC_PDAP00 SEMA42 B1 / G0

GPIO2 RDC_PDAP01 SEMA42 B1 / G1

GPIO3 RDC_PDAP02 SEMA42 B1 / G2

GPIO4 RDC_PDAP03 SEMA42 B1 / G3

GPIO5 RDC_PDAP04 SEMA42 B1 / G4

Reserved RDC_PDAP05 SEMA42 B1 / G5

ANA_TSENSOR RDC_PDAP06 SEMA42 B1 / G6

ANA_OSC RDC_PDAP07 SEMA42 B1 / G7

WDOG1 RDC_PDAP08 SEMA42 B1 / G8

WDOG2 RDC_PDAP09 SEMA42 B1 / G9

WDOG3 RDC_PDAP10 SEMA42 B1 / G10

SDMA3 RDC_PDAP11 SEMA42 B1 / G11

SDMA2 RDC_PDAP12 SEMA42 B1 / G12

GPT1 RDC_PDAP13 SEMA42 B1 / G13

GPT2 RDC_PDAP14 SEMA42 B1 / G14

GPT3 RDC_PDAP15 SEMA42 B1 / G15

Reserved RDC_PDAP16 SEMA42 B1 / G16

ROMCP RDC_PDAP17 SEMA42 B1 / G17

Reserved RDC_PDAP18 SEMA42 B1 / G18

IOMUXC RDC_PDAP19 SEMA42 B1 / G19

IOMUXC_GPR RDC_PDAP20 SEMA42 B1 / G20

OCOTP_CTRL RDC_PDAP21 SEMA42 B1 / G21

ANA_PLL RDC_PDAP22 SEMA42 B1 / G22

SNVS_HP RDC_PDAP23 SEMA42 B1 / G23

CCM RDC_PDAP24 SEMA42 B1 / G24

SRC RDC_PDAP25 SEMA42 B1 / G25

GPC RDC_PDAP26 SEMA42 B1 / G26

SEMAPHORE1 RDC_PDAP27 SEMA42 B1 / G27

SEMAPHORE2 RDC_PDAP28 SEMA42 B1 / G28

RDC RDC_PDAP29 SEMA42 B1 / G29

Table continues on the next page...

Programming Interface

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

232 NXP Semiconductors
Confidential Proprietary

Table 8-2. RDC Peripheral Mapping (continued)

Peripheral RDC PDAP register RDC_SEMA42 block/gate register

CSU RDC_PDAP30 SEMA42 B1 / G30

Reserved RDC_PDAP31 SEMA42 B1 / G31

LCDIF RDC_PDAP32 SEMA42 B1 / G32

MIPI_DSI RDC_PDAP33 SEMA42 B1 / G33

ISI RDC_PDAP34 SEMA42 B1 / G34

MIPI_CSI RDC_PDAP35 SEMA42 B1 / G35

USB1 RDC_PDAP36 SEMA42 B1 / G36

Reserved RDC_PDAP37 SEMA42 B1 / G37

PWM1 RDC_PDAP38 SEMA42 B1 / G38

PWM2 RDC_PDAP39 SEMA42 B1 / G39

PWM3 RDC_PDAP40 SEMA42 B1 / G40

PWM4 RDC_PDAP41 SEMA42 B1 / G41

System_Counter_RD RDC_PDAP42 SEMA42 B1 / G42

System_Counter_CMP RDC_PDAP43 SEMA42 B1 / G43

System_Counter_CTRL RDC_PDAP44 SEMA42 B1 / G44

Reserved RDC_PDAP45 SEMA42 B1 / G45

GPT6 RDC_PDAP46 SEMA42 B1 / G46

GPT5 RDC_PDAP47 SEMA42 B1 / G47

GPT4 RDC_PDAP48 SEMA42 B1 / G48

Reserved RDC_PDAP49 SEMA42 B1 / G49

Reserved RDC_PDAP50 SEMA42 B1 / G50

Reserved RDC_PDAP51 SEMA42 B1 / G51

Reserved RDC_PDAP52 SEMA42 B1 / G52

Reserved RDC_PDAP53 SEMA42 B1 / G53

Reserved RDC_PDAP54 SEMA42 B1 / G54

Reserved RDC_PDAP55 SEMA42 B1 / G55

TZASC RDC_PDAP56 SEMA42 B1 / G56

Reserved RDC_PDAP57 SEMA42 B1 / G57

Reserved RDC_PDAP58 SEMA42 B1 / G58

Reserved RDC_PDAP59 SEMA42 B1 / G59

PERFMON1 RDC_PDAP60 SEMA42 B1 / G60

PERFMON2 RDC_PDAP61 SEMA42 B1 / G61

PLATFORM_CTRL RDC_PDAP62 SEMA42 B1 / G62

QoSC RDC_PDAP63 SEMA42 B1 / G63

Reserved RDC_PDAP64 SEMA42 B2 / G0

Reserved RDC_PDAP65 SEMA42 B2 / G1

I2C1 RDC_PDAP66 SEMA42 B2 / G2

I2C2 RDC_PDAP67 SEMA42 B2 / G3

I2C3 RDC_PDAP68 SEMA42 B2 / G4

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 233
Confidential Proprietary

Table 8-2. RDC Peripheral Mapping (continued)

Peripheral RDC PDAP register RDC_SEMA42 block/gate register

I2C4 RDC_PDAP69 SEMA42 B2 / G5

UART4 RDC_PDAP70 SEMA42 B2 / G6

Reserved RDC_PDAP71 SEMA42 B2 / G7

Reserved RDC_PDAP72 SEMA42 B2 / G8

Reserved RDC_PDAP73 SEMA42 B2 / G9

MU_A RDC_PDAP74 SEMA42 B2 / G10

MU_B RDC_PDAP75 SEMA42 B2 / G11

SEMAPHORE_HS RDC_PDAP76 SEMA42 B2 / G12

Reserved for SDMA2 internal memory RDC_PDAP77 SEMA42 B2 / G13

Reserved RDC_PDAP78 SEMA42 B2 / G14

SAI2 RDC_PDAP79 SEMA42 B2 / G15

SAI3 RDC_PDAP80 SEMA42 B2 / G16

Reserved RDC_PDAP81 SEMA42 B2 / G17

SAI5 RDC_PDAP82 SEMA42 B2 / G18

SAI6 RDC_PDAP83 SEMA42 B2 / G19

uSDHC1 RDC_PDAP84 SEMA42 B2 / G20

uSDHC2 RDC_PDAP85 SEMA42 B2 / G21

uSDHC3 RDC_PDAP86 SEMA42 B2 / G22

SAI7 RDC_PDAP87 SEMA42 B2 / G23

Reserved RDC_PDAP88 SEMA42 B2 / G24

Reserved for SDMA2 internal memory RDC_PDAP89 SEMA42 B2 / G25

SPBA2 RDC_PDAP90 SEMA42 B2 / G26

QSPI RDC_PDAP91 SEMA42 B2 / G27

Reserved RDC_PDAP92 SEMA42 B2 / G28

SDMA1 RDC_PDAP93 SEMA42 B2 / G29

ENET1 RDC_PDAP94 SEMA42 B2 / G30

Reserved RDC_PDAP95 SEMA42 B2 / G31

Reserved for SDMA internal memory RDC_PDAP96 SEMA42 B2 / G32

SPDIF1 RDC_PDAP97 SEMA42 B2 / G33

eCSPI1 RDC_PDAP98 SEMA42 B2 / G34

eCSPI2 RDC_PDAP99 SEMA42 B2 / G35

eCSPI3 RDC_PDAP100 SEMA42 B2 / G36

MICFIL RDC_PDAP101 SEMA42 B2 / G37

UART1 RDC_PDAP102 SEMA42 B2 / G38

Reserved for SDMA internal registers RDC_PDAP103 SEMA42 B2 / G39

UART3 RDC_PDAP104 SEMA42 B2 / G40

UART2 RDC_PDAP105 SEMA42 B2 / G41

Reserved RDC_PDAP106 SEMA42 B2 / G42

ASRC RDC_PDAP107 SEMA42 B2 / G43

Table continues on the next page...

Programming Interface

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

234 NXP Semiconductors
Confidential Proprietary

Table 8-2. RDC Peripheral Mapping (continued)

Peripheral RDC PDAP register RDC_SEMA42 block/gate register

Reserved RDC_PDAP108 SEMA42 B2 / G44

Reserved RDC_PDAP109 SEMA42 B2 / G45

Reserved for SDMA internal registers RDC_PDAP110 SEMA42 B2 / G46

SPBA1 RDC_PDAP111 SEMA42 B2 / G47

module_en_glbl[0] RDC_PDAP112 SEMA42 B2 / G48

module_en_glbl[0] RDC_PDAP113 SEMA42 B2 / G49

CAAM RDC_PDAP114 SEMA42 B2 / G50

8.4.3 Memory Region Map

The number of memories with domain isolation support varies per device. The number of
memory regions for a particular memory and the size of those regions varies per memory
gasket. Each region of memory has a set of registers to define the boundaries of the
region based on start and end addresses, a control register to set the domain access
permissions and enable the region, and a status register to determin if access was denied
to a region.

For this device, refer to the table below to determine the memories with domain support,
the number of regions for each memory, the region resolution, the identifying numbers
for the sets of memory region registers, and the addresses of the RDC registers to access
the sets of Memory Region registers.

8.5 RDC Memory Map/Register Definition
RDC memory map

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_0000 Version Information (RDC_VIR) 32 R 0376_E204h 8.5.1/245

303D_0024 Status (RDC_STAT) 32 R/W 0000_0100h 8.5.2/246

303D_0028 Interrupt and Control (RDC_INTCTRL) 32 R/W 0000_0000h 8.5.3/247

303D_002C Interrupt Status (RDC_INTSTAT) 32 R/W See section 8.5.4/247

303D_0200 Master Domain Assignment (RDC_MDA0) 32 R/W 0000_0000h 8.5.5/248

303D_0204 Master Domain Assignment (RDC_MDA1) 32 R/W 0000_0000h 8.5.5/248

303D_0208 Master Domain Assignment (RDC_MDA2) 32 R/W 0000_0000h 8.5.5/248

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 235
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_020C Master Domain Assignment (RDC_MDA3) 32 R/W 0000_0000h 8.5.5/248

303D_0210 Master Domain Assignment (RDC_MDA4) 32 R/W 0000_0000h 8.5.5/248

303D_0214 Master Domain Assignment (RDC_MDA5) 32 R/W 0000_0000h 8.5.5/248

303D_0218 Master Domain Assignment (RDC_MDA6) 32 R/W 0000_0000h 8.5.5/248

303D_021C Master Domain Assignment (RDC_MDA7) 32 R/W 0000_0000h 8.5.5/248

303D_0220 Master Domain Assignment (RDC_MDA8) 32 R/W 0000_0000h 8.5.5/248

303D_0224 Master Domain Assignment (RDC_MDA9) 32 R/W 0000_0000h 8.5.5/248

303D_0228 Master Domain Assignment (RDC_MDA10) 32 R/W 0000_0000h 8.5.5/248

303D_022C Master Domain Assignment (RDC_MDA11) 32 R/W 0000_0000h 8.5.5/248

303D_0230 Master Domain Assignment (RDC_MDA12) 32 R/W 0000_0000h 8.5.5/248

303D_0234 Master Domain Assignment (RDC_MDA13) 32 R/W 0000_0000h 8.5.5/248

303D_0238 Master Domain Assignment (RDC_MDA14) 32 R/W 0000_0000h 8.5.5/248

303D_023C Master Domain Assignment (RDC_MDA15) 32 R/W 0000_0000h 8.5.5/248

303D_0240 Master Domain Assignment (RDC_MDA16) 32 R/W 0000_0000h 8.5.5/248

303D_0244 Master Domain Assignment (RDC_MDA17) 32 R/W 0000_0000h 8.5.5/248

303D_0248 Master Domain Assignment (RDC_MDA18) 32 R/W 0000_0000h 8.5.5/248

303D_024C Master Domain Assignment (RDC_MDA19) 32 R/W 0000_0000h 8.5.5/248

303D_0250 Master Domain Assignment (RDC_MDA20) 32 R/W 0000_0000h 8.5.5/248

303D_0254 Master Domain Assignment (RDC_MDA21) 32 R/W 0000_0000h 8.5.5/248

303D_0258 Master Domain Assignment (RDC_MDA22) 32 R/W 0000_0000h 8.5.5/248

303D_025C Master Domain Assignment (RDC_MDA23) 32 R/W 0000_0000h 8.5.5/248

303D_0260 Master Domain Assignment (RDC_MDA24) 32 R/W 0000_0000h 8.5.5/248

303D_0264 Master Domain Assignment (RDC_MDA25) 32 R/W 0000_0000h 8.5.5/248

303D_0268 Master Domain Assignment (RDC_MDA26) 32 R/W 0000_0000h 8.5.5/248

303D_0400 Peripheral Domain Access Permissions (RDC_PDAP0) 32 R/W 0000_00FFh 8.5.6/249

303D_0404 Peripheral Domain Access Permissions (RDC_PDAP1) 32 R/W 0000_00FFh 8.5.6/249

303D_0408 Peripheral Domain Access Permissions (RDC_PDAP2) 32 R/W 0000_00FFh 8.5.6/249

303D_040C Peripheral Domain Access Permissions (RDC_PDAP3) 32 R/W 0000_00FFh 8.5.6/249

303D_0410 Peripheral Domain Access Permissions (RDC_PDAP4) 32 R/W 0000_00FFh 8.5.6/249

303D_0414 Peripheral Domain Access Permissions (RDC_PDAP5) 32 R/W 0000_00FFh 8.5.6/249

303D_0418 Peripheral Domain Access Permissions (RDC_PDAP6) 32 R/W 0000_00FFh 8.5.6/249

303D_041C Peripheral Domain Access Permissions (RDC_PDAP7) 32 R/W 0000_00FFh 8.5.6/249

303D_0420 Peripheral Domain Access Permissions (RDC_PDAP8) 32 R/W 0000_00FFh 8.5.6/249

303D_0424 Peripheral Domain Access Permissions (RDC_PDAP9) 32 R/W 0000_00FFh 8.5.6/249

303D_0428 Peripheral Domain Access Permissions (RDC_PDAP10) 32 R/W 0000_00FFh 8.5.6/249

303D_042C Peripheral Domain Access Permissions (RDC_PDAP11) 32 R/W 0000_00FFh 8.5.6/249

303D_0430 Peripheral Domain Access Permissions (RDC_PDAP12) 32 R/W 0000_00FFh 8.5.6/249

303D_0434 Peripheral Domain Access Permissions (RDC_PDAP13) 32 R/W 0000_00FFh 8.5.6/249

Table continues on the next page...

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

236 NXP Semiconductors
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_0438 Peripheral Domain Access Permissions (RDC_PDAP14) 32 R/W 0000_00FFh 8.5.6/249

303D_043C Peripheral Domain Access Permissions (RDC_PDAP15) 32 R/W 0000_00FFh 8.5.6/249

303D_0440 Peripheral Domain Access Permissions (RDC_PDAP16) 32 R/W 0000_00FFh 8.5.6/249

303D_0444 Peripheral Domain Access Permissions (RDC_PDAP17) 32 R/W 0000_00FFh 8.5.6/249

303D_0448 Peripheral Domain Access Permissions (RDC_PDAP18) 32 R/W 0000_00FFh 8.5.6/249

303D_044C Peripheral Domain Access Permissions (RDC_PDAP19) 32 R/W 0000_00FFh 8.5.6/249

303D_0450 Peripheral Domain Access Permissions (RDC_PDAP20) 32 R/W 0000_00FFh 8.5.6/249

303D_0454 Peripheral Domain Access Permissions (RDC_PDAP21) 32 R/W 0000_00FFh 8.5.6/249

303D_0458 Peripheral Domain Access Permissions (RDC_PDAP22) 32 R/W 0000_00FFh 8.5.6/249

303D_045C Peripheral Domain Access Permissions (RDC_PDAP23) 32 R/W 0000_00FFh 8.5.6/249

303D_0460 Peripheral Domain Access Permissions (RDC_PDAP24) 32 R/W 0000_00FFh 8.5.6/249

303D_0464 Peripheral Domain Access Permissions (RDC_PDAP25) 32 R/W 0000_00FFh 8.5.6/249

303D_0468 Peripheral Domain Access Permissions (RDC_PDAP26) 32 R/W 0000_00FFh 8.5.6/249

303D_046C Peripheral Domain Access Permissions (RDC_PDAP27) 32 R/W 0000_00FFh 8.5.6/249

303D_0470 Peripheral Domain Access Permissions (RDC_PDAP28) 32 R/W 0000_00FFh 8.5.6/249

303D_0474 Peripheral Domain Access Permissions (RDC_PDAP29) 32 R/W 0000_00FFh 8.5.6/249

303D_0478 Peripheral Domain Access Permissions (RDC_PDAP30) 32 R/W 0000_00FFh 8.5.6/249

303D_047C Peripheral Domain Access Permissions (RDC_PDAP31) 32 R/W 0000_00FFh 8.5.6/249

303D_0480 Peripheral Domain Access Permissions (RDC_PDAP32) 32 R/W 0000_00FFh 8.5.6/249

303D_0484 Peripheral Domain Access Permissions (RDC_PDAP33) 32 R/W 0000_00FFh 8.5.6/249

303D_0488 Peripheral Domain Access Permissions (RDC_PDAP34) 32 R/W 0000_00FFh 8.5.6/249

303D_048C Peripheral Domain Access Permissions (RDC_PDAP35) 32 R/W 0000_00FFh 8.5.6/249

303D_0490 Peripheral Domain Access Permissions (RDC_PDAP36) 32 R/W 0000_00FFh 8.5.6/249

303D_0494 Peripheral Domain Access Permissions (RDC_PDAP37) 32 R/W 0000_00FFh 8.5.6/249

303D_0498 Peripheral Domain Access Permissions (RDC_PDAP38) 32 R/W 0000_00FFh 8.5.6/249

303D_049C Peripheral Domain Access Permissions (RDC_PDAP39) 32 R/W 0000_00FFh 8.5.6/249

303D_04A0 Peripheral Domain Access Permissions (RDC_PDAP40) 32 R/W 0000_00FFh 8.5.6/249

303D_04A4 Peripheral Domain Access Permissions (RDC_PDAP41) 32 R/W 0000_00FFh 8.5.6/249

303D_04A8 Peripheral Domain Access Permissions (RDC_PDAP42) 32 R/W 0000_00FFh 8.5.6/249

303D_04AC Peripheral Domain Access Permissions (RDC_PDAP43) 32 R/W 0000_00FFh 8.5.6/249

303D_04B0 Peripheral Domain Access Permissions (RDC_PDAP44) 32 R/W 0000_00FFh 8.5.6/249

303D_04B4 Peripheral Domain Access Permissions (RDC_PDAP45) 32 R/W 0000_00FFh 8.5.6/249

303D_04B8 Peripheral Domain Access Permissions (RDC_PDAP46) 32 R/W 0000_00FFh 8.5.6/249

303D_04BC Peripheral Domain Access Permissions (RDC_PDAP47) 32 R/W 0000_00FFh 8.5.6/249

303D_04C0 Peripheral Domain Access Permissions (RDC_PDAP48) 32 R/W 0000_00FFh 8.5.6/249

303D_04C4 Peripheral Domain Access Permissions (RDC_PDAP49) 32 R/W 0000_00FFh 8.5.6/249

303D_04C8 Peripheral Domain Access Permissions (RDC_PDAP50) 32 R/W 0000_00FFh 8.5.6/249

303D_04CC Peripheral Domain Access Permissions (RDC_PDAP51) 32 R/W 0000_00FFh 8.5.6/249

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 237
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_04D0 Peripheral Domain Access Permissions (RDC_PDAP52) 32 R/W 0000_00FFh 8.5.6/249

303D_04D4 Peripheral Domain Access Permissions (RDC_PDAP53) 32 R/W 0000_00FFh 8.5.6/249

303D_04D8 Peripheral Domain Access Permissions (RDC_PDAP54) 32 R/W 0000_00FFh 8.5.6/249

303D_04DC Peripheral Domain Access Permissions (RDC_PDAP55) 32 R/W 0000_00FFh 8.5.6/249

303D_04E0 Peripheral Domain Access Permissions (RDC_PDAP56) 32 R/W 0000_00FFh 8.5.6/249

303D_04E4 Peripheral Domain Access Permissions (RDC_PDAP57) 32 R/W 0000_00FFh 8.5.6/249

303D_04E8 Peripheral Domain Access Permissions (RDC_PDAP58) 32 R/W 0000_00FFh 8.5.6/249

303D_04EC Peripheral Domain Access Permissions (RDC_PDAP59) 32 R/W 0000_00FFh 8.5.6/249

303D_04F0 Peripheral Domain Access Permissions (RDC_PDAP60) 32 R/W 0000_00FFh 8.5.6/249

303D_04F4 Peripheral Domain Access Permissions (RDC_PDAP61) 32 R/W 0000_00FFh 8.5.6/249

303D_04F8 Peripheral Domain Access Permissions (RDC_PDAP62) 32 R/W 0000_00FFh 8.5.6/249

303D_04FC Peripheral Domain Access Permissions (RDC_PDAP63) 32 R/W 0000_00FFh 8.5.6/249

303D_0500 Peripheral Domain Access Permissions (RDC_PDAP64) 32 R/W 0000_00FFh 8.5.6/249

303D_0504 Peripheral Domain Access Permissions (RDC_PDAP65) 32 R/W 0000_00FFh 8.5.6/249

303D_0508 Peripheral Domain Access Permissions (RDC_PDAP66) 32 R/W 0000_00FFh 8.5.6/249

303D_050C Peripheral Domain Access Permissions (RDC_PDAP67) 32 R/W 0000_00FFh 8.5.6/249

303D_0510 Peripheral Domain Access Permissions (RDC_PDAP68) 32 R/W 0000_00FFh 8.5.6/249

303D_0514 Peripheral Domain Access Permissions (RDC_PDAP69) 32 R/W 0000_00FFh 8.5.6/249

303D_0518 Peripheral Domain Access Permissions (RDC_PDAP70) 32 R/W 0000_00FFh 8.5.6/249

303D_051C Peripheral Domain Access Permissions (RDC_PDAP71) 32 R/W 0000_00FFh 8.5.6/249

303D_0520 Peripheral Domain Access Permissions (RDC_PDAP72) 32 R/W 0000_00FFh 8.5.6/249

303D_0524 Peripheral Domain Access Permissions (RDC_PDAP73) 32 R/W 0000_00FFh 8.5.6/249

303D_0528 Peripheral Domain Access Permissions (RDC_PDAP74) 32 R/W 0000_00FFh 8.5.6/249

303D_052C Peripheral Domain Access Permissions (RDC_PDAP75) 32 R/W 0000_00FFh 8.5.6/249

303D_0530 Peripheral Domain Access Permissions (RDC_PDAP76) 32 R/W 0000_00FFh 8.5.6/249

303D_0534 Peripheral Domain Access Permissions (RDC_PDAP77) 32 R/W 0000_00FFh 8.5.6/249

303D_0538 Peripheral Domain Access Permissions (RDC_PDAP78) 32 R/W 0000_00FFh 8.5.6/249

303D_053C Peripheral Domain Access Permissions (RDC_PDAP79) 32 R/W 0000_00FFh 8.5.6/249

303D_0540 Peripheral Domain Access Permissions (RDC_PDAP80) 32 R/W 0000_00FFh 8.5.6/249

303D_0544 Peripheral Domain Access Permissions (RDC_PDAP81) 32 R/W 0000_00FFh 8.5.6/249

303D_0548 Peripheral Domain Access Permissions (RDC_PDAP82) 32 R/W 0000_00FFh 8.5.6/249

303D_054C Peripheral Domain Access Permissions (RDC_PDAP83) 32 R/W 0000_00FFh 8.5.6/249

303D_0550 Peripheral Domain Access Permissions (RDC_PDAP84) 32 R/W 0000_00FFh 8.5.6/249

303D_0554 Peripheral Domain Access Permissions (RDC_PDAP85) 32 R/W 0000_00FFh 8.5.6/249

303D_0558 Peripheral Domain Access Permissions (RDC_PDAP86) 32 R/W 0000_00FFh 8.5.6/249

303D_055C Peripheral Domain Access Permissions (RDC_PDAP87) 32 R/W 0000_00FFh 8.5.6/249

303D_0560 Peripheral Domain Access Permissions (RDC_PDAP88) 32 R/W 0000_00FFh 8.5.6/249

303D_0564 Peripheral Domain Access Permissions (RDC_PDAP89) 32 R/W 0000_00FFh 8.5.6/249

Table continues on the next page...

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

238 NXP Semiconductors
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_0568 Peripheral Domain Access Permissions (RDC_PDAP90) 32 R/W 0000_00FFh 8.5.6/249

303D_056C Peripheral Domain Access Permissions (RDC_PDAP91) 32 R/W 0000_00FFh 8.5.6/249

303D_0570 Peripheral Domain Access Permissions (RDC_PDAP92) 32 R/W 0000_00FFh 8.5.6/249

303D_0574 Peripheral Domain Access Permissions (RDC_PDAP93) 32 R/W 0000_00FFh 8.5.6/249

303D_0578 Peripheral Domain Access Permissions (RDC_PDAP94) 32 R/W 0000_00FFh 8.5.6/249

303D_057C Peripheral Domain Access Permissions (RDC_PDAP95) 32 R/W 0000_00FFh 8.5.6/249

303D_0580 Peripheral Domain Access Permissions (RDC_PDAP96) 32 R/W 0000_00FFh 8.5.6/249

303D_0584 Peripheral Domain Access Permissions (RDC_PDAP97) 32 R/W 0000_00FFh 8.5.6/249

303D_0588 Peripheral Domain Access Permissions (RDC_PDAP98) 32 R/W 0000_00FFh 8.5.6/249

303D_058C Peripheral Domain Access Permissions (RDC_PDAP99) 32 R/W 0000_00FFh 8.5.6/249

303D_0590 Peripheral Domain Access Permissions (RDC_PDAP100) 32 R/W 0000_00FFh 8.5.6/249

303D_0594 Peripheral Domain Access Permissions (RDC_PDAP101) 32 R/W 0000_00FFh 8.5.6/249

303D_0598 Peripheral Domain Access Permissions (RDC_PDAP102) 32 R/W 0000_00FFh 8.5.6/249

303D_059C Peripheral Domain Access Permissions (RDC_PDAP103) 32 R/W 0000_00FFh 8.5.6/249

303D_05A0 Peripheral Domain Access Permissions (RDC_PDAP104) 32 R/W 0000_00FFh 8.5.6/249

303D_05A4 Peripheral Domain Access Permissions (RDC_PDAP105) 32 R/W 0000_00FFh 8.5.6/249

303D_05A8 Peripheral Domain Access Permissions (RDC_PDAP106) 32 R/W 0000_00FFh 8.5.6/249

303D_05AC Peripheral Domain Access Permissions (RDC_PDAP107) 32 R/W 0000_00FFh 8.5.6/249

303D_05B0 Peripheral Domain Access Permissions (RDC_PDAP108) 32 R/W 0000_00FFh 8.5.6/249

303D_05B4 Peripheral Domain Access Permissions (RDC_PDAP109) 32 R/W 0000_00FFh 8.5.6/249

303D_05B8 Peripheral Domain Access Permissions (RDC_PDAP110) 32 R/W 0000_00FFh 8.5.6/249

303D_05BC Peripheral Domain Access Permissions (RDC_PDAP111) 32 R/W 0000_00FFh 8.5.6/249

303D_05C0 Peripheral Domain Access Permissions (RDC_PDAP112) 32 R/W 0000_00FFh 8.5.6/249

303D_05C4 Peripheral Domain Access Permissions (RDC_PDAP113) 32 R/W 0000_00FFh 8.5.6/249

303D_05C8 Peripheral Domain Access Permissions (RDC_PDAP114) 32 R/W 0000_00FFh 8.5.6/249

303D_05CC Peripheral Domain Access Permissions (RDC_PDAP115) 32 R/W 0000_00FFh 8.5.6/249

303D_05D0 Peripheral Domain Access Permissions (RDC_PDAP116) 32 R/W 0000_00FFh 8.5.6/249

303D_05D4 Peripheral Domain Access Permissions (RDC_PDAP117) 32 R/W 0000_00FFh 8.5.6/249

303D_0800 Memory Region Start Address (RDC_MRSA0) 32 R/W Undefined 8.5.7/250

303D_0804 Memory Region End Address (RDC_MREA0) 32 R/W Undefined 8.5.8/252

303D_0808 Memory Region Control (RDC_MRC0) 32 R/W 0000_00FFh 8.5.9/253

303D_080C Memory Region Violation Status (RDC_MRVS0) 32 R/W 0000_0000h 8.5.10/254

303D_0810 Memory Region Start Address (RDC_MRSA1) 32 R/W Undefined 8.5.7/250

303D_0814 Memory Region End Address (RDC_MREA1) 32 R/W Undefined 8.5.8/252

303D_0818 Memory Region Control (RDC_MRC1) 32 R/W 0000_00FFh 8.5.9/253

303D_081C Memory Region Violation Status (RDC_MRVS1) 32 R/W 0000_0000h 8.5.10/254

303D_0820 Memory Region Start Address (RDC_MRSA2) 32 R/W Undefined 8.5.7/250

303D_0824 Memory Region End Address (RDC_MREA2) 32 R/W Undefined 8.5.8/252

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 239
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_0828 Memory Region Control (RDC_MRC2) 32 R/W 0000_00FFh 8.5.9/253

303D_082C Memory Region Violation Status (RDC_MRVS2) 32 R/W 0000_0000h 8.5.10/254

303D_0830 Memory Region Start Address (RDC_MRSA3) 32 R/W Undefined 8.5.7/250

303D_0834 Memory Region End Address (RDC_MREA3) 32 R/W Undefined 8.5.8/252

303D_0838 Memory Region Control (RDC_MRC3) 32 R/W 0000_00FFh 8.5.9/253

303D_083C Memory Region Violation Status (RDC_MRVS3) 32 R/W 0000_0000h 8.5.10/254

303D_0840 Memory Region Start Address (RDC_MRSA4) 32 R/W Undefined 8.5.7/250

303D_0844 Memory Region End Address (RDC_MREA4) 32 R/W Undefined 8.5.8/252

303D_0848 Memory Region Control (RDC_MRC4) 32 R/W 0000_00FFh 8.5.9/253

303D_084C Memory Region Violation Status (RDC_MRVS4) 32 R/W 0000_0000h 8.5.10/254

303D_0850 Memory Region Start Address (RDC_MRSA5) 32 R/W Undefined 8.5.7/250

303D_0854 Memory Region End Address (RDC_MREA5) 32 R/W Undefined 8.5.8/252

303D_0858 Memory Region Control (RDC_MRC5) 32 R/W 0000_00FFh 8.5.9/253

303D_085C Memory Region Violation Status (RDC_MRVS5) 32 R/W 0000_0000h 8.5.10/254

303D_0860 Memory Region Start Address (RDC_MRSA6) 32 R/W Undefined 8.5.7/250

303D_0864 Memory Region End Address (RDC_MREA6) 32 R/W Undefined 8.5.8/252

303D_0868 Memory Region Control (RDC_MRC6) 32 R/W 0000_00FFh 8.5.9/253

303D_086C Memory Region Violation Status (RDC_MRVS6) 32 R/W 0000_0000h 8.5.10/254

303D_0870 Memory Region Start Address (RDC_MRSA7) 32 R/W Undefined 8.5.7/250

303D_0874 Memory Region End Address (RDC_MREA7) 32 R/W Undefined 8.5.8/252

303D_0878 Memory Region Control (RDC_MRC7) 32 R/W 0000_00FFh 8.5.9/253

303D_087C Memory Region Violation Status (RDC_MRVS7) 32 R/W 0000_0000h 8.5.10/254

303D_0880 Memory Region Start Address (RDC_MRSA8) 32 R/W Undefined 8.5.7/250

303D_0884 Memory Region End Address (RDC_MREA8) 32 R/W Undefined 8.5.8/252

303D_0888 Memory Region Control (RDC_MRC8) 32 R/W 0000_00FFh 8.5.9/253

303D_088C Memory Region Violation Status (RDC_MRVS8) 32 R/W 0000_0000h 8.5.10/254

303D_0890 Memory Region Start Address (RDC_MRSA9) 32 R/W Undefined 8.5.7/250

303D_0894 Memory Region End Address (RDC_MREA9) 32 R/W Undefined 8.5.8/252

303D_0898 Memory Region Control (RDC_MRC9) 32 R/W 0000_00FFh 8.5.9/253

303D_089C Memory Region Violation Status (RDC_MRVS9) 32 R/W 0000_0000h 8.5.10/254

303D_08A0 Memory Region Start Address (RDC_MRSA10) 32 R/W Undefined 8.5.7/250

303D_08A4 Memory Region End Address (RDC_MREA10) 32 R/W Undefined 8.5.8/252

303D_08A8 Memory Region Control (RDC_MRC10) 32 R/W 0000_00FFh 8.5.9/253

303D_08AC Memory Region Violation Status (RDC_MRVS10) 32 R/W 0000_0000h 8.5.10/254

303D_08B0 Memory Region Start Address (RDC_MRSA11) 32 R/W Undefined 8.5.7/250

303D_08B4 Memory Region End Address (RDC_MREA11) 32 R/W Undefined 8.5.8/252

303D_08B8 Memory Region Control (RDC_MRC11) 32 R/W 0000_00FFh 8.5.9/253

303D_08BC Memory Region Violation Status (RDC_MRVS11) 32 R/W 0000_0000h 8.5.10/254

Table continues on the next page...

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

240 NXP Semiconductors
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_08C0 Memory Region Start Address (RDC_MRSA12) 32 R/W Undefined 8.5.7/250

303D_08C4 Memory Region End Address (RDC_MREA12) 32 R/W Undefined 8.5.8/252

303D_08C8 Memory Region Control (RDC_MRC12) 32 R/W 0000_00FFh 8.5.9/253

303D_08CC Memory Region Violation Status (RDC_MRVS12) 32 R/W 0000_0000h 8.5.10/254

303D_08D0 Memory Region Start Address (RDC_MRSA13) 32 R/W Undefined 8.5.7/250

303D_08D4 Memory Region End Address (RDC_MREA13) 32 R/W Undefined 8.5.8/252

303D_08D8 Memory Region Control (RDC_MRC13) 32 R/W 0000_00FFh 8.5.9/253

303D_08DC Memory Region Violation Status (RDC_MRVS13) 32 R/W 0000_0000h 8.5.10/254

303D_08E0 Memory Region Start Address (RDC_MRSA14) 32 R/W Undefined 8.5.7/250

303D_08E4 Memory Region End Address (RDC_MREA14) 32 R/W Undefined 8.5.8/252

303D_08E8 Memory Region Control (RDC_MRC14) 32 R/W 0000_00FFh 8.5.9/253

303D_08EC Memory Region Violation Status (RDC_MRVS14) 32 R/W 0000_0000h 8.5.10/254

303D_08F0 Memory Region Start Address (RDC_MRSA15) 32 R/W Undefined 8.5.7/250

303D_08F4 Memory Region End Address (RDC_MREA15) 32 R/W Undefined 8.5.8/252

303D_08F8 Memory Region Control (RDC_MRC15) 32 R/W 0000_00FFh 8.5.9/253

303D_08FC Memory Region Violation Status (RDC_MRVS15) 32 R/W 0000_0000h 8.5.10/254

303D_0900 Memory Region Start Address (RDC_MRSA16) 32 R/W Undefined 8.5.7/250

303D_0904 Memory Region End Address (RDC_MREA16) 32 R/W Undefined 8.5.8/252

303D_0908 Memory Region Control (RDC_MRC16) 32 R/W 0000_00FFh 8.5.9/253

303D_090C Memory Region Violation Status (RDC_MRVS16) 32 R/W 0000_0000h 8.5.10/254

303D_0910 Memory Region Start Address (RDC_MRSA17) 32 R/W Undefined 8.5.7/250

303D_0914 Memory Region End Address (RDC_MREA17) 32 R/W Undefined 8.5.8/252

303D_0918 Memory Region Control (RDC_MRC17) 32 R/W 0000_00FFh 8.5.9/253

303D_091C Memory Region Violation Status (RDC_MRVS17) 32 R/W 0000_0000h 8.5.10/254

303D_0920 Memory Region Start Address (RDC_MRSA18) 32 R/W Undefined 8.5.7/250

303D_0924 Memory Region End Address (RDC_MREA18) 32 R/W Undefined 8.5.8/252

303D_0928 Memory Region Control (RDC_MRC18) 32 R/W 0000_00FFh 8.5.9/253

303D_092C Memory Region Violation Status (RDC_MRVS18) 32 R/W 0000_0000h 8.5.10/254

303D_0930 Memory Region Start Address (RDC_MRSA19) 32 R/W Undefined 8.5.7/250

303D_0934 Memory Region End Address (RDC_MREA19) 32 R/W Undefined 8.5.8/252

303D_0938 Memory Region Control (RDC_MRC19) 32 R/W 0000_00FFh 8.5.9/253

303D_093C Memory Region Violation Status (RDC_MRVS19) 32 R/W 0000_0000h 8.5.10/254

303D_0940 Memory Region Start Address (RDC_MRSA20) 32 R/W Undefined 8.5.7/250

303D_0944 Memory Region End Address (RDC_MREA20) 32 R/W Undefined 8.5.8/252

303D_0948 Memory Region Control (RDC_MRC20) 32 R/W 0000_00FFh 8.5.9/253

303D_094C Memory Region Violation Status (RDC_MRVS20) 32 R/W 0000_0000h 8.5.10/254

303D_0950 Memory Region Start Address (RDC_MRSA21) 32 R/W Undefined 8.5.7/250

303D_0954 Memory Region End Address (RDC_MREA21) 32 R/W Undefined 8.5.8/252

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 241
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_0958 Memory Region Control (RDC_MRC21) 32 R/W 0000_00FFh 8.5.9/253

303D_095C Memory Region Violation Status (RDC_MRVS21) 32 R/W 0000_0000h 8.5.10/254

303D_0960 Memory Region Start Address (RDC_MRSA22) 32 R/W Undefined 8.5.7/250

303D_0964 Memory Region End Address (RDC_MREA22) 32 R/W Undefined 8.5.8/252

303D_0968 Memory Region Control (RDC_MRC22) 32 R/W 0000_00FFh 8.5.9/253

303D_096C Memory Region Violation Status (RDC_MRVS22) 32 R/W 0000_0000h 8.5.10/254

303D_0970 Memory Region Start Address (RDC_MRSA23) 32 R/W Undefined 8.5.7/250

303D_0974 Memory Region End Address (RDC_MREA23) 32 R/W Undefined 8.5.8/252

303D_0978 Memory Region Control (RDC_MRC23) 32 R/W 0000_00FFh 8.5.9/253

303D_097C Memory Region Violation Status (RDC_MRVS23) 32 R/W 0000_0000h 8.5.10/254

303D_0980 Memory Region Start Address (RDC_MRSA24) 32 R/W Undefined 8.5.7/250

303D_0984 Memory Region End Address (RDC_MREA24) 32 R/W Undefined 8.5.8/252

303D_0988 Memory Region Control (RDC_MRC24) 32 R/W 0000_00FFh 8.5.9/253

303D_098C Memory Region Violation Status (RDC_MRVS24) 32 R/W 0000_0000h 8.5.10/254

303D_0990 Memory Region Start Address (RDC_MRSA25) 32 R/W Undefined 8.5.7/250

303D_0994 Memory Region End Address (RDC_MREA25) 32 R/W Undefined 8.5.8/252

303D_0998 Memory Region Control (RDC_MRC25) 32 R/W 0000_00FFh 8.5.9/253

303D_099C Memory Region Violation Status (RDC_MRVS25) 32 R/W 0000_0000h 8.5.10/254

303D_09A0 Memory Region Start Address (RDC_MRSA26) 32 R/W Undefined 8.5.7/250

303D_09A4 Memory Region End Address (RDC_MREA26) 32 R/W Undefined 8.5.8/252

303D_09A8 Memory Region Control (RDC_MRC26) 32 R/W 0000_00FFh 8.5.9/253

303D_09AC Memory Region Violation Status (RDC_MRVS26) 32 R/W 0000_0000h 8.5.10/254

303D_09B0 Memory Region Start Address (RDC_MRSA27) 32 R/W Undefined 8.5.7/250

303D_09B4 Memory Region End Address (RDC_MREA27) 32 R/W Undefined 8.5.8/252

303D_09B8 Memory Region Control (RDC_MRC27) 32 R/W 0000_00FFh 8.5.9/253

303D_09BC Memory Region Violation Status (RDC_MRVS27) 32 R/W 0000_0000h 8.5.10/254

303D_09C0 Memory Region Start Address (RDC_MRSA28) 32 R/W Undefined 8.5.7/250

303D_09C4 Memory Region End Address (RDC_MREA28) 32 R/W Undefined 8.5.8/252

303D_09C8 Memory Region Control (RDC_MRC28) 32 R/W 0000_00FFh 8.5.9/253

303D_09CC Memory Region Violation Status (RDC_MRVS28) 32 R/W 0000_0000h 8.5.10/254

303D_09D0 Memory Region Start Address (RDC_MRSA29) 32 R/W Undefined 8.5.7/250

303D_09D4 Memory Region End Address (RDC_MREA29) 32 R/W Undefined 8.5.8/252

303D_09D8 Memory Region Control (RDC_MRC29) 32 R/W 0000_00FFh 8.5.9/253

303D_09DC Memory Region Violation Status (RDC_MRVS29) 32 R/W 0000_0000h 8.5.10/254

303D_09E0 Memory Region Start Address (RDC_MRSA30) 32 R/W Undefined 8.5.7/250

303D_09E4 Memory Region End Address (RDC_MREA30) 32 R/W Undefined 8.5.8/252

303D_09E8 Memory Region Control (RDC_MRC30) 32 R/W 0000_00FFh 8.5.9/253

303D_09EC Memory Region Violation Status (RDC_MRVS30) 32 R/W 0000_0000h 8.5.10/254

Table continues on the next page...

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

242 NXP Semiconductors
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_09F0 Memory Region Start Address (RDC_MRSA31) 32 R/W Undefined 8.5.7/250

303D_09F4 Memory Region End Address (RDC_MREA31) 32 R/W Undefined 8.5.8/252

303D_09F8 Memory Region Control (RDC_MRC31) 32 R/W 0000_00FFh 8.5.9/253

303D_09FC Memory Region Violation Status (RDC_MRVS31) 32 R/W 0000_0000h 8.5.10/254

303D_0A00 Memory Region Start Address (RDC_MRSA32) 32 R/W Undefined 8.5.7/250

303D_0A04 Memory Region End Address (RDC_MREA32) 32 R/W Undefined 8.5.8/252

303D_0A08 Memory Region Control (RDC_MRC32) 32 R/W 0000_00FFh 8.5.9/253

303D_0A0C Memory Region Violation Status (RDC_MRVS32) 32 R/W 0000_0000h 8.5.10/254

303D_0A10 Memory Region Start Address (RDC_MRSA33) 32 R/W Undefined 8.5.7/250

303D_0A14 Memory Region End Address (RDC_MREA33) 32 R/W Undefined 8.5.8/252

303D_0A18 Memory Region Control (RDC_MRC33) 32 R/W 0000_00FFh 8.5.9/253

303D_0A1C Memory Region Violation Status (RDC_MRVS33) 32 R/W 0000_0000h 8.5.10/254

303D_0A20 Memory Region Start Address (RDC_MRSA34) 32 R/W Undefined 8.5.7/250

303D_0A24 Memory Region End Address (RDC_MREA34) 32 R/W Undefined 8.5.8/252

303D_0A28 Memory Region Control (RDC_MRC34) 32 R/W 0000_00FFh 8.5.9/253

303D_0A2C Memory Region Violation Status (RDC_MRVS34) 32 R/W 0000_0000h 8.5.10/254

303D_0A30 Memory Region Start Address (RDC_MRSA35) 32 R/W Undefined 8.5.7/250

303D_0A34 Memory Region End Address (RDC_MREA35) 32 R/W Undefined 8.5.8/252

303D_0A38 Memory Region Control (RDC_MRC35) 32 R/W 0000_00FFh 8.5.9/253

303D_0A3C Memory Region Violation Status (RDC_MRVS35) 32 R/W 0000_0000h 8.5.10/254

303D_0A40 Memory Region Start Address (RDC_MRSA36) 32 R/W Undefined 8.5.7/250

303D_0A44 Memory Region End Address (RDC_MREA36) 32 R/W Undefined 8.5.8/252

303D_0A48 Memory Region Control (RDC_MRC36) 32 R/W 0000_00FFh 8.5.9/253

303D_0A4C Memory Region Violation Status (RDC_MRVS36) 32 R/W 0000_0000h 8.5.10/254

303D_0A50 Memory Region Start Address (RDC_MRSA37) 32 R/W Undefined 8.5.7/250

303D_0A54 Memory Region End Address (RDC_MREA37) 32 R/W Undefined 8.5.8/252

303D_0A58 Memory Region Control (RDC_MRC37) 32 R/W 0000_00FFh 8.5.9/253

303D_0A5C Memory Region Violation Status (RDC_MRVS37) 32 R/W 0000_0000h 8.5.10/254

303D_0A60 Memory Region Start Address (RDC_MRSA38) 32 R/W Undefined 8.5.7/250

303D_0A64 Memory Region End Address (RDC_MREA38) 32 R/W Undefined 8.5.8/252

303D_0A68 Memory Region Control (RDC_MRC38) 32 R/W 0000_00FFh 8.5.9/253

303D_0A6C Memory Region Violation Status (RDC_MRVS38) 32 R/W 0000_0000h 8.5.10/254

303D_0A70 Memory Region Start Address (RDC_MRSA39) 32 R/W Undefined 8.5.7/250

303D_0A74 Memory Region End Address (RDC_MREA39) 32 R/W Undefined 8.5.8/252

303D_0A78 Memory Region Control (RDC_MRC39) 32 R/W 0000_00FFh 8.5.9/253

303D_0A7C Memory Region Violation Status (RDC_MRVS39) 32 R/W 0000_0000h 8.5.10/254

303D_0A80 Memory Region Start Address (RDC_MRSA40) 32 R/W Undefined 8.5.7/250

303D_0A84 Memory Region End Address (RDC_MREA40) 32 R/W Undefined 8.5.8/252

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 243
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_0A88 Memory Region Control (RDC_MRC40) 32 R/W 0000_00FFh 8.5.9/253

303D_0A8C Memory Region Violation Status (RDC_MRVS40) 32 R/W 0000_0000h 8.5.10/254

303D_0A90 Memory Region Start Address (RDC_MRSA41) 32 R/W Undefined 8.5.7/250

303D_0A94 Memory Region End Address (RDC_MREA41) 32 R/W Undefined 8.5.8/252

303D_0A98 Memory Region Control (RDC_MRC41) 32 R/W 0000_00FFh 8.5.9/253

303D_0A9C Memory Region Violation Status (RDC_MRVS41) 32 R/W 0000_0000h 8.5.10/254

303D_0AA0 Memory Region Start Address (RDC_MRSA42) 32 R/W Undefined 8.5.7/250

303D_0AA4 Memory Region End Address (RDC_MREA42) 32 R/W Undefined 8.5.8/252

303D_0AA8 Memory Region Control (RDC_MRC42) 32 R/W 0000_00FFh 8.5.9/253

303D_0AAC Memory Region Violation Status (RDC_MRVS42) 32 R/W 0000_0000h 8.5.10/254

303D_0AB0 Memory Region Start Address (RDC_MRSA43) 32 R/W Undefined 8.5.7/250

303D_0AB4 Memory Region End Address (RDC_MREA43) 32 R/W Undefined 8.5.8/252

303D_0AB8 Memory Region Control (RDC_MRC43) 32 R/W 0000_00FFh 8.5.9/253

303D_0ABC Memory Region Violation Status (RDC_MRVS43) 32 R/W 0000_0000h 8.5.10/254

303D_0AC0 Memory Region Start Address (RDC_MRSA44) 32 R/W Undefined 8.5.7/250

303D_0AC4 Memory Region End Address (RDC_MREA44) 32 R/W Undefined 8.5.8/252

303D_0AC8 Memory Region Control (RDC_MRC44) 32 R/W 0000_00FFh 8.5.9/253

303D_0ACC Memory Region Violation Status (RDC_MRVS44) 32 R/W 0000_0000h 8.5.10/254

303D_0AD0 Memory Region Start Address (RDC_MRSA45) 32 R/W Undefined 8.5.7/250

303D_0AD4 Memory Region End Address (RDC_MREA45) 32 R/W Undefined 8.5.8/252

303D_0AD8 Memory Region Control (RDC_MRC45) 32 R/W 0000_00FFh 8.5.9/253

303D_0ADC Memory Region Violation Status (RDC_MRVS45) 32 R/W 0000_0000h 8.5.10/254

303D_0AE0 Memory Region Start Address (RDC_MRSA46) 32 R/W Undefined 8.5.7/250

303D_0AE4 Memory Region End Address (RDC_MREA46) 32 R/W Undefined 8.5.8/252

303D_0AE8 Memory Region Control (RDC_MRC46) 32 R/W 0000_00FFh 8.5.9/253

303D_0AEC Memory Region Violation Status (RDC_MRVS46) 32 R/W 0000_0000h 8.5.10/254

303D_0AF0 Memory Region Start Address (RDC_MRSA47) 32 R/W Undefined 8.5.7/250

303D_0AF4 Memory Region End Address (RDC_MREA47) 32 R/W Undefined 8.5.8/252

303D_0AF8 Memory Region Control (RDC_MRC47) 32 R/W 0000_00FFh 8.5.9/253

303D_0AFC Memory Region Violation Status (RDC_MRVS47) 32 R/W 0000_0000h 8.5.10/254

303D_0B00 Memory Region Start Address (RDC_MRSA48) 32 R/W Undefined 8.5.7/250

303D_0B04 Memory Region End Address (RDC_MREA48) 32 R/W Undefined 8.5.8/252

303D_0B08 Memory Region Control (RDC_MRC48) 32 R/W 0000_00FFh 8.5.9/253

303D_0B0C Memory Region Violation Status (RDC_MRVS48) 32 R/W 0000_0000h 8.5.10/254

303D_0B10 Memory Region Start Address (RDC_MRSA49) 32 R/W Undefined 8.5.7/250

303D_0B14 Memory Region End Address (RDC_MREA49) 32 R/W Undefined 8.5.8/252

303D_0B18 Memory Region Control (RDC_MRC49) 32 R/W 0000_00FFh 8.5.9/253

303D_0B1C Memory Region Violation Status (RDC_MRVS49) 32 R/W 0000_0000h 8.5.10/254

Table continues on the next page...

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

244 NXP Semiconductors
Confidential Proprietary

RDC memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303D_0B20 Memory Region Start Address (RDC_MRSA50) 32 R/W Undefined 8.5.7/250

303D_0B24 Memory Region End Address (RDC_MREA50) 32 R/W Undefined 8.5.8/252

303D_0B28 Memory Region Control (RDC_MRC50) 32 R/W 0000_00FFh 8.5.9/253

303D_0B2C Memory Region Violation Status (RDC_MRVS50) 32 R/W 0000_0000h 8.5.10/254

303D_0B30 Memory Region Start Address (RDC_MRSA51) 32 R/W Undefined 8.5.7/250

303D_0B34 Memory Region End Address (RDC_MREA51) 32 R/W Undefined 8.5.8/252

303D_0B38 Memory Region Control (RDC_MRC51) 32 R/W 0000_00FFh 8.5.9/253

303D_0B3C Memory Region Violation Status (RDC_MRVS51) 32 R/W 0000_0000h 8.5.10/254

8.5.1 Version Information (RDC_VIR)

The VIR provides version information including the number of domains, number of
master slots, number of peripheral slots, and number of memory regions.

Address: 303D_0000h base + 0h offset = 303D_0000h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

NRGN NPER NMSTR NDID

W

Reset 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0

RDC_VIR field descriptions

Field Description

31–28
Reserved

This field is reserved.

27–20
NRGN

Number of Memory Regions

Indicates the number of memory regions in this instance of the RDC.

19–12
NPER

Number of Peripherals

Indicates the number of peripherals that can be isolated or safe-shared

11–4
NMSTR

Number of Masters

Indicates the number of masters supported by this instance of RDC.

NDID Number of Domains

Indicates the number of domain ids supported by this instance of the RDC. Add one to the register value
to get the actual number of domains.

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 245
Confidential Proprietary

8.5.2 Status (RDC_STAT)

Address: 303D_0000h base + 24h offset = 303D_0024h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ReservedW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Reserved PDS Reserved DIDW

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

RDC_STAT field descriptions

Field Description

31–9
Reserved

This field is reserved.

8
PDS

Power Domain Status

Indicates if the "Power Down" memory regions are powered and available. Power Down memory regions
are only those memory regions susceptible to power outage for power savings are unavailable if this is
zero. "Always-On" memory regions remain available. Always On memory regions are those regions that
are not powered down unless the entire SoC is powered down. This signal remains low until all access
controls have been restored to the domain.

0 Power Down Domain is OFF
1 Power Down Domain is ON

7–4
Reserved

This field is reserved.

DID Domain ID

The Domain ID of the core or bus master that is reading this. The value is different for requests from
different domains.

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

246 NXP Semiconductors
Confidential Proprietary

8.5.3 Interrupt and Control (RDC_INTCTRL)

Address: 303D_0000h base + 28h offset = 303D_0028h

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

Reserved
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

Reserved

R
C

I_
E

N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RDC_INTCTRL field descriptions

Field Description

31–1
Reserved

This field is reserved.

0
RCI_EN

Restoration Complete Interrupt

Interrupt generated when the RDC has completed restoring state to a recently re-powered memory
regions.

0 Interrupt Disabled
1 Interrupt Enabled

8.5.4 Interrupt Status (RDC_INTSTAT)

Indication of Interrupt Pending for State Restoration

Address: 303D_0000h base + 2Ch offset = 303D_002Ch

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

INT

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 247
Confidential Proprietary

RDC_INTSTAT field descriptions

Field Description

31–1
Reserved

This field is reserved.

0
INT

Interrupt Status

Indicates state of interrupt signal for state restoration. This is that status of the interrupt enabled in
RDC_INTCTRL. Write one to interrupt status to clear it.

0 No Interrupt Pending
1 Interrupt Pending

8.5.5 Master Domain Assignment (RDC_MDAn)

Address: 303D_0000h base + 200h offset + (4d × i), where i=0d to 26d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R LCK ReservedW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Reserved DIDW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RDC_MDAn field descriptions

Field Description

31
LCK

0 Not Locked
1 Locked

30–2
Reserved

This field is reserved.

DID Domain ID

Indicates the domain to which the Master is assigned

00 Master assigned to Processing Domain 0
01 Master assigned to Processing Domain 1
10 Master assigned to Processing Domain 2
11 Master assigned to Processing Domain 3

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

248 NXP Semiconductors
Confidential Proprietary

8.5.6 Peripheral Domain Access Permissions (RDC_PDAPn)

Address: 303D_0000h base + 400h offset + (4d × i), where i=0d to 117d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
LCK

SRE
Q

ReservedW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Reserved D3R D3W D2R D2W D1R D1W D0R D0WW

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

RDC_PDAPn field descriptions

Field Description

31
LCK

Peripheral Permissions Lock

When set prevents further modification of the Peripheral Domain Access Permissions (sticky bit until reset)

0 Not Locked
1 Locked

30
SREQ

Semaphore Required

When set the hardware semaphore state enforces the semaphore lock. If a domain has access
permissions and a semaphore has locked a shared peripheral then only the domain holding the
semaphore signal can access this peripheral.

0 Semaphores have no effect
1 Semaphores are enforced

29–8
Reserved

This field is reserved.

7
D3R

Domain 3 Read Access

0 No Read Access
1 Read Access Allowed

6
D3W

Domain 3 Write Access

0 No Write Access
1 Write Access Allowed

5
D2R

Domain 2 Read Access

0 No Read Access
1 Read Access Allowed

4
D2W

Domain 2 Write Access

0 No Write Access
1 Write Access Allowed

3
D1R

Domain 1 Read Access

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 249
Confidential Proprietary

RDC_PDAPn field descriptions (continued)

Field Description

0 No Read Access
1 Read Access Allowed

2
D1W

Domain 1 Write Access

0 No Write Access
1 Write Access Allowed

1
D0R

Domain 0 Read Access

0 No Read Access
1 Read Access Allowed

0
D0W

Domain 0 Write Access

0 No Write Access
1 Write Access Allowed

8.5.7 Memory Region Start Address (RDC_MRSAn)

NOTE
The DDR space is 33-bit width. The RDC memory region
registers are 32-bit width. The RDC configuration is the most
significant bits in the DDR address space (32:1). To set the start
address for this configuration, the MRSA value should be
shifted 1-bit and added to the DDR base address. The example
below illustrates how to calculate the proper start and end
address value. Please refer to the Memory Map for the actual
DDR base address.

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

250 NXP Semiconductors
Confidential Proprietary

0x5000_0000 - 0x4000_0000 = 0x1000_0000 // Desired Start - DDR Base
0x1000_0000 / 2 = 0x800_0000 // Right-shift 1 bit

0xAE00_0000 - 0x4000_0000 = 0x6E00_0000 // Desired End - DDR Base
0x6E00_0000 / 2 = 0x3700_0000 // Right-shift 1 bit

Calculating MRSA value:

Calculating MREA value:

MRSA Value: 0x800_0000

MREA Value: 0x3700_0000

Start Address:
End Address:

DDR Base Address:

0x5000_0000
0xAE00_0000
0x4000_0000

Figure 8-5. Calculating Address Value Examble

Address: 303D_0000h base + 800h offset + (16d × i), where i=0d to 51d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SADR ReservedW

Reset x*

* Notes:
x = Undefined at reset.•

RDC_MRSAn field descriptions

Field Description

31–7
SADR

Start address for memory region

Lower bound (inclusive) modulo the defined granularity byte size of a region. The region size (granularity)
is defined for each Memory/Port in the Memory Region Map section. Region boundaries are aligned to the
minimum possible region size for the Memory/Port.

Reserved This field is reserved.

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 251
Confidential Proprietary

8.5.8 Memory Region End Address (RDC_MREAn)

NOTE
The DDR space is 33-bit width. The RDC memory region
registers are 32-bit width. The RDC configuration is the most
significant bits in the DDR address space (32:1). To set the start
address for this configuration, the MRSA value should be
shifted 1-bit and added to the DDR base address. The example
below illustrates how to calculate the proper start and end
address value. Please refer to the Memory Map for the actual
DDR base address.

0x5000_0000 - 0x4000_0000 = 0x1000_0000 // Desired Start - DDR Base
0x1000_0000 / 2 = 0x800_0000 // Right-shift 1 bit

0xAE00_0000 - 0x4000_0000 = 0x6E00_0000 // Desired End - DDR Base
0x6E00_0000 / 2 = 0x3700_0000 // Right-shift 1 bit

Calculating MRSA value:

Calculating MREA value:

MRSA Value: 0x800_0000

MREA Value: 0x3700_0000

Start Address:
End Address:

DDR Base Address:

0x5000_0000
0xAE00_0000
0x4000_0000

Figure 8-6. Calculating Address Value Examble

Address: 303D_0000h base + 804h offset + (16d × i), where i=0d to 51d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R EADR ReservedW

Reset x*

* Notes:
x = Undefined at reset.•

RDC_MREAn field descriptions

Field Description

31–7
EADR

Upper bound for memory region

Table continues on the next page...

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

252 NXP Semiconductors
Confidential Proprietary

RDC_MREAn field descriptions (continued)

Field Description

Upper bound (exclusive) modulo the defined granularity byte size of a region. The region size (granularity)
is defined for each Memory/Port in the Memory Region Map section. Region boundaries are aligned to the
minimum possible region size for the Memory/Port.

Reserved This field is reserved.

8.5.9 Memory Region Control (RDC_MRCn)

Address: 303D_0000h base + 808h offset + (16d × i), where i=0d to 51d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R LCK ENA ReservedW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Reserved D3R D3W D2R D2W D1R D1W D0R D0WW

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

RDC_MRCn field descriptions

Field Description

31
LCK

Region Lock

Locks all region fields from further modification except ENA, which can be set but not reset after LCK is
set. LCK is a sticky bit.

0 No Lock. All fields in this register may be modified.
1 Locked. No fields in this register may be modified except ENA, which may be set but not cleared.

30
ENA

Region Enable

Activates the memory region. If the region is not activated then the permissions and address boundaries
have not affect and the region will be fully accessible.

0 Memory region is not defined or restricted.
1 Memory boundaries, domain permissions and controls are in effect.

29–8
Reserved

This field is reserved.

7
D3R

Domain 3 Read Access to Region

0 Processing Domain 3 does not have Read access to the memory region
1 Processing Domain 3 has Read access to the memory region

6
D3W

Domain 3 Write Access to Region

0 Processing Domain 3 does not have Write access to the memory region
1 Processing Domain 3 has Read access to the memory region

5
D2R

Domain 2 Read Access to Region

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 253
Confidential Proprietary

RDC_MRCn field descriptions (continued)

Field Description

0 Processing Domain 2 does not have Read access to the memory region
1 Processing Domain 2 has Read access to the memory region

4
D2W

Domain 2 Write Access to Region

0 Processing Domain 2 does not have Write access to the memory region
1 Processing Domain 2 has Write access to the memory region

3
D1R

Domain 1 Read Access to Region

0 Processing Domain 1 does not have Read access to the memory region
1 Processing Domain 1 has Read access to the memory region

2
D1W

Domain 1 Write Access to Region

0 Processing Domain 1 does not have Write access to the memory region
1 Processing Domain 1 has Write access to the memory region

1
D0R

Domain 0 Read Access to Region

0 Processing Domain 0 does not have Read access to the memory region
1 Processing Domain 0 has Read access to the memory region

0
D0W

Domain 0 Write Access to Region

0 Processing Domain 0 does not have Write access to the memory region
1 Processing Domain 0 has Write access to the memory region

8.5.10 Memory Region Violation Status (RDC_MRVSn)

Address: 303D_0000h base + 80Ch offset + (16d × i), where i=0d to 51d

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R VADR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R VADR AD
Reserved

VDID

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RDC_MRVSn field descriptions

Field Description

31–5
VADR

Violating Address

The address of the denied access. The first access violation is captured. Subsequent violations are
ignored until the status register is cleared. Contents are cleared upon reading the register. Clearing of
contents occurs only when the status is read by the memory region's associated domain ID (s).

Table continues on the next page...

RDC Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

254 NXP Semiconductors
Confidential Proprietary

RDC_MRVSn field descriptions (continued)

Field Description

4
AD

Access Denied

Access to a memory region denied. This bit is cleared when this bit is written by one of the allowed
domains.

3–2
Reserved

This field is reserved.

VDID Violating Domain ID

The domain ID of the denied access. The first access violation is captured. Subsequent violations are
ignored until the status register is cleared. Contents are cleared upon reading the register.

00 Processing Domain 0
01 Processing Domain 1
10 Processing Domain 2
11 Processing Domain 3

8.6 RDC SEMA42 Memory Map/Register Definition

Only Supervisor Mode accesses are allowed on these registers. User accesses generate an
error termination.

RDC_SEMAPHORE memory map

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303B_0000 Gate Register (RDC_SEMAPHORE1_GATE0) 8 R/W 00h 8.6.1/259

303B_0001 Gate Register (RDC_SEMAPHORE1_GATE1) 8 R/W 00h 8.6.1/259

303B_0002 Gate Register (RDC_SEMAPHORE1_GATE2) 8 R/W 00h 8.6.1/259

303B_0003 Gate Register (RDC_SEMAPHORE1_GATE3) 8 R/W 00h 8.6.1/259

303B_0004 Gate Register (RDC_SEMAPHORE1_GATE4) 8 R/W 00h 8.6.1/259

303B_0005 Gate Register (RDC_SEMAPHORE1_GATE5) 8 R/W 00h 8.6.1/259

303B_0006 Gate Register (RDC_SEMAPHORE1_GATE6) 8 R/W 00h 8.6.1/259

303B_0007 Gate Register (RDC_SEMAPHORE1_GATE7) 8 R/W 00h 8.6.1/259

303B_0008 Gate Register (RDC_SEMAPHORE1_GATE8) 8 R/W 00h 8.6.1/259

303B_0009 Gate Register (RDC_SEMAPHORE1_GATE9) 8 R/W 00h 8.6.1/259

303B_000A Gate Register (RDC_SEMAPHORE1_GATE10) 8 R/W 00h 8.6.1/259

303B_000B Gate Register (RDC_SEMAPHORE1_GATE11) 8 R/W 00h 8.6.1/259

303B_000C Gate Register (RDC_SEMAPHORE1_GATE12) 8 R/W 00h 8.6.1/259

303B_000D Gate Register (RDC_SEMAPHORE1_GATE13) 8 R/W 00h 8.6.1/259

303B_000E Gate Register (RDC_SEMAPHORE1_GATE14) 8 R/W 00h 8.6.1/259

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 255
Confidential Proprietary

RDC_SEMAPHORE memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303B_000F Gate Register (RDC_SEMAPHORE1_GATE15) 8 R/W 00h 8.6.1/259

303B_0010 Gate Register (RDC_SEMAPHORE1_GATE16) 8 R/W 00h 8.6.1/259

303B_0011 Gate Register (RDC_SEMAPHORE1_GATE17) 8 R/W 00h 8.6.1/259

303B_0012 Gate Register (RDC_SEMAPHORE1_GATE18) 8 R/W 00h 8.6.1/259

303B_0013 Gate Register (RDC_SEMAPHORE1_GATE19) 8 R/W 00h 8.6.1/259

303B_0014 Gate Register (RDC_SEMAPHORE1_GATE20) 8 R/W 00h 8.6.1/259

303B_0015 Gate Register (RDC_SEMAPHORE1_GATE21) 8 R/W 00h 8.6.1/259

303B_0016 Gate Register (RDC_SEMAPHORE1_GATE22) 8 R/W 00h 8.6.1/259

303B_0017 Gate Register (RDC_SEMAPHORE1_GATE23) 8 R/W 00h 8.6.1/259

303B_0018 Gate Register (RDC_SEMAPHORE1_GATE24) 8 R/W 00h 8.6.1/259

303B_0019 Gate Register (RDC_SEMAPHORE1_GATE25) 8 R/W 00h 8.6.1/259

303B_001A Gate Register (RDC_SEMAPHORE1_GATE26) 8 R/W 00h 8.6.1/259

303B_001B Gate Register (RDC_SEMAPHORE1_GATE27) 8 R/W 00h 8.6.1/259

303B_001C Gate Register (RDC_SEMAPHORE1_GATE28) 8 R/W 00h 8.6.1/259

303B_001D Gate Register (RDC_SEMAPHORE1_GATE29) 8 R/W 00h 8.6.1/259

303B_001E Gate Register (RDC_SEMAPHORE1_GATE30) 8 R/W 00h 8.6.1/259

303B_001F Gate Register (RDC_SEMAPHORE1_GATE31) 8 R/W 00h 8.6.1/259

303B_0020 Gate Register (RDC_SEMAPHORE1_GATE32) 8 R/W 00h 8.6.1/259

303B_0021 Gate Register (RDC_SEMAPHORE1_GATE33) 8 R/W 00h 8.6.1/259

303B_0022 Gate Register (RDC_SEMAPHORE1_GATE34) 8 R/W 00h 8.6.1/259

303B_0023 Gate Register (RDC_SEMAPHORE1_GATE35) 8 R/W 00h 8.6.1/259

303B_0024 Gate Register (RDC_SEMAPHORE1_GATE36) 8 R/W 00h 8.6.1/259

303B_0025 Gate Register (RDC_SEMAPHORE1_GATE37) 8 R/W 00h 8.6.1/259

303B_0026 Gate Register (RDC_SEMAPHORE1_GATE38) 8 R/W 00h 8.6.1/259

303B_0027 Gate Register (RDC_SEMAPHORE1_GATE39) 8 R/W 00h 8.6.1/259

303B_0028 Gate Register (RDC_SEMAPHORE1_GATE40) 8 R/W 00h 8.6.1/259

303B_0029 Gate Register (RDC_SEMAPHORE1_GATE41) 8 R/W 00h 8.6.1/259

303B_002A Gate Register (RDC_SEMAPHORE1_GATE42) 8 R/W 00h 8.6.1/259

303B_002B Gate Register (RDC_SEMAPHORE1_GATE43) 8 R/W 00h 8.6.1/259

303B_002C Gate Register (RDC_SEMAPHORE1_GATE44) 8 R/W 00h 8.6.1/259

303B_002D Gate Register (RDC_SEMAPHORE1_GATE45) 8 R/W 00h 8.6.1/259

303B_002E Gate Register (RDC_SEMAPHORE1_GATE46) 8 R/W 00h 8.6.1/259

303B_002F Gate Register (RDC_SEMAPHORE1_GATE47) 8 R/W 00h 8.6.1/259

303B_0030 Gate Register (RDC_SEMAPHORE1_GATE48) 8 R/W 00h 8.6.1/259

303B_0031 Gate Register (RDC_SEMAPHORE1_GATE49) 8 R/W 00h 8.6.1/259

303B_0032 Gate Register (RDC_SEMAPHORE1_GATE50) 8 R/W 00h 8.6.1/259

303B_0033 Gate Register (RDC_SEMAPHORE1_GATE51) 8 R/W 00h 8.6.1/259

303B_0034 Gate Register (RDC_SEMAPHORE1_GATE52) 8 R/W 00h 8.6.1/259

Table continues on the next page...

RDC SEMA42 Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

256 NXP Semiconductors
Confidential Proprietary

RDC_SEMAPHORE memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303B_0035 Gate Register (RDC_SEMAPHORE1_GATE53) 8 R/W 00h 8.6.1/259

303B_0036 Gate Register (RDC_SEMAPHORE1_GATE54) 8 R/W 00h 8.6.1/259

303B_0037 Gate Register (RDC_SEMAPHORE1_GATE55) 8 R/W 00h 8.6.1/259

303B_0038 Gate Register (RDC_SEMAPHORE1_GATE56) 8 R/W 00h 8.6.1/259

303B_0039 Gate Register (RDC_SEMAPHORE1_GATE57) 8 R/W 00h 8.6.1/259

303B_003A Gate Register (RDC_SEMAPHORE1_GATE58) 8 R/W 00h 8.6.1/259

303B_003B Gate Register (RDC_SEMAPHORE1_GATE59) 8 R/W 00h 8.6.1/259

303B_003C Gate Register (RDC_SEMAPHORE1_GATE60) 8 R/W 00h 8.6.1/259

303B_003D Gate Register (RDC_SEMAPHORE1_GATE61) 8 R/W 00h 8.6.1/259

303B_003E Gate Register (RDC_SEMAPHORE1_GATE62) 8 R/W 00h 8.6.1/259

303B_003F Gate Register (RDC_SEMAPHORE1_GATE63) 8 R/W 00h 8.6.1/259

303B_0040 Reset Gate Write (RDC_SEMAPHORE1_RSTGT_W) 16 R/W 0000h 8.6.2/260

303B_0040 Reset Gate Read (RDC_SEMAPHORE1_RSTGT_R) 16 R/W 0000h 8.6.3/261

303C_0000 Gate Register (RDC_SEMAPHORE2_GATE0) 8 R/W 00h 8.6.1/259

303C_0001 Gate Register (RDC_SEMAPHORE2_GATE1) 8 R/W 00h 8.6.1/259

303C_0002 Gate Register (RDC_SEMAPHORE2_GATE2) 8 R/W 00h 8.6.1/259

303C_0003 Gate Register (RDC_SEMAPHORE2_GATE3) 8 R/W 00h 8.6.1/259

303C_0004 Gate Register (RDC_SEMAPHORE2_GATE4) 8 R/W 00h 8.6.1/259

303C_0005 Gate Register (RDC_SEMAPHORE2_GATE5) 8 R/W 00h 8.6.1/259

303C_0006 Gate Register (RDC_SEMAPHORE2_GATE6) 8 R/W 00h 8.6.1/259

303C_0007 Gate Register (RDC_SEMAPHORE2_GATE7) 8 R/W 00h 8.6.1/259

303C_0008 Gate Register (RDC_SEMAPHORE2_GATE8) 8 R/W 00h 8.6.1/259

303C_0009 Gate Register (RDC_SEMAPHORE2_GATE9) 8 R/W 00h 8.6.1/259

303C_000A Gate Register (RDC_SEMAPHORE2_GATE10) 8 R/W 00h 8.6.1/259

303C_000B Gate Register (RDC_SEMAPHORE2_GATE11) 8 R/W 00h 8.6.1/259

303C_000C Gate Register (RDC_SEMAPHORE2_GATE12) 8 R/W 00h 8.6.1/259

303C_000D Gate Register (RDC_SEMAPHORE2_GATE13) 8 R/W 00h 8.6.1/259

303C_000E Gate Register (RDC_SEMAPHORE2_GATE14) 8 R/W 00h 8.6.1/259

303C_000F Gate Register (RDC_SEMAPHORE2_GATE15) 8 R/W 00h 8.6.1/259

303C_0010 Gate Register (RDC_SEMAPHORE2_GATE16) 8 R/W 00h 8.6.1/259

303C_0011 Gate Register (RDC_SEMAPHORE2_GATE17) 8 R/W 00h 8.6.1/259

303C_0012 Gate Register (RDC_SEMAPHORE2_GATE18) 8 R/W 00h 8.6.1/259

303C_0013 Gate Register (RDC_SEMAPHORE2_GATE19) 8 R/W 00h 8.6.1/259

303C_0014 Gate Register (RDC_SEMAPHORE2_GATE20) 8 R/W 00h 8.6.1/259

303C_0015 Gate Register (RDC_SEMAPHORE2_GATE21) 8 R/W 00h 8.6.1/259

303C_0016 Gate Register (RDC_SEMAPHORE2_GATE22) 8 R/W 00h 8.6.1/259

303C_0017 Gate Register (RDC_SEMAPHORE2_GATE23) 8 R/W 00h 8.6.1/259

303C_0018 Gate Register (RDC_SEMAPHORE2_GATE24) 8 R/W 00h 8.6.1/259

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 257
Confidential Proprietary

RDC_SEMAPHORE memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303C_0019 Gate Register (RDC_SEMAPHORE2_GATE25) 8 R/W 00h 8.6.1/259

303C_001A Gate Register (RDC_SEMAPHORE2_GATE26) 8 R/W 00h 8.6.1/259

303C_001B Gate Register (RDC_SEMAPHORE2_GATE27) 8 R/W 00h 8.6.1/259

303C_001C Gate Register (RDC_SEMAPHORE2_GATE28) 8 R/W 00h 8.6.1/259

303C_001D Gate Register (RDC_SEMAPHORE2_GATE29) 8 R/W 00h 8.6.1/259

303C_001E Gate Register (RDC_SEMAPHORE2_GATE30) 8 R/W 00h 8.6.1/259

303C_001F Gate Register (RDC_SEMAPHORE2_GATE31) 8 R/W 00h 8.6.1/259

303C_0020 Gate Register (RDC_SEMAPHORE2_GATE32) 8 R/W 00h 8.6.1/259

303C_0021 Gate Register (RDC_SEMAPHORE2_GATE33) 8 R/W 00h 8.6.1/259

303C_0022 Gate Register (RDC_SEMAPHORE2_GATE34) 8 R/W 00h 8.6.1/259

303C_0023 Gate Register (RDC_SEMAPHORE2_GATE35) 8 R/W 00h 8.6.1/259

303C_0024 Gate Register (RDC_SEMAPHORE2_GATE36) 8 R/W 00h 8.6.1/259

303C_0025 Gate Register (RDC_SEMAPHORE2_GATE37) 8 R/W 00h 8.6.1/259

303C_0026 Gate Register (RDC_SEMAPHORE2_GATE38) 8 R/W 00h 8.6.1/259

303C_0027 Gate Register (RDC_SEMAPHORE2_GATE39) 8 R/W 00h 8.6.1/259

303C_0028 Gate Register (RDC_SEMAPHORE2_GATE40) 8 R/W 00h 8.6.1/259

303C_0029 Gate Register (RDC_SEMAPHORE2_GATE41) 8 R/W 00h 8.6.1/259

303C_002A Gate Register (RDC_SEMAPHORE2_GATE42) 8 R/W 00h 8.6.1/259

303C_002B Gate Register (RDC_SEMAPHORE2_GATE43) 8 R/W 00h 8.6.1/259

303C_002C Gate Register (RDC_SEMAPHORE2_GATE44) 8 R/W 00h 8.6.1/259

303C_002D Gate Register (RDC_SEMAPHORE2_GATE45) 8 R/W 00h 8.6.1/259

303C_002E Gate Register (RDC_SEMAPHORE2_GATE46) 8 R/W 00h 8.6.1/259

303C_002F Gate Register (RDC_SEMAPHORE2_GATE47) 8 R/W 00h 8.6.1/259

303C_0030 Gate Register (RDC_SEMAPHORE2_GATE48) 8 R/W 00h 8.6.1/259

303C_0031 Gate Register (RDC_SEMAPHORE2_GATE49) 8 R/W 00h 8.6.1/259

303C_0032 Gate Register (RDC_SEMAPHORE2_GATE50) 8 R/W 00h 8.6.1/259

303C_0033 Gate Register (RDC_SEMAPHORE2_GATE51) 8 R/W 00h 8.6.1/259

303C_0034 Gate Register (RDC_SEMAPHORE2_GATE52) 8 R/W 00h 8.6.1/259

303C_0035 Gate Register (RDC_SEMAPHORE2_GATE53) 8 R/W 00h 8.6.1/259

303C_0036 Gate Register (RDC_SEMAPHORE2_GATE54) 8 R/W 00h 8.6.1/259

303C_0037 Gate Register (RDC_SEMAPHORE2_GATE55) 8 R/W 00h 8.6.1/259

303C_0038 Gate Register (RDC_SEMAPHORE2_GATE56) 8 R/W 00h 8.6.1/259

303C_0039 Gate Register (RDC_SEMAPHORE2_GATE57) 8 R/W 00h 8.6.1/259

303C_003A Gate Register (RDC_SEMAPHORE2_GATE58) 8 R/W 00h 8.6.1/259

303C_003B Gate Register (RDC_SEMAPHORE2_GATE59) 8 R/W 00h 8.6.1/259

303C_003C Gate Register (RDC_SEMAPHORE2_GATE60) 8 R/W 00h 8.6.1/259

303C_003D Gate Register (RDC_SEMAPHORE2_GATE61) 8 R/W 00h 8.6.1/259

303C_003E Gate Register (RDC_SEMAPHORE2_GATE62) 8 R/W 00h 8.6.1/259

Table continues on the next page...

RDC SEMA42 Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

258 NXP Semiconductors
Confidential Proprietary

RDC_SEMAPHORE memory map (continued)

Absolute
address

(hex)
Register name

Width
(in bits)

Access Reset value
Section/

page

303C_003F Gate Register (RDC_SEMAPHORE2_GATE63) 8 R/W 00h 8.6.1/259

303C_0040 Reset Gate Write (RDC_SEMAPHORE2_RSTGT_W) 16 R/W 0000h 8.6.2/260

303C_0040 Reset Gate Read (RDC_SEMAPHORE2_RSTGT_R) 16 R/W 0000h 8.6.3/261

8.6.1 Gate Register (RDC_SEMAPHOREx_GATEn)

Each semaphore gate is implemented in a 4-bit finite state machine, right-justified in a
byte data structure. The hardware uses the logical bus master number (master_index) in
conjunction with the data patterns to validate all attempted write operations. Only
processor bus masters can modify the gate registers. Once locked, a gate can (and must)
be opened (unlocked) by the locking processor core.

Multiple gate values can be read in a single access, but only a single gate can be updated
via a write operation at a time. Attempted writes with a data value that is neither the
unlock value nor the appropriate lock value (master_index + 1) are simply treated as "no
operation" and do not affect any gate state. Attempts to write multiple gates in a single
aligned access with a size larger than an 8-bit (byte) reference generate an error
termination and do not allow any gate state changes.

Address: Base address + 0h offset + (1d × i), where i=0d to 63d

Bit 7 6 5 4 3 2 1 0

Read 0 LDOM
GTFSM

Write

Reset 0 0 0 0 0 0 0 0

RDC_SEMAPHOREx_GATEn field descriptions

Field Description

7–6
Reserved

This field is reserved.
This read-only field is reserved and always has the value 0.

5–4
LDOM

Read-only bits. They indicate which domain had currently locked the gate.

00 The gate is locked by domain 0. (True if bits [3:0] do not equal 0000.)
01 The gate has been locked by domain 1.
10 The gate has been locked by domain 2.
11 The gate has been locked by domain 3.

GTFSM Gate Finite State Machine.

The state of the gate reflects the last processor that locked it, which can be useful during system debug.

The hardware gate is maintained in a 16-state implementation, defined as:

Table continues on the next page...

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 259
Confidential Proprietary

RDC_SEMAPHOREx_GATEn field descriptions (continued)

Field Description

0000 The gate is unlocked (free).
0001 The gate has been locked by processor with master_index = 0.
0010 The gate has been locked by processor with master_index = 1.
0011 The gate has been locked by processor with master_index = 2.
0100 The gate has been locked by processor with master_index = 3.
0101 The gate has been locked by processor with master_index = 4.
0110 The gate has been locked by processor with master_index = 5.
0111 The gate has been locked by processor with master_index = 6.
1000 The gate has been locked by processor with master_index = 7.
1001 The gate has been locked by processor with master_index = 8.
1010 The gate has been locked by processor with master_index = 9.
1011 The gate has been locked by processor with master_index = 10.
1100 The gate has been locked by processor with master_index = 11.
1101 The gate has been locked by processor with master_index = 12.
1110 The gate has been locked by processor with master_index = 13.
1111 The gate has been locked by processor with master_index = 14.

8.6.2 Reset Gate Write (RDC_SEMAPHOREx_RSTGT_W)

Although the intent of the hardware gate implementation specifies a protocol where the
locking processor must unlock the gate, it is recognized that system operation may
require a reset function to re-initialize the state of any gate(s) without requiring a system-
level reset.

To support this special gate reset requirement, the RDC Semaphores module implements
a "secure" reset mechanism that allows a hardware gate (or all the gates) to be initialized
by following a specific dual-write access pattern. Using a technique similar to that
required for the servicing of a software watchdog timer, the secure gate reset requires two
consecutive writes with predefined data patterns from the same processor to force the
clearing of the specified gate(s). The required access pattern is:

1. A processor performs a 16-bit write to the RDC_SEMA42RSTGT memory location.
The least significant byte (RDC_SEMA42RSTGT[RSTGDP]) must be 0xE2; the
most significant byte is a "don't_care" for this reference.

2. The same processor then performs a second 16-bit write to the
RDC_SEMA42RSTGT location. For this write, the lower byte
(RDC_SEMA42RSTGT[RSTGDP]) is the logical complement of the first data
pattern (0x1D) and the upper byte (RDC_SEMA42RSTGT[RSTGTN]) specifies the
gate(s) to be reset. This gate field can specify a single gate be cleared, or else that all
gates are to be cleared. If the same processor writes incorrect data on the second
access or another processor performs the second write access, the special gate reset
sequence is aborted and no error signal will be asserted.

RDC SEMA42 Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

260 NXP Semiconductors
Confidential Proprietary

3. Reads of the RDC_SEMA42RSTGT location return information on the 2-bit state
machine (RDC_SEMA42RSTGT[RSTGSM]) that implements this function, the bus
master performing the reset (RDC_SEMA42RSTGT[RSTGMS]), and the gate
number(s) last cleared (RDC_SEMA42RSTGT[RSTGTN]). Reads of the
RDC_SEMA42RSTGT register do not affect the secure reset finite state machine in
any manner.

Address: Base address + 40h offset

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read
RSTGTN

0

Write RSTGDP

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RDC_SEMAPHOREx_RSTGT_W field descriptions

Field Description

15–8
RSTGTN

Reset Gate Number. This 8-bit field specifies the specific hardware gate to be reset. This field is updated
by the second write.

If RSTGTN < 64, then reset the single gate defined by RSTGTN, else reset all the gates.

RSTGDP Reset Gate Data Pattern. This write-only field is accessed with the specified data patterns on the two
consecutive writes to enable the gate reset mechanism. For the first write, RSTGDP = 0xE2 while the
second write requires RSTGDP = 0x1D.

8.6.3 Reset Gate Read (RDC_SEMAPHOREx_RSTGT_R)

Although the intent of the hardware gate implementation specifies a protocol where the
locking processor must unlock the gate, it is recognized that system operation may
require a reset function to re-initialize the state of any gate(s) without requiring a system-
level reset.

To support this special gate reset requirement, the RDC Semaphores module implements
a "secure" reset mechanism that allows a hardware gate (or all the gates) to be initialized
by following a specific dual-write access pattern. Using a technique similar to that
required for the servicing of a software watchdog timer, the secure gate reset requires two
consecutive writes with predefined data patterns from the same processor to force the
clearing of the specified gate(s). The required access pattern is:

1. A processor performs a 16-bit write to the RDC_SEMA42RSTGT memory location.
The least significant byte (RDC_SEMA42RSTGT[RSTGDP]) must be 0xE2; the
most significant byte is a "don't_care" for this reference.

2. The same processor then performs a second 16-bit write to the
RDC_SEMA42RSTGT location. For this write, the lower byte
(RDC_SEMA42RSTGT[RSTGDP]) is the logical complement of the first data
pattern (0x1D) and the upper byte (RDC_SEMA42RSTGT[RSTGTN]) specifies the

Chapter 8 Resource Domain Controller (RDC)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 261
Confidential Proprietary

gate(s) to be reset. This gate field can specify a single gate be cleared, or else that all
gates are to be cleared. If the same processor writes incorrect data on the second
access or another processor performs the second write access, the special gate reset
sequence is aborted and no error signal will be asserted.

3. Reads of the RDC_SEMA42RSTGT location return information on the 2-bit state
machine (RDC_SEMA42RSTGT[RSTGSM]) that implements this function, the bus
master performing the reset (RDC_SEMA42RSTGT[RSTGMS]), and the gate
number(s) last cleared (RDC_SEMA42RSTGT[RSTGTN]). Reads of the
RDC_SEMA42RSTGT register do not affect the secure reset finite state machine in
any manner.

Address: Base address + 40h offset

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read
RSTGTN

0 RSTGSM RSTGMS

Write

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RDC_SEMAPHOREx_RSTGT_R field descriptions

Field Description

15–8
RSTGTN

Reset Gate Number. This 8-bit field specifies the specific hardware gate to be reset. This field is updated
by the second write.

If RSTGTN < 64, then reset the single gate defined by RSTGTN, else reset all the gates.

7–6
Reserved

This field is reserved.
This read-only field is reserved and always has the value 0.

5–4
RSTGSM

Reset Gate Finite State Machine. Reads of the RDC_SEMA42RSTGT register return the encoded state
machine value. Note the RSTGSM = 10 state is valid for only a single machine cycle, so it is impossible
for a read to return this value. The reset state machine is maintained in a 2-bit, 3-state implementation,
defined as:

00 Idle, waiting for the first data pattern write.
01 Waiting for the second data pattern write.
10 The 2-write sequence has completed. Generate the specified gate reset(s). After the reset is

performed, this machine returns to the idle (waiting for first data pattern write) state. The "01" state
persists for only one clock cycle. Software will never be able to observe this state.

11 This state encoding is never used and therefore reserved.

RSTGMS Reset Gate Bus Master. This 4-bit read-only field records the logical number of the bus master performing
the gate reset function. The reset function requires that the two consecutive writes to this register must be
initiated by the same bus master to succeed. This field is updated each time a write to this register occurs.

The association between system bus master port numbers, the associated bus master device, and the
logical processor number is SoC-specific. Consult the device reference manual for this information.

RDC SEMA42 Memory Map/Register Definition

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

262 NXP Semiconductors
Confidential Proprietary

Chapter 9
TrustZone Address Space Controller (TZASC)

9.1 Overview
The TrustZone Address Space Controller (TZASC) protects security-sensitive SW and
data in a trusted execution environment against potentially compromised SW running on
the platform.

The TZASC block diagram is shown in figure below.

TZASC

 Clock and reset

 AXI bus

 Security lock signal

 APB Interrupt signal Slave
Interface

Slave
Interface

Master
Interface

Address
Region Control

AXI Bus
(to DDR Controller)

Figure 9-1. TZASC Block Diagram

The TZASC is an IP by Arm ("CoreLink™ TrustZone Address Space Controller
TZC-380"), designed to provide configurable protection over program (SW) memory
space.

The main features of TZASC are:

• Supports 16 independent address regions
• Access controls are independently programmable for each address region
• Sensitive registers may be locked
• Host interrupt may be programmed to signal attempted access control violations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 263
Confidential Proprietary

• AXI master/slave interfaces for transactions
• APB slave interface for configuration and status reporting

NOTE
In this device it is necessary to set
TZASC_ID_SWAP_BYPASS in IOMUXC_GPR10[1] to
avoid an AXI bus error when using GPU. Further details about
TZASC_ID_SWAP_BYPASS can be found in the device
Reference Manual.

9.2 Clocks
The table found here describes the clock sources for TZASC.

Table 9-1. TZASC Clocks

Clock name Clock Root Description

aclk ccm_clk_root Module clock

9.3 Address Mapping in various memory mapping modes
The TZASC region base address starts at the beginning of DDR memory space
(0x40000000) instead of the beginning of memory map (0x00000000). In this case the
addresses configured in TZASC controller will be 1GB (0x40000000) offset and does not
match the local addresses.

For example, setting region_setup_low_x=0xBE000000 maps
DDR_ADDR=0xFE000000, the same behavior is observed with fail_address_x registers.

Memory "aliasing" implications on TZASC settings - in systems which does not utilize
the maximal supported DDR space the controller is designed for, the whole DDR
memory map becomes "aliased" (replicated) by the size of the physical memory used. In
such cases, the TZASC must be configured to protect all aliased regions as well (i.e.
effectively reducing the number of available TZASC regions, since all aliased regions
must be handled, for each "real" space needing protection).

For complete details on TZASC functionality and the programming model, see the Arm
document, “CoreLink™ TrustZone Address Space Controller TZC-380 Technical
Reference Manual, (Rev r0p1 or newer)”, available at http://infocenter.arm.com.

Clocks

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

264 NXP Semiconductors
Confidential Proprietary

Chapter 10
Cryptographic Acceleration and Assurance Module
(CAAM)

10.1 Overview of CAAM (cryptographic acceleration and
assurance module) functionality

CAAM is the chip's cryptographic acceleration and offloading hardware and combines
cryptographic and other mathematical functions to create a modular and scalable
hardware acceleration and assurance engine. CAAM implements the following functions:

• Block encryption algorithms
• Stream cipher algorithms
• Hashing algorithms
• Public key algorithms
• Run-time integrity checking
• Secure Memory controller
• Hardware random number generator

This version of CAAM also enables significant system-level performance improvements
by providing higher-level cryptographic protocol operations.

CAAM includes the following interfaces:

• A Register interface for the processor to write configuration and command
information, and to read status information

• A memory slave interface that gives access to the Secure Memory
• A DMA interface that allows CAAM to read/write data from external memory

• Job Queue Controller with 3 Job Rings
• 1 Descriptor Controller (DECO) :

• Responsible for managing the sequencing, context, and execution of descriptors
• Responsible for initating data transfers via the DMA interface
• Responsible for managing keys and directing data to and from CHA(s)
• Responsible for performing packet header and trailer processing as defined by

the descriptor

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 265
Confidential Proprietary

• Run-Time Integrity Checker (RTIC)
• Crypto Hardware Accelerators (CHAs)

• A Public Key Hardware Accelerator (PKHA)
• A Random Number Generator (RNG)
• An Advanced Encryption Standard Hardware Accelerator (AESA)
• A Message Digest Hardware Accelerator (MDHA)
• A Data Encryption Standard Hardware Accelerator (DESA)
• An Alleged RC-4 Hardware Accelerator (AFHA)

This figure shows the block diagram for CAAM.

XBAR

Memory Bus

DMA

DECO
CCB

AESAMDHA

DESA

Job Queue Controller

RTICHT

PKHA

RNG

JR0

JR2

. . .

Slave Bus Interface

Register Interface

to / from
CCSR registers

STCSOFT.CAAM_SPEC_M845S.006

mscale8quad

Secure Key
 Module

Master
Key

Security
State

to DECO
blob logic

AFHA

AXI
Slave
Bus

Secure
Memory

Controller

Secure
Memory

RAM

Figure 10-1. CAAM block diagram

10.2 Feature summary
CAAM includes the following features:

• SoC HW interfaces
• A 32-bit slave bus register interface
• A 32-bit data / 32-bit address DMA master bus interface

Feature summary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

266 NXP Semiconductors
Confidential Proprietary

• Automatic byte, half-word ordering of data read/written
• Scatter/gather support for data

• Offloading of cryptographic functions via a programmable job descriptor language
• Job Descriptors can contain multiple function commands.
• Job Descriptors can be chained to additional Job Descriptors.
• Job Descriptors can be submitted via 3 separate hardware-implemented Job

Rings.
• Each Job Ring implements access controls.

• Secure Memory
• 32-bit AXI Slave Bus Interface
• One default partition, plus 7 optional partitions
• Each partition can be owned by any Job Ring owner
• Partitions are variable-sized: zero or more pages
• Pages can be dynamically allocated to or de-allocated from partitions
• Access control per partition

• Partition owner can allow/disallow access to partition by specific DID value
• Partition can be designated as accessible via read and/or write transactions
• Partition can be designated as accessible only via key-read job descriptor

transactions
• Partition can be designated as accessible via job-ring-specific trusted

descriptors
• Partition can be designated as permitting or not permitting export and import

of Secure Memory blobs
• Automatic Zeroization of Secure Memory

• Zeroization on reset, failure, and requested de-allocation of pages or
partitions

• Partitions can be excluded from automatic zeroization
• Special-purpose cryptographic keys

• Black keys
• Keys stored in memory in encrypted form and decrypted on-the-fly when

used
• AES-ECB or AES-CCM encryption using a 256-bit key

• Export and import of cryptographic blobs
• Data encapsulated in a cryptographic data structure for storage in non-

volatile memory
• AES-CCM encryption using a 256-bit key
• Each blob encrypted using its own randomly generated blob key.
• Blob key encrypted using a non-volatile blob key encryption key
• Blob key encryption key derived from non-volatile master key input
• General memory blob key encryption key derived from non-volatile master

key input

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 267
Confidential Proprietary

• Secure memory blob key encryption key derived from partition access
permission bits and non-volatile master key input

• Separate blob key encryption keys for trusted mode, secure mode, and non-
secure mode

• Public key cryptography
• Modular Arithmetic

• Addition, subtraction, multiplication, exponentiation, reduction, inversion,
greatest common denominator

• Both integer and binary polynomial functions
• Modulus size up to 4096 bits
• Arithmetic operations performed with 32-bit-digit arithmetic unit
• Timing-equalized and normal versions of modular exponentiation
• Primality testing up to 4096 bits

• DSA
• DSA sign and verify
• Verify with private key
• DSA key generation
• Non-timing-equalized versions of private-key operations
• Timing-equalized versions of sign and key generation
• Non-timing-equalized versions of sign and key generation

• Diffie-Hellman
• Diffie-Hellman (DH) key agreement
• Key generation
• Timing-equalized versions of key agreement and key generation
• Non-timing-equalized versions of key agreement and key generation

• RSA
• Modulus size up to 4096 bits
• Public and Private Key operations
• Private keys in (n,d), (p,q,d), or 5-part (p,q,dp,dq,c) forms
• Private Key operations (decrypt, sign) timing equalized to thwart side

channel attack
• Non-timing-equalized versions of private-key operations

• Elliptic curve cryptography
• Point add, point double, point multiply on both prime field and binary

polynomial field curves
• Point validation (is point on curve) both prime field and binary polynomial

field curves
• Timing-equalized and normal versions of point multiplication
• Public Key validation
• Elliptic curve digital signature algorithm (ECDSA) sign and verify
• ECDSA verify with private key

Feature summary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

268 NXP Semiconductors
Confidential Proprietary

• Elliptic curve Diffie-Hellman key agreement
• ECDSA and ECDH key generation
• Modulus size up to 1024 bits
• Timing-equalized versions of ECDSA sign and key generation
• Non-timing-equalized versions of ECDSA sign and key generation

• Authentication
• Hashing algorithms

• MD5
• SHA-1
• SHA-224
• SHA-256

• Message authentication codes (MAC)
• HMAC-all hashing algorithms
• AES-CMAC
• AES-XCBC-MAC

• ICV checking
• Authenticated encryption algorithms (also known as AEAD algorithms)

• AES-CCM (Counter with CBC-MAC)
• AES-GCM (Galois counter mode)

• Symmetric key block ciphers
• AES (128-bit, 192-bit or 256-bit keys)
• DES (64-bit keys, including key parity)
• 3DES (128-bit or 192-bit keys, including key parity)
• Cipher modes

• ECB, CBC, OFB for both AES and DES block ciphers
• CBC-CS2, CFB128 and CTR for AES
• CFB8 for DES

• Symmetric key stream ciphers
• ArcFour (alleged RC4 with 40 .. 128 bit keys)

• Random-number generation
• Entropy is generated via an independent free running ring oscillator
• For lower-power consumption, oscillator is off when not generating entropy
• Designed to be NIST-compliant, pseudo random-number generator seeded using

hardware-generated entropy
• Run-time integrity checking

• SHA-256 message authentication
• Segmented data-gathering to support non-contiguous data blocks in memory
• Support for up to four independent memory blocks

• Advanced protocol support
• Support for protocol-specific padding

• Virtualization features

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 269
Confidential Proprietary

• Black keys are cryptographically separated per security domain
• Blobs are cryptographically separated per security domain
• Trusted descriptors are cryptographically separated per security domain
• Secure Memory partitions are separated per security domain

10.3 CAAM implementation
CAAM is programmed using CAAM Job Descriptors that indicate the operations to be
performed and that point to the message and associated data. CAAM incorporates a DMA
engine to fetch the descriptors, read the message data, and write the results of the
operations. The DMA engine provides a scatter/gather capability so that CAAM can read
and write data scattered in memory. CAAM may be configured by means of software for
dynamic changes in byte ordering. The default configuration for this version of CAAM is
little-endian mode.

10.3.1 CAAM submodules

The CAAM core contains the following submodules:

• Master bus interface
• Slave bus interface
• Register bus interface
• Job Queue Controller (JQC)
• Run-Time Integrity Checker (RTIC)
• Descriptor Controller (DECO)
• CHA control block (CCB)
• Cryptographic hardware accelerators (CHAs)

• Public key hardware accelerator (PKHA)
• Data encryption standard (DES) accelerator (DESA)
• Advanced encryption standard (AES) accelerator (AESA)
• Message digest (hashing) hardware accelerator (MDHA)
• Random-number generator (RNG)
• ARC four (alleged RC4) hardware accelerator (AFHA)

• Secure memory

JQC fetches descriptors that tell CAAM which cryptographic operations to perform and
on what data to operate. DECO decodes descriptors and executes the commands within
them. For those descriptor commands that use one or more CHAs, DECO communicates
with the CHAs by means of the CCB.

CAAM implementation

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

270 NXP Semiconductors
Confidential Proprietary

10.3.2 CAAM Versions with Encryption Disabled

In some situations it may be desirable to disable the encryption algorithms implemented
in CAAM. When the CAAM clock disable fuse is blown, the clock to CAAM is
permanently disabled. In this case no CAAM operations are possible.When the CAAM
encryption disable fuse is blown, all the CHAs in CAAM that implement encryption
algorithms are permanently disabled.

In encryption-disabled SoCs the following bit fields will return 0:
• CHA Number register, AESNUM bit field
• CHA Number register, DESNUM bit field
• CHA Number register, ARC4NUM bit field
• CHA Number register, PKNUM bit field

When these CHAs are disabled CAAM acts as if these CHAs are not implemented. A
descriptor that attempts to use one of these CHAs will terminate with error code:
Source=2h (CCB), ERRID=Fh (Invalid CHA).

Note that the following CHAs will continue to operate even in encryption-disabled SoCs:
• MDHA
• RNG

10.4 CAAM modes of operation
CAAM can operate in the following security modes:

• Trusted
• Secure
• Non-secure
• Fail

These modes are based on the current platform security state. The primary difference
between these modes is that they make different cryptographic keys available. Within
each mode there are keys that are volatile (that is, a different key value is used for each
power-on session) and keys that are non-volatile (that is, the same key value is available
during each power-on session).

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 271
Confidential Proprietary

10.4.1 Platform Security State

The current security mode can be identified in the CAAM status register's Mode of
Operation (MOO) field.

10.4.1.1 The effect of security state on volatile keys

CAAM implements three 256-bit volatile cryptographic keys. At each power up, boot
code must test and instantiate the RNG. After instantiation, (or as part of RNG
instantiation), the three volatile secret keys must be generated. These values are stored
within secure key registers in CAAM. The values are zeroized when CAAM transitions
to fail mode (in other words, when the platform security state machine transitions to fail
state).

The available volatile keys, (which are located in CAAM's secure key module), are as
follows:

• Job descriptor key encryption key (JDKEK) - used by Job Descriptors for encrypting
black keys (encrypted keys)

• Trusted descriptor key encryption key (TDKEK) - used by trusted descriptors for
encrypting black keys

• Trusted descriptor signing key (TDSK) - used to authenticate trusted descriptors
(digitally signed Job Descriptors)

Note that the JDKEK, the TDKEK, and the TDSK are all available for use by CAAM in
trusted mode, secure mode, and non-secure mode1, but this does not cause any security
issue. The reason that this is not a security issue is that the trusted mode and secure mode
are intended to use the same values for these keys, and these key values will be different
when in non-secure mode (which is not allowed to obtain the trusted/secure state mode
values of these keys). The reason that CAAM cannot obtain the trusted/secure state mode
values of these keys when in non-secure mode is that new values for these keys are
generated by CAAM's hardware RNG at each POR, and these keys are zeroized when
entering fail mode. The only paths from trusted state or secure state to non-secure state
pass through fail state or through a hardware reset, and in each case the keys will be
cleared. The only path from non-secure state to either trusted state or secure state is
through a hardware reset, which clears the keys. Consequently, when operating in non-
secure mode CAAM does not have access to trusted mode/secure mode values of these
keys.

1. The JDKEK, TDKEK, and TDSK are readable and writable while in non-secure mode to facilitate hardware testing.

CAAM modes of operation

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

272 NXP Semiconductors
Confidential Proprietary

10.4.1.2 The effect of security state on non-volatile keys

Data that must be retained when the system is powered off must be stored in external
non-volatile storage. Some of this data is disclosure-sensitive (such as data rights
management keys) and must be protected even when the system is powered off. CAAM
implements non-volatile cryptographic keys that can be used to encrypt sensitive data
during one power-on cycle, and then decrypt it during a subsequent power-on cycle.
These non-volatile keys (blob key encryption keys) are derived from the master key
input. It is recommended that the master key value be unique for each device.

When CAAM is operating in trusted mode or secure mode, CAAM derives general
memory blob key encryption keys (GM BKEKs) andSecure Memory blob key encryption
keys (SM BKEKs) from its master key input. When CAAM is operating in non-secure
mode or fail mode, BKEKs are derived from the non-volatile test key, a hardwired
constant (all 0's) used for known-answer testing.

10.4.2 Keys available in different security modes

The primary difference between CAAM's security modes is that different cryptographic
keys available are available in the different modes. See each mode's section for the
description of the mode's special keys.

10.4.2.1 Keys available in trusted mode

While in trusted mode, CAAM can use special keys as listed in this table.

Table 10-1. Special keys used in trusted mode

Key Characteristic(s) Function(s)

Job descriptor key
encryption key

• At POR, a new value (shared with secure
mode but not shared with non-secure mode)
should be generated from the RNG after
instantiation

• Zeroized when entering fail mode

Used for automatic key encryption and
decryption when executing Job Descriptors,
Trusted Descriptors and Shared Descriptors

Trusted descriptor key
encryption key

Can be used for automatic key encryption and
decryption when executing trusted
descriptors, including shared descriptors
referenced by trusted descriptors.

Trusted descriptor
signing key

Used for signing, verifying and re-signing
Trusted Descriptors

Master key derivation key Non-volatile, shared with secure mode, but uses a
different key derivation function to generate keys
not shared with trusted mode, non-secure mode or
fail mode

Used for blob encapsulation or decapsulation
operations

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 273
Confidential Proprietary

10.4.2.2 Keys available in secure mode

While in secure mode, CAAM can use special keys as listed in this table.

Table 10-2. Special keys used in secure mode

Key Characteristic(s) Function(s)

Job descriptor key
encryption key

• At POR a new value (shared with trusted
mode but not shared with non-secure
mode) should be generated from the RNG
after instantiation

• Zeroized when entering fail mode

Used for automatic key encryption and
decryption when executing Job Descriptors,
trusted descriptors and shared descriptors

Trusted descriptor key
encryption key

Can be used for automatic key encryption and
decryption when executing trusted descriptors,
including shared descriptors referenced by
trusted descriptors

Trusted descriptor
signing key

Used for signing, verifying and re-signing
Trusted Descriptors

Master key derivation key Non-volatile, shared with trusted mode, but uses
a different key derivation function input to
generate keys not shared with trusted mode,
non-secure mode or fail mode

Used for blob encapsulation or decapsulation
operations

10.4.2.3 Keys available in non-secure mode

In non-secure mode a fixed default key with a known value is used in place of the master
key derivation key. This allows the cryptographic blob mechanism to be tested using
known test results. The volatile key registers are read and write accessible until they are
locked, which allows testing using known test results. While in non-secure mode CAAM
can use special keys as listed below.

Table 10-3. Special keys used in non-secure mode

Key Characteristic(s) Function(s)

Job descriptor key
encryption key

• At POR, a new value (not shared with
trusted mode or secure mode) should be
generated from the RNG after instantiation

• Zeroized when entering fail mode

• Can be read and overwritten for testing
• Used for automatic key encryption and

decryption when executing Job
Descriptors, trusted descriptors, and
shared descriptors

Trusted descriptor key
encryption key

• Can be read and overwritten for testing
• Can be used for automatic key encryption

and decryption when executing trusted
descriptors, including shared descriptors
referenced by a trusted descriptors

Trusted descriptor
signing key

• Can be read and overwritten for testing
• Used for testing the signing, verifying and

re-signing of trusted descriptors

Master key derivation key Non-volatile, fixed, and not shared with trusted
mode or secure mode

Used for testing blob encapsulation or
decapsulation operations

CAAM modes of operation

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

274 NXP Semiconductors
Confidential Proprietary

10.4.2.4 Keys available in fail mode

When CAAM transitions to fail mode, CAAM clears all registers that could potentially
hold sensitive data2. Because of this, cryptographic operations that are in progress when
the transition occurs will likely not produce the correct result. If this is the case, the
operation completes with an error indication.

10.5 CAAM hardware functional description
As shown in Figure 10-1, CAAM functionality is aligned with several major
subcomponents. This table describes these subcomponents.

Table 10-4. CAAM subcomponents

Description Cross-reference(s)

Interfaces

Register interface

Used for access to configuration, control, status and
debugging registers

Register interface (IP bus)

Job execution interface

Job Ring Interface (JR) Job Ring interface

Job Queue Controller

Schedules tasks for the descriptor processor Job scheduling

Descriptor processor

Descriptor controller (DECO) Descriptors and descriptor commands

Cryptographic control block (CCB) Descriptor Controller (DECO) and CHA Control Block (CCB)

Cryptographic hardware accelerators (CHAs)

Public key hardware accelerator (PKHA) Public-key hardware accelerator (PKHA) functionality

Alleged RC4 hardware accelerator (AFHA) ARC-4 hardware accelerator (AFHA) CHA functionality

DES and 3DES hardware accelerator (DESA) Data encryption standard accelerator (DES) functionality

Random Number Generator (RNG) Random-number generator (RNG) functionality

Message Digest Hardware Accelerator (MDHA) Message digest hardware accelerator (MDHA) functionality

AES Hardware Acclerator (AESA) AES accelerator (AESA) functionality

Trust Architecture Modules

Secure memory Secure memory

Run-time integrity checker (RTIC) Run-time Integrity Checker (RTIC)

Table continues on the next page...

2. The registers that are cleared include the class 1 and class 2 key registers, the class 1 and class 2 context registers, the
math registers, the JDKEK, TDKEK and TDSK registers, the AFHA S-box, the PKHA E memory, the input data FIFO, the
output data FIFO, and the descriptor buffer.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 275
Confidential Proprietary

Table 10-4. CAAM subcomponents (continued)

Description Cross-reference(s)

Secure key module Black keys

Blobs

Trusted descriptors

10.5.1 System Bus Interfaces

CAAM is connected to a SoC-wide bus for access to CAAM registers. See Register
interface (IP bus). An AXI master interface connects to the SoC bus fabric for DMA
access to system memory. When CAAM includes Secure Memory, an AXI slave
interface provides SoC access to that memory.

10.5.1.1 AXI master (DMA) interface

DMA access to system memory is implemented through an AXI master interface. CAAM
DMA always asserts normal (AKA user) mode rather than privileged (AKA supervisor)
mode, and always asserts data access rather than instruction access (i.e. fetch). CAAM
DMA can be configured to assert either TrustZone SecureWorld or TrustZone
NonSecureWorld for different bus transactions. CAAM DMA can also be configured to
assert specified DID and ICID values for various bus transactions. For high throughput
this interface utilizes a 32-bit data bus.

The AXI master interface configuration defaults are chosen to enhance performance
where possible, however ideal configuration for performance is not the default and
should not be assumed for any application. The DMA reads and writes data in data-bus-
aligned bursts, whenever possible. The MCFG register LARGE_BURST field default
value is '0' but better performance will be achieved with a value of '1'. Other notable
performance enhancements include the use of read-safe, write-safe, and write-efficient
transactions, which are described in the following sections.

10.5.1.1.1 DMA bursts that may read past the end of data structures

CAAM DMA accesses do not read a full burst if the read would need to cross a 4 Kbyte
address boundary. CAAM also does not read a full burst from a Job Ring input ring or
output ring if it would need to read past the end of the ring. However, as illustrated in the
figure below, CAAM may read past the end of a descriptor or scatter/gather table (SGT)
when fetching them because it does not know the length of the descriptor or SGT before

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

276 NXP Semiconductors
Confidential Proprietary

issuing the read transaction. If reading these additional words would cause an issue (e.g.
an access control violation), the descriptor or scatter/gather table should be located at any
address that avoids the issue.

Length of read burst
(See NORMAL_BURST
or LARGE_BURST in
Master Config register)

Descriptor

DESCLEN
Length of
descriptor
is determined
by DESCLEN
field

Length of
S/G table
determined
by F bit in
SGT entry

F
Additional words
read past end of
descriptor

Scatter/gather table

Additional words
read past end of
scatter/gather table

Figure 10-2. DMA may read past end of descriptor or SGT

10.5.1.2 Secure memory interface (AXI slave bus)

The Secure Memory within CAAM is accessible to external bus masters over a 32-bit
AXI bus slave interface. The interface allows any word within Secure Memory to be
accessed at byte-level granularity (unless blocked by the Secure Memory access
controls).

10.5.1.3 Register interface (IP bus)

CAAM's register interface (32-bit IP bus) is used to read and write registers within
CAAM for the following purposes:

Table 10-5. Summary of register interface uses

Purpose For more information, see

During chip initialization time

To configure CAAM, including initialization of the Job Rings.
• Initializing Job Rings

Change the default settings for CAAM's AXI DMA interface • Master Configuration Register (MCFGR)

Configure RTIC • Initializing RTIC

Configure Secure Memory • Initializing Secure Memory

Initiate self-tests of CAAM's RNG • RNG features summary

During normal steady-state operations

Manage CAAM's Job Ring interface • Job Ring interface

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 277
Confidential Proprietary

Table 10-5. Summary of register interface uses (continued)

Purpose For more information, see

Alter the Secure Memory configuration • Secure memory

During hardware and software debugging

Read status registers and single-step descriptor commands • Register-based service interface
• CAAM Status Register
• RNG TRNG Status Register
• RNG DRNG Status Register
• Holding Tank Status Register
• Secure Memory Status Register
• Job Ring Output Status Register
• Job Ring Interrupt Status Register
• CCB Interrupt Control Register
• CCB Status and Error Register
• CCB FIFO Status Register
• DECO Operation Status register

NOTE
Accesses to registers other than the DECO and CCB registers
must use full-word (32-bit) reads or writes. Reads and writes to
the DECO and CCB registers permit byte access.

10.5.2 CAAM service interface concepts

CAAM delivers cryptographic services through a set of interfaces optimized for different
use models (see Service interfaces). All service interfaces share a number of common
objects and concepts, which are explained in more detail in the subsections below.

10.5.2.1 Configuring the Service Interfaces

CAAM's service interfaces must be configured before they are used. The service
interfaces are configured via registers located in several 4k-byte "pages" within CAAM's
register space. See the individual service interface sections in Service interfaces for
configuration details. Processor access to these register pages is controlled by configuring
CAAM's internal access control hardware via registers located in CAAM register page 0
(addresses 0 .. 4095). This internal access control hardware controls access to individual
register pages using bus signals that indicate the DID value associated with the register
bus transaction. (See Job Ring a DID Register - least significant half (JR0DID_LS -
JR2DID_LS), RTIC DID Register for Block a (RTICA_DID - RTICD_DID), DECO
Request Source Register (DECORSR).) A CAAM register page is accessible if the DID
associated with the register read or write matches the DID in the appropriate register
within CAAM register page 0.

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

278 NXP Semiconductors
Confidential Proprietary

CAAM also controls access to register pages based on the TrustZone bus signal. This
signal is usually called "nonsecure" or "ns". A 1 on the ns signal indicates a
NonSecureWorld bus transaction, and a 0 on the ns signal indicates a SecureWorld
transaction. SecureWorld is a higher-privileged mode than NonSecureWorld, so bus
transactions with ns=0 are higher privileged than ns=1 transactions. A CAAM register
page can be made accessible only to TrustZone SecureWorld by setting the page's access
control register appropriately.If a CAAM register page is configured for access by the
TrustZone NonSecureWorld associated with a particular DID value, it can also be
accessed via a SecureWorld bus transaction (ns=0) with that particular DID value, but not
by SecureWorld or NonSecureWorld bus transactions with some other DID value.

10.5.2.2 CAAM descriptors

CAAM provides cryptographic services by executing a series of commands specified in
CAAM descriptors. Each CAAM descriptor is formed from CAAM commands and
embedded data. The set of available commands includes conditional branches, loops,
subroutine calls, or jumps to other descriptors, as well as mathematical, cryptographic
and data move operations. Except as specified by the branch, call, and header commands,
the commands within CAAM descriptors normally execute in sequence until the
descriptor has completed (or has been aborted due to external management action).
Descriptors cannot change their own execution priority, but CAAM descriptors do have
mechanisms to ensure coherency of data shared between descriptors.

Users of SoCs without peripheral or other direct memory access management control,
such as this one, must rely on operating system or other trusted software to prevent the
use of CAAM descriptors to perform unintended or malicious access to sensitive memory
regions.

CAAM implements different types of descriptors to address specific processing needs:

• Job Descriptor (JD) (see Job Descriptors)

Every CAAM job is defined by at least one JD. The JD may be provided by the
CAAM service user directly via the register-based service interface or via the Job
Ring-based service interface, or the JD may be created internally within CAAM in
response to a service request from the Run-Time Integrity Checker (RTIC). It is also
possible for a JD to invoke a Shared Descriptor (SD) or to jump to another JD, which
allows a job to consist of an arbitrarily large number of commands and data objects.

• Shared Descriptor (SD) (see Shared descriptors)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 279
Confidential Proprietary

SDs provide a mechanism to group and reuse instructions and data that are common
in the processing of more than one related job, e.g., processing protocol data units of
a network connection. Using SDs may also increase performance by improving the
probability of finding an SD within CAAM that has already been read for a
preceding job requiring the same processing.

• Trusted Descriptor (TD) (see Trusted descriptors)

TDs are essentially the same as JDs, but they are cryptographically signed. When a
TD is presented for execution, CAAM first checks the signature and executes the TD
only if the signature is correct. TDs are intended to ensure that special access
privileges are usable only by descriptors that are known to employ those privileges
properly. TDs would be created by trusted software (such as secure boot software or
a hypervisor), and then cryptographically signed to ensure that they were not altered
by untrusted software.

• Inline Job Descriptor (IJD) (see Using in-line descriptors)

IJDs are simply JDs that are made available to CAAM through the input data stream.
JDs submitted via Job Rings may direct CAAM to execute commands from an IJD
using the SEQ IN PTR command with the INL option selected.

• Replacement Job Descriptor (RJD and CRJD) (see Using replacement job
descriptors)
RJDs and Control RJDs (CRJDs) are intended to support job processing variations or
updates of immediate or state data defined in SDs. Both kinds of RJDs replace the JD
that invoked them and can be executed either before or after the execution of the SD.
Thus RJDs and CRJDs provide the capability to permanently update or temporarily
change the processing defined by SDs. RJDs may be supplied using either of two
methods:

• The normal RJD is supplied inline (like the IJD) embedded in the input data
stream.

• Alternatively, a CRJD associated with a specific SD may be utilized.
A CRJD must be located in memory immediately following the SD. The execution of
an RJD is initiated with the SEQ IN PTR command by setting the RJD control bit.
For a CRJD the CTRL bit must also be set.

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

280 NXP Semiconductors
Confidential Proprietary

10.5.2.3 Job termination status/error codes

CAAM reports the termination status of all jobs, allowing software to determine whether
the descriptor completed normally, with warnings, or with an error. The reporting
mechanism always involves writing a job termination status word to memory. Depending
on the selected service interface, CAAM may also update service interface status
registers.

An all-zero status indicates that the job completed without warnings or errors. If a
warning or an error was encountered, the code in the source field of the status word
indicates which component within CAAM detected the condition. The remaining status
word coding provides additional component-specific detail.

For jobs submitted through the Job Ring interface the job termination status is written to
the Job Ring Output Status register and to the output ring in the word following the
pointer to the completed job descriptor. The job termination status can be read from the
Job Ring Output Status register, but because the termination status of each newly
completed job will overwrite the previous job's termination status this mechanism is
primarily intended to support debug and ring management (for executing single jobs or
after the ring is halted). A selection of severe error conditions (potentially indicating
malicious users or software instability) is stored together with additional error and/or
access violation attributes in job-ring specific recoverable error record registers.

Table 10-6. Job termination status word

bits 31-28

Source

bits 27-0

Source-specific error or warning codes

0h

(None)
0000000h - No errors or warnings

bits 31-28

Source

bit 27

(JMP)

bit 26

Reserved

bits 25-16

Reserved

bits 15-8

(DESC INDEX)

bits 7-4

(CHAID)

bits 3-0

(ERRID)

2h

(CCB)

See
footnote 1

0 0000h The number of
words from the start
of the descriptor
where the error was
detected. In some
cases this value may
be off by one or
more words due to
timing issues.

0h - CCB

1h - AESA (all modes)

2h - DESA (DES and
3DES)

3h - AFHA (ARC4)

4h - MDHA (MD5, SHA-1,
SHA-224, SHA-256)

5h - RNG

8h - PKHA (all public key
operations)

0h - No error

1h - Mode error

2h - Data size error

3h - Key size error

3h - (RNG) Instantiate error

4h - (RNG) Not instantiated
error

4h - (PKHA) A size error

5h - (RNG) Test instantiate
error

5h - (PKHA) B size error

6h - (RNG) Prediction
resistance error

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 281
Confidential Proprietary

Table 10-6. Job termination status word (continued)
6h - Data out-of-sequence
error

6h - (PKHA) "c" is zero for
ECC F2M

7h - (RNG) Prediction
resistance & test request
error

7h - (PKHA) Divide by 0
error

8h - (PKHA) Modulus even
error

9h - (DES) key parity error

9h - (RNG) Secure Key
Generation error

Ah - ICV check failed

Bh - Hardware error

Ch - (AES) CCM AAD size
error

Ch - (RNG) Continuous
check error

Dh - (CCB) Class 1 CHA or
Class 2 CHA is not reset,
or, a second CHA of the
same class is selected prior
to resetting the first
selection

Eh - (CCB) Invalid CHA
combination selected

Fh - (CCB) Invalid CHA

bits 31-28

Source

bit 27

(JMP)

bit 26

Reserved

bits 25-16

Reserved

bits 15-8

(DESC INDEX)

bits 7-0

User-defined value

3h

(Jump
Halt User
Status)

See
footnote 1

0 0000h The number of
words from the start
of the descriptor
where the JUMP
HALT Command
was encountered.

The value in the LOCAL OFFSET field of the JUMP
command is written into these bits of the termination
status word. The user is free to assign any interpretation
to these bits, such as using them to distinguish among
different instances of the JUMP command.

bits 31-28

Source

bit 27

(JMP)

bit 26

Reserved

bits 25-16

Reserved

bits 15-8

(DESC INDEX)

bits 7-0

Error Code

4h

(DECO)

See
footnote 1

0 0000h The number of
words from the start
of the descriptor
where the error was
detected. In some
cases this value may
be off by one or
more words due to
timing issues.

00h - No error

01h - SGT length error (The descriptor is trying to read
more data than is contained in the SGT table.)

02h - Unused SGT entry error (Extension bit set in
unused SGT entry.)

03h - Job Ring Control Error (There is a bad value in the
Job Ring Control register.)

Table continues on the next page...

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

282 NXP Semiconductors
Confidential Proprietary

Table 10-6. Job termination status word
04h - Invalid Descriptor Command

06h - Invalid KEY Command

07h - Invalid LOAD Command

08h - Invalid STORE Command

09h - Invalid OPERATION Command

0Ah - Invalid FIFO LOAD Command

0Bh - Invalid FIFO STORE Command

0Ch - Invalid MOVE/MOVE_LEN Command

0Dh - Invalid JUMP Command (a non-local JUMP
Command is invalid because the target is not a Job
Header Command, or the jump is from a TD to a JD, or
because the target descriptor contains an SD)

0Eh - Invalid MATH Command

0Fh - Invalid SIGNATURE Command

10h - Invalid Sequence Command (A SEQ IN PTR or
SEQ OUT PTR Command is invalid or a SEQ KEY, SEQ
LOAD, SEQ FIFO LOAD, or SEQ FIFO STORE
decremented the input or Output Sequence length below
0. This error may result if a built-in PROTOCOL
OPERATION Command has encountered a malformed
PDU.)

11h - Skip data type invalid (The type must be Eh or Fh.)

12h - Shared Descriptor Header Error

13h - Header Error (Invalid length or parity, or certain
other problems.)

14h - Burster Error (Burster has gotten into an illegal
state.)

15h: Context Register Length Error. The descriptor is
trying to read or write past the end of the Context
Register. A SEQ LOAD or SEQ STORE with the VLF bit
set was executed with too large a length in the variable
length register (VSOL for SEQ STORE or VSIL for SEQ
LOAD).

16h - DMA Error

1Ah - Job failed due to Job Ring reset

1Bh - Job failed due to transition to Fail Mode

1Ch - DECO Watchdog timer timeout error

1Fh - DID mismatch error (DECO was trying to share
from itself or from another DECO but the two Non-SEQ
DID values didn't match or the "shared from" DECO's
Descriptor required that the SEQ DID and TZ/SDID
values be the same but they aren't.)

20h - DECO has completed a reset initiated via the DRR
register

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 283
Confidential Proprietary

Table 10-6. Job termination status word (continued)
21h - Nonce error (When using EKT (CCM) key
encryption option in the FIFO STORE Command, the
Nonce counter reached its maximum value and this
encryption mode can no longer be used.)

22h - Leading meta data is too large for rewind operation

23h - Read Input Frame error (A read input frame was
attempted, but the protocol executed does not support it
or a SEQ IN PTR command has not been executed.)

24h - JDKEK, TDKEK or TDSK was needed, but value
has not yet been initialized.

26h - A job has DECO select value for a different DECO

32h - Invalid PKCURVE Command

33h - Burster buffer reuse error (address or length went
negative)

80h - DNR (do not run) error (A Job Descriptor or Shared
Descriptor had the DNR bit set.)

81h - undefined protocol command

82h - invalid setting in PDB

83h - Anti-replay LATE error

84h - Anti-replay REPLAY error

85h - Sequence number overflow

86h - Invalid signature

87h - DSA Sign Illegal test descriptor

88h - Protocol Format Error (A protocol has seen an
error in the format of data received. When running RSA,
this means that formatting with random padding was
used, and did not follow the form: 00h, 02h, 8-to-N bytes
of non-zero pad, 00h, F data.)

89h - Protocol size error

8Ah - Key not written before start of protocol

8Ch - RFKG P & Q upper 100 bits the same

8Dh - RFKG computed D too small

8Eh - RFKG PDB and computed N sizes differ

C1h - Undefined Blob mode

C2h - Secure Memory Blob mode error

C4h - Black Blob key or input size error

C5h - Invalid key destination in blob command

C8h - Trusted/Secure mode error in blob command

CCh - Manufacturing Protection Fuse-Resident Key ECC
Check error

bits 31-28

Source

bits 27-12

Reserved

bits 11-8

NADDR

bits 7-0

Error code

Table continues on the next page...

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

284 NXP Semiconductors
Confidential Proprietary

Table 10-6. Job termination status word (continued)

6h

(Job Ring)

0000h Number of descriptor
addresses requested
for error code 1Eh,

otherwise 0h

00h - No error

1Eh - Error reading the Descriptor address

1Fh - Error reading the Descriptor

bits 31-28

Source

bit 27

(JMP)

bit 26

Reserved

bits 25-16

Reserved

bits 15-8

(DESC INDEX)

bits 7-0

(COND)

7h

(Jump
Halt with
Condition
Codes)

See
footnote 1

0 0000h The number of
words from the start
of the descriptor
where the JUMP
HALT Command
was encountered.

PKHA/Math condition codes field from JUMP HALT
Command.

1. If JMP = 1, the descriptor made a jump to another descriptor. When this bit is 1, the DESC INDEX field will contain the
index into the descriptor that was jumped to rather than into the original descriptor.

10.5.2.4 Frames and flows

CAAM borrows the term 'frame' from network protocols. A frame simply refers to some
number of sequential bytes that are usually, but not necessarily, part of a segmented byte
stream and delimited by implicit or explicit start and end markers. Explicit markers are
formed by so-called protocol headers and/or trailers of protocol-specific length including
a possible length of 0. Implicit markers are out-of-band information defining where frame
data starts and ends. For CAAM the meaning of a frame is generalized to also include
designated space into which CAAM-generated frame data can be stored, as well as data
that is completely unrelated to networking protocols, e.g., a piece of program code that
needs to be cryptographically signed or a sequence of CAAM-generated random data.

While frames define a logical sequence of bytes, the frame data itself does not need to be
necessarily stored in a single, contiguous region of memory (also referred to as a buffer).
Segmented, multi-buffer frames can be formed by utilizing scatter/gather tables (stored in
additional buffers) where table entries are used to keep track of frame segment address,
offset, length, and other segment attributes. For details see Scatter/gather tables (SGTs).

A CAAM flow simply refers to a sequence of two or more frames requiring the same
kind of processing. Whether the frame data is stored in single buffer frames, multi-buffer
frames, or a mix of both is irrelevant. The key criteria of a flow is that all frames are
processed in the same fashion.

Some flows require that the frames be processed in order, for instance, if there are frame
data or processing context dependencies between the frames. One way to ensure that
frames can be processed in a specific order is to process those frames using job
descriptors submitted through the same job ring. Note that in order to improve
performance CAAM may start processing the next job descriptor before the current

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 285
Confidential Proprietary

descriptor's write operations have completed. If the next job descriptor reads those words
from memory before they have been written by the previous descriptor, the flow's data
calculations may be incorrect. CAAM's shared descriptors provide mechanisms to
address data dependencies within flows. For details see Shared descriptors.

10.5.2.5 User data access control and isolation

CAAM supports user data access control and CAAM-service user isolation through its
ability to use service interface-specific Domain Identifiers (DIDs) and Isolation Context
Identifiers (ICIDs) to tag all related memory transactions.

CAAM can be configured to assign different tags when performing associated memory
accesses. Control data refers to any CAAM instructions or data utilized to process an
input data stream in order to produce an output data stream or to just output status (e.g.,
an indication that the signature of some input data is correct). Depending on the selected
service interface and user application, access to CAAM-utilized memory is managed by
up to two DIDs.

When accessing memory, the RTIC service interface utilizes one DID per memory block,
while each Job Ring and the register service interface may utilize up to two different
DIDs and two different ICIDs configured by a trusted management entity in interface-
specific CAAM registers.

10.5.3 Service interfaces

CAAM services may be invoked via the following types of service interfaces:

• A Register-based service interface
• A Job Ring interface
• A Run-time Integrity Checker (RTIC)

The register-based interface is primarily intended for management entities to use for
simple one-off jobs during startup, run-time testing of CAAM functionality, or debugging
CAAM descriptors. It is not intended for repetitive or high throughput activities.

The Job Ring interface provides single user/driver job queuing, job completion interrupt
services, and support for dynamic service interface virtualization via a software
management entity. CAAM implements 3 Job Ring interfaces that can be independently
assigned (and re-assigned) to different users. This service interface type is intended to be
(at least temporarily) assigned to either the Arm TrustZone (TZ), system management
entities or application entities.

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

286 NXP Semiconductors
Confidential Proprietary

Jobs can also be internally initiated by CAAM's RTIC submodule. RTIC is typically
configured at startup (and optionally reconfigured thereafter) by a trusted or privileged
management entity, and then operates autonomously, periodically submitting specialized
CAAM descriptors to the Job Queue Controller.

10.5.3.1 Job Ring interface

The Job Ring interface is a software job programming interface. For each job submitted
to CAAM, software must create a job descriptor that explicitly describes the data to be
processed and the keys and context to be used for the processing (see Job Descriptors).

CAAM implements 3 Job Ring interfaces. Each Job Ring interface provides an input ring
for Job Descriptors and an output ring for results. This queuing mechanism allows
software to schedule multiple CAAM jobs for execution and then retrieve the results as
convenient. The input rings and output rings are implemented as circular buffers (also
called rings) that may be located in memory external to CAAM or they may be located in
CAAM Secure Memory.

The entries in the input rings are pointers to Job Descriptors that are located elsewhere in
memory. Each entry in an output ring consists of a pointer to a job descriptor followed by
a job termination status word. Each output ring entry may also be followed by a word
containing the number of bytes written by SEQ STORE and SEQ FIFO STORE
commands during the descriptor's execution (see INCL_SEQ_OUT field in the Job Ring
Configuration Register). The job descriptor pointers in the output rings allow software to
correlate result status with the particular job descriptor that CAAM executed to produce
that result.

10.5.3.1.1 Configuring and managing the input/output rings, overview

Software configures the input and output rings and then manages them jointly with
CAAM. The following table describes the uses of the input and output ring registers:

Table 10-7. Input/output ring registers

Register Description

Input/Output Ring Base Address
Register

Describes the base address of the ring buffer, which must be a multiple of four bytes

Input/Output Ring Size Register Describes the size of the ring buffer measured in the number of entries

Input Ring Jobs Added/Output
Ring Jobs Removed Register

Tells CAAM how many jobs software placed in the input ring or removed from the output
ring

Input Ring Slots Available/Output
Ring Slots Full Register

Tells software how many spaces are available to add jobs to the input ring or how many
jobs are in the output ring ready for software processing

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 287
Confidential Proprietary

Table 10-7. Input/output ring registers (continued)

Register Description

Input Ring Read Index Points to the head of the queue within the input ring, that is, where CAAM finds the next
Job Descriptor to read from the Job Ring

Output Ring Write Index Points to the tail of the queue within the output ring, that is, where CAAM places the
results of the next completed Job Descriptor for that Job Ring

Job Ring Configuration Register Used to configure Job Ring interrupts, set endianness overrides, and select whether the
optional sequence out length word appears in Output Ring entries

Figure 10-3 shows an example input ring and output ring. The physical ring buffers are
shown in the boxes on the right. The logical queues located within these ring buffers are
shown in shaded boxes to the left. Each input ring entry consists of a pointer to a Job
Descriptor. Each output ring entry consists of a pointer to a Job Descriptor followed by a
32-bit word indicating the job completion status.

In this example, jobs 10 through 15 are in the input ring waiting for CAAM to process
them. The results for jobs 4 through 8 are in the output ring, waiting for software to
retrieve them. CAAM has removed job 9 from the input ring, but has not yet written the
results to the output ring. Old entries that have not yet been overwritten are shown in
italics.

Note that job 7 completed ahead of job 6. Although this version of CAAM implements
only one DECO, in versions of CAAM that implement more than one DECO, it is
possible for jobs submitted through the same Job Ring to complete out of order.

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

288 NXP Semiconductors
Confidential Proprietary

 To Hardware

 Queue of jobs
within

input ring

 Job 10

 Job 11

 Job 12

 Job 13

 Job 14

 Job 15

 Head

 Tail

 From Software

 Job 10

 Job 11

 Job 12

 Job 13

 Job 14

 Job 15

 Job 9

 Job 6

 Job 7

 Job 8

 Address of Descriptor

 Input Ring Base Address

 Input Ring Read Index

 (configured
by software)

 (written by hardware)

 Input Ring Slots Available
 (written by hardware)

 Input Ring Jobs Added
 (written by software)

 Input Ring Write Index
(variable maintained by software,

not visible to hardware)

 Input Ring Size (configured
by software)

 Descriptor

 .
 . .
 .

 To Software

 Queue of results
within

Output ring

 Results for Job 4

 Results for Job 5

 Results for Job 7

 Results for Job 6

 Results for Job 8

 Head

 Tail

 From Hardware

 Results for Job 8

 Results for Job 1

 Results for Job 2

 Results for Job 3

 Results for Job 6

 Results for Job 4

 Results for Job 5

 Results for Job 7

 Address of Descriptor

 Output Ring Base Address

 Output Ring Write Index

 (configured
by software)

 (written by hardware)

 Output Ring Slots Full
 (written by hardware)

 Output Ring Jobs Removed
 (written by software)

 Output Ring (variable maintained by software
Read Index not visible to hardware)

 Output Ring Size (configured
by software)

 Descriptor

 .
 . .
 .

 Output Ring

 Job Termination
Status/Error

 Output Sequence Length
(opt)

 Input Ring

Figure 10-3. Input and output ring example

10.5.3.1.2 Managing the input rings

For the input ring, software is the producer, meaning that software

• Writes descriptor addresses starting with the next available slot into the input ring.
• Writes the number of new jobs to the Input Ring Jobs Added Register (IRJAR)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 289
Confidential Proprietary

An address added to the input ring must point directly to the start of a job descriptor, not
to a scatter/gather table. A job descriptor ring entry is one word. (See Address pointers.)
Software maintains its own write pointer for the input ring, and CAAM does not have
direct access to that pointer.

For the input ring, CAAM is the consumer, meaning that it increments the Input Ring
Slots Available Register (IRSAR) upon pulling descriptor addresses out of the ring.
When software writes a new value to IRJAR, CAAM decrements IRSAR by the value
that was written by software. CAAM maintains a read index in the Input Ring Read Index
Register (IRRIR) that CAAM increments as it reads jobs from the input ring.

10.5.3.1.3 Managing the output rings

For the output ring, the roles are reversed from the input ring. CAAM is the producer and
software is the consumer.

• When CAAM adds completed jobs to the output ring, CAAM increments the Output
Ring Slots Full Register (ORSFR), which tells software how many results are
available for software to retrieve. An interrupt may or may not be generated,
depending upon the Job Ring configuration at the time (for more details, see
Asserting Job Ring interrupts).

• When software removes jobs from the output ring for processing, software writes the
number of jobs removed to the Output Ring Jobs Removed Register (ORJRR).
CAAM decrements the output ring slots full value by the new value that software
wrote to ORJRR.

Note that each entry in the output ring consists of a job descriptor address and a job
termination status word. See Job termination status/error codes for the format of this
status word. Therefore, the size of an entry in the output ring is the size of a pointer plus
one word for status, plus an optional word containing the output sequence length. CAAM
maintains an Output Ring Write Index Register (ORWIR) that CAAM increments as it
places completed jobs and status into the output ring. Software can read ORWIR to
determine the current tail of the output ring.

Note that it is possible for a bus error to occur when the Job Queue Controller is writing
the completion status to the output ring. This results in an error code type 1 indication for
that particular Job Ring. The correct response to any Job Ring error code 1 indication is
to perform a Job Ring reset via the Job Ring Command Register RESET field
(JRCR[RESET]), a CAAM software reset via the Master Configuration Register SWRST
field (MCFGR[SWRST]) or a power on reset. If a Job Ring reset is performed, it will
clear all registers for that particular Job Ring except the IRBAR, IRSR, ORBAR, ORSR,
and JRCFGR registers. The IRBAR, IRSR, ORBAR, ORSR, and JRCFGR registers can
be reprogrammed or not, as appropriate, after a Job Ring reset.

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

290 NXP Semiconductors
Confidential Proprietary

10.5.3.1.4 Controlling access to Job Rings

Access to a Job Ring can be restricted to a single bus master by configuring CAAM's Job
Ring DID Registers. Access to a Job Ring can be further restricted to a particular
software entity because each Job Ring's registers are in a separate register address page.
An OS or a hypervisor can enforce the restrictions by means of a memory management
unit.

A process with permission to access a particular Job Ring's registers can:

• Schedule jobs for CAAM by writing the address of a job descriptor or trusted
descriptor at the tail of the queue within the input ring.

• Retrieve job completion status by reading the entry at the head of the queue within
the corresponding output ring.

Each Job Ring can be configured so that CAAM's DMA asserts different DID values
when executing jobs on behalf of that Job Ring. This allows slave devices or chip-level
memory management units to make memory access control decisions based upon the Job
Ring from which the job was initiated.

10.5.3.1.5 Initializing Job Rings

Minimal configuration for CAAM operation using the Job Ring interface requires
initializing at least one Job Ring by specifying the base addresses for the input ring and
output ring and the size of these rings (see the Input Ring Base Address Register
(IRBAR), the Output Ring Base Address Register (ORBAR), the Input Ring Size
Register (IRSR), and the Output Ring Size Register (ORSR)). Most cases (with the
possible exception of debugging with test data in use) also require specifying the DID
values associated with the Job Ring (see the JRaDID register). These values should be
configured by a trusted SoC / ring management entity. The Job Rings can also be
configured for endianness and for whether to include the optional sequence out length
word in the Output Ring entries (see Job Ring Configuration Register (JRCFGR)).

10.5.3.1.6 Job Ring Registers

If the Job Ring is allocated to TrustZone SecureWorld, the Job Ring registers associated
with this ring can be written only via a TrustZone secure bus transaction. Nonsecure
writes to Job Ring registers owned by Trustzone SecureWorld will be ignored.

When virtualization is enabled (VIRT_EN=1 in the Security Configuration register), the
Job Ring registers in pages 1...3 can be written only if the corresponding Job Ring has
been "started", that is, the JRSTARTR[Start_JR] bit for that Job Ring is 1. Conversely,
the Job Ring configuration registers in CAAM register page 0 (for example, the JRaDID

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 291
Confidential Proprietary

register) can be written only if the Start_JR bit for that Job Ring is 0. The Job Ring
registers are reset when the Job Ring is stopped and virtualization is enabled, in order to
prepare the Job Ring for a new owner. The input ring slots available, input ring read
index, output ring slots full and output ring write index registers are read-only when
virtualization is disabled. These registers are writable when virtualization is enabled.

For the Job Ring register descriptions, see IRBAR and the following register descriptions.

10.5.3.1.7 Asserting Job Ring interrupts

To notify the driver software that job results are available from the Job Ring, each Job
Ring interface asserts an interrupt request on a shared interrupt request line. Note that the
software context switch overhead could have a severe performance impact if interrupts
were asserted for every job completion. Therefore, CAAM supports a configurable
interface that allows the driver to specify how full the output ring can be before CAAM
generates a job completion interrupt request. To prevent any job from waiting too long
for software completion processing, the driver can also specify a time out value. This
value allows CAAM to generate an interrupt if job results are available and too much
time has elapsed since software last removed any completed jobs from the output ring.
These values are programmed via fields described in the Job Ring Configuration Register
(JRCFGR).

The Job Ring interrupt does not clear automatically when jobs are removed from the
output ring. Software must clear the interrupts by writing to the Job Ring Interrupt Status
Register. Note that one or more additional jobs can complete while software is clearing
the interrupt. Depending on the interrupt coalescing settings, an additional interrupt may
immediately be generated for these newly completed jobs.

10.5.3.2 Register-based service interface

It is possible to use the register interface to perform multiple cryptographic operations.
For the purposes of debugging descriptors, it is possible to execute descriptors one
descriptor at a time, or even one descriptor command at a time.3 This method bypasses all
job scheduling performed by the Job Queue Controller. Software can perform CHA
operations by writing and reading registers in the CCB directly, without using a Job Ring
to run descriptors. When descriptors or commands are executed in this mode software can
examine the content of most DECO and CCB registers after each descriptor or descriptor
command completes. This can assist with debugging hardware and descriptor programs.

3. Note that trusted descriptors cannot be executed via the register-based service interface.

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

292 NXP Semiconductors
Confidential Proprietary

To execute descriptors or commands in this fashion software must request direct use of a
DECO by writing into the DECO REQ register.4 But before requesting a DECO,
software must specify the DID and SDID values that will be used when executing
descriptors under direct software control. These values are specified by selecting a Job
Ring whose registers will supply the DID and SDID values. A Job Ring source is selected
via the DECO Request Source register.

To use the register-based job service interface, the DECO must be programmed in proper
order so that a descriptor runs correctly. The steps are:

1. Specify the DID and SDID values as described above.
2. Set the RQDn bit in the DECO Request Register. This RQDn bit must remain

asserted during the entire time that software wants to access that DECO/CCB block
directly. This indicates to the Job Queue Controller that it should not assign any jobs
to the requested DECO block. After the Job Queue Controller sees the RQDn bit set
to 1, it waits for the corresponding DECO block to complete any pending tasks
before setting the DENn bit.

3. Wait for the DENn bit in the DECO Request Register to be set to 1. The Job Queue
Controller sets the DENn bit to 1 when the DECO block becomes available. When
this bit is set, software can use the DECO/CCB block by submitting descriptors by
means of CAAM's register interface.

4. Write at least the first burst of a descriptor into the descriptor buffer. If there is a
shared descriptor, offset the descriptor into the descriptor buffer by the length of the
shared descriptor.

5. Write the address of the descriptor into the DECO Descriptor Address Register so
DECO knows where to find the descriptor. This is only required if the WHL bit (see
the next step) is not set or if the descriptor attempts to do a STORE of type 41h to
write back part, or all, of the descriptor to memory.

6. Write the Job Queue Control Register. If fewer than 4 words are in the first burst, the
FOUR bit must be 0. If the entire descriptor has already been loaded, set the WHL
bit. If the WHL bit in the DECO Job Queue Control Register is not set, DECO
attempts to fetch the rest of the descriptor from memory regardless of whether
portions of the descriptor beyond the first burst were already written to the descriptor
buffer. SHR_FROM is not used in this format and will not be checked.

7. Wait until the DECO is done. To determine whether DECO is done, read the VALID
and DECO_STATE fields in the DECOa Debug DECO register. While the job is
running, VALID will be 1 and DECO_STATE will change values as the descriptor is
processed. If DECO_STATE is Dh, then an error occurred. Read other fields and
registers to determine the cause of the error. Note that VALID will likely remain

4. DECOs in use via the register-based service interface are not available for processing jobs from the other service
interfaces. Since this version of CAAM has only one DECO, use of the register-based service interface prevents starting
job descriptor processing from the Job Rings.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 293
Confidential Proprietary

asserted in the event of an error. If DECO_STATE is 0h and VALID is 0, then the
job finished normally.

8. Read registers of interest.
9. Done or start over.

10. When software is finished using the DECO/CCB block, it must clear the RQDn bit
so that the DECO is available to the Job Queue Controller for normal processing.
The Job Queue Controller then de-asserts the DENn bit, which resets the DECO and
CCB.

Note that there are restrictions imposed when executing a descriptor under software
control:

• The special cryptographic keys used to encrypt or decrypt Black Keys are not
available, so Black Keys cannot be used.

• The master cryptographic key used to encrypt or decrypt Blobs is not available, so
Blobs cannot be used.

• Sharing of Shared Descriptors is not permitted.
• Trusted Descriptors are not allowed.
• When virtualization is enabled, a Job Ring source must be selected in the DECO

Request Source register before executing any job under direct software control. All
jobs running under direct software control will then utilize the DID and SDID values
for the Job Ring selected in the DECO Request Source register. When virtualization
is disabled, any job under direct software control will utilize the DID and SDID
values specified in the DECO DID register, and the SRC field in the Job Queue
Control Register must be programmed to indicate the job is running on behalf of one
of the Job Rings. Jobs cannot be executed under direct software control if those jobs
appear to be from other possible CAAM sources, such as:

• RTIC

The normal use case for the register based service interface is to debug descriptors. When
such a descriptor is run through the interface and the descriptor encounters an error, once
analysis of the error is done, the user can recover by releasing the DECO or by writing a
1 to the STEP bit in the DECO Job Queue Control Register. The second method allows
another descriptor to be loaded and run as described above.

10.5.4 Job scheduling

The Job Queue Controller is the job scheduler within CAAM. The Job Queue Controller
pulls jobs to be sent to the holding tank in round-robin fashion from the Job Rings and
then from RTIC.

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

294 NXP Semiconductors
Confidential Proprietary

10.5.4.1 Job scheduling algorithm

Each time that the Job Ring's turn comes up in rotation and there is one or more jobs
available in the selected Job Ring's input queue and the Job Queue Controller has internal
buffer space, up to 4 jobs are fetched from the ring. Because CAAM buffers input ring
entries for efficiency, several jobs may be scheduled from one Job Ring before a job is
scheduled from the next Job Ring. Eventually all Job Rings will be serviced.

Note that RTIC requests at most one job at a time.

The following figure illustrates the algorithm for selecting a job for an available holding
tank.

 Job Ring Job

 round-robin
scheduling

(0 or more jobs
per job ring)

 Job Ring 0 Job Ring n

 round-robin
scheduling

(at most one job per turn)

 Holding Tank

 RTIC Job

 0..1 jobs 0..1 jobs

 0 or more jobs 0 or more jobs

Figure 10-4. Selecting job for available holding tank

The Job Queue Controller prefetches some or all of the selected job descriptor and places
it in a buffer referred to as a holding tank. After a job has been put in a holding tank, it is
then eligible for dispatching to a DECO.

The job source (RTIC, Job Ring) is not considered when deciding which holding tank job
should be assigned to the available DECO.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 295
Confidential Proprietary

 DECO is available
 and needs a job

 Does DECO
have a pending job?

 NO

 Is there a new
job in a holding

tank?

 YES

 NO

 No jobs are ready.
Do not assign a
job to DECO now

 Case 1a : Available
DECO get its oldest
pending job

 Case 1b : Available
DECO gets the
oldest new job

 YES

Figure 10-5. Job Queue Controller's job scheduling algorithm

10.5.4.2 Job scheduling - DECO-specific jobs

Some other versions of CAAM have more than one DECO so it is possible to specify that
a job should be run in a specific DECO by using the job header extension word. This can
be used to support hardware testing. Once a DECO-specific job enters a holding tank, it
remains there until the specified DECO becomes available, with the following exception.
If the DECO-specific job contains a shared descriptor, specifies SERIAL sharing, and the
shared descriptor currently resides in a DECO other than the specified DECO, the
DECO-specific job runs serially in the DECO that already contains the shared descriptor,
resulting in a DECO-select error job termination code.

10.5.5 Job execution hardware

The following modules in CAAM are used to execute cryptographic or calculation
acceleration jobs:

• Descriptor controller/CHA control block
• Cryptographic hardware accelerators (CHAs)

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

296 NXP Semiconductors
Confidential Proprietary

10.5.5.1 Descriptor Controller (DECO) and CHA Control Block (CCB)

The Descriptor Controller (DECO) is responsible for executing CAAM Job Descriptors.
After the Job Descriptor and any Shared Descriptor referenced by that Job Descriptor are
loaded, DECO begins job processing. The DECO has a dedicated CHA Control Block
(CCB) that is used to control one or more Cryptographic Hardware Accelerators (CHAs)
needed to perform cryptographic functions.

When executing a descriptor, DECO activates the DMA controller to read the required
inputs, and uses the CCB to dispatch the job to the appropriate CHA(s). As data is
produced by the CHA(s), DECO activates the DMA to write the CHA results to locations
specified by the descriptor and, upon job descriptor completion, passes the completion
status to the service interface originating the job request for any service-specific post
processing (e.g., status report formatting). When the job processing finally completes,
either successfully or with errors, the service interface takes appropriate action to inform
the user.

The CCB contains all the hardware necessary to control the CHA(s) included in CAAM.
The CCB has access to every type of CHA so that the DECO/CCB pair can perform all
functions that can be performed by CAAM.

The hardware inside the DECO/CCB includes the Input data FIFO (IFIFO), Output data
FIFO (OFIFO), iNformation FIFO (NFIFO), mode registers, context registers, key
registers, descriptor buffer, math registers, scatter/gather tables, alignment blocks and
interconnects. DECO/CCB uses all of this hardware to process Job Descriptors.

10.5.5.1.1 Alignment blocks

CAAM's internal data pathways and CHAs generally operate on 64-bit data, but the
information that CAAM obtains from memory need not be aligned to 64-bit boundaries.
To concatenate and left-align information passed to certain destinations within CAAM,
the CAAM architecture includes three alignment blocks:

• Class 1 alignment block
• Class 2 alignment block
• DECO alignment block

Note that even if the data is aligned in memory, the alignment blocks may still need to
align some portions of the data because a subset of the data may be passed to more than
one destination, and the subset may need to be aligned separately for each destination.

The following figure illustrates the interconnections of one of the alignment blocks. All
alignment blocks have the inputs shown in the figure, and the CCB DMA is a consumer
from all alignment blocks. The Class 1 alignment block contains a nibble shift register,

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 297
Confidential Proprietary

which allows the Class 1 alignment block to handle data that needs to be shifted by a
nibble. The only other difference between the alignment blocks is the additional
consumer (Class 1 CHA, Class 2 CHA, or DECO).

The entry pulled from the iNformation FIFO tells the NFIFO controller the data source
that will be used with the alignment block, and whether the alignment block will be
flushed when the data transfer is complete. The alignment blocks normally transfer eight
bytes of data at a time to the consumer. When the amount of data needed by the consumer
is not a multiple of eight bytes, a "flush" flag or "last" flag is required to transfer the last
one to seven bytes from the alignment block to the consumer.

 Auxiliary
Data
FIFO

 Input
Data
FIFO

 Padding
Block

 Output
Data
FIFO

 Information
FIFO

(NFIFO)

 Alignment
Block

 Consumer

NFIFO
Controller

Figure 10-6. Alignment block interconnections

The Class 1, Class 2 and DECO alignment blocks can serve as the source for a MOVE
command (see SRC values 8h, 9h and Ah). The DECO alignment block can also be used
as a data source for a MATH command (see SRC1 field). All data entering Class 1 CHAs
first passes through the Class 1 alignment block, which ensures that the data presented to
the Class 1 CHA is properly concatenated and left-aligned. All data entering Class 2
CHAs first passes through the Class 2 alignment block, which ensures that the data
presented to the Class 2 CHA is properly concatenated and left-aligned.

Note that the only way to put data into an alignment block is with an info FIFO entry.
Therefore, when using an alignment block as the data source for a MOVE command, the
data source for the alignment block must have been specified with an info FIFO entry.
This info FIFO entry may be automatically or manually generated. In order to use data
stored in the input FIFO, that data must be passed through one of the alignment blocks.
The only other way to take data out of the input FIFO is by resetting the input FIFO,
which also resets the alignment blocks.

CAAM hardware functional description

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

298 NXP Semiconductors
Confidential Proprietary

10.5.5.2 Cryptographic hardware accelerators (CHAs) (overview)

CAAM contains multiple cryptographic hardware accelerators (CHAs), most of which
accelerate an encryption (Class 1) algorithm or a message integrity (Class 2) algorithm.

• PKHA (Public key hardware accelerator)
• DESA (DES accelerator)
• AESA (AES hardware accelerator)
• MDHA (Message digest hardware accelerator)
• RNG (Random number generator)
• AFHA (ARC four hardware accelerator)

10.6 Descriptors and descriptor commands
Software's primary interaction with CAAM is through the submission of descriptors,
which are small programs executed by CAAM. It is up to the user to provide meaningful
descriptors for execution. Descriptors are submitted to CAAM in order to process a job,
where a job can specify a variety of functions supported by CAAM, from initialization of
a security parameter, to generation of a random number, to encryption or signing of data,
or full security protocol encapsulation of a packet.

Descriptors consist of commands that are executed in sequence, although conditional and
unconditional jumps are available to alter the sequence. The size of a single descriptor is
limited to 64 32-bit words, but it is possible to jump from one descriptor to another so
that, in effect, much larger descriptors can be created. Only the first of these descriptors
has to be submitted by means of the job ring; the rest are automatically fetched and
executed by CAAM.

Job Descriptors, trusted descriptors, and shared descriptors can be modified and written
back to memory. This is usually done when the processing of a data block is dependent
on the result of processing of the prior data block. Such dependencies exist for
information such as sequence numbers, counter values, and cryptographic state. The
current value of this sort of data can be passed from one job to another job in the same
flow by embedding the data into the descriptor. This can be done using a LOAD
IMMEDIATE command, or a PROTOCOL DATA BLOCK, or by embedding data
words at the end of the descriptor, or by simply skipping over embedded data words.
Write backs are performed using descriptor commands. Hardware does not make
independent decisions regarding the fields that should be written back.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 299
Confidential Proprietary

Note that to correctly use sharing flows (WAIT or SERIAL) in CAAM, if one job in the
flow updates the PDB (Protocol Data Block) in memory, all jobs in that flow must update
the PDB in memory even if the PDB did not change for that particular packet. If all jobs
in the flow update the PDB, CAAM will ensure that subsequent jobs do not read the PDB
from memory until all updates from prior jobs are complete.

10.6.1 Job Descriptors

A Job Descriptor (JD) is a control structure that causes CAAM to execute a single job,
consisting of one or more CAAM commands.

Given a pointer to a Job Descriptor, the Job Queue Controller normally will fetch from
that address to the next memory bus burst boundary.5 However, if this would be less than
the number of bytes required to load an entire, maximum size, Job HEADER command,
then the Job Queue Controller will fetch instead the number of bytes in the maximum
size, Job HEADER command. The maximum Job HEADER size is 12 bytes.

Note that a single request is issued to read the Job Header command. If the Job HEADER
command is stored across a memory bus burst boundary this request may be split into
two requests under some conditions. Once all the words that comprise the Job HEADER
command are received, the Job Queue Controller makes a decision. If there is a DECO
available into which this job may be placed, the job is placed into the DECO for
execution. If no DECO is available, or if the job can't be placed into the DECO due to
sharing constraints, the Job Queue Controller will fetch the rest of the Job Descriptor if
the previous reads did not already accomplish this. In addition, if there is a shared
descriptor, the Job Queue Controller will also fetch the shared descriptor (unless it can be
shared and is already present for another job). Once these reads have completed, the job
will be eligible for placement into a DECO for execution. By prefetching all of this
material, the Job Queue Controller saves the DECO from taking the time to do so,
thereby signficantly improving performance.

Software-generated Job Descriptors contain pointers to the data to be operated on, and the
lengths of that data. The descriptors may either directly embed security keys and context
or explicitly point to these keys and context. Keys and context may also be referenced
indirectly by pointing to a shared descriptor (SD) that either contains keys and context, or
includes pointers to keys and context. A Job Descriptor can include a shared descriptor
by reference, but a shared descriptor cannot include a Job Descriptor.

5. The first read is at least to the next burst boundary even though the descriptor may not be that long. It is up to the user to
ensure that reading beyond the end of the Job Descriptor to the burst boundary will not result in any memory access
errors.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

300 NXP Semiconductors
Confidential Proprietary

Job Descriptors use the descriptor commands defined in Using descriptor commands. A
Job Descriptor always begins with a HEADER command. A Job Descriptor without a
shared descriptor typically includes:

• Commands that specify the inputs (such as keys, IV, or data) to an operation and
where to place them

• Commands that specify where to place the output(s) of the operation
• One or more OPERATION commands that specify the cryptographic work to be

done

The Job Descriptor may also contain MATH commands that perform various calculations
and conditional JUMP commands that branch based upon the results of those
calculations.

If the Job Descriptor references a shared descriptor, the memory address pointer to the
shared descriptor immediately follows the Job Descriptor HEADER. In this case the
OPERATION command and certain inputs (such as the key) are normally specified in the
shared descriptor. The Job Descriptor typically specifies the location of the memory
buffers for the input and output data. In this case, the Job HEADER command has the
REO (Reverse Execution Order) bit set so that the Job Descriptor commands execute first
(to specify the input and output data buffers), followed by the shared descriptor
commands (to specify the operations to be performed on these data buffers). (see
Command execution order)

Because the length of the Job Descriptor is contained in the Job HEADER command, no
special termination command is required. When execution reaches the command that
extends to the end of the Job Descriptor, DECO knows that the execution of the Job
Descriptor has completed. Note that this endpoint is marked and does not change unless a
new descriptor is loaded. Therefore, even if new descriptor material is loaded over the
original material via MOVE or LOAD commands, the endpoint will not change and
DECO will end execution of the Job Descriptor there. An error will be generated if
DECO detects that the endpoint is inside a command. (For example, an error will be
generated if the endpoint is between the words of a 2-word command.)

10.6.2 Trusted descriptors

A trusted descriptor is a job descriptor (possibly including a shared descriptor) that is
integrity-checked at run time and is executed only if the check passes. This provides a
mechanism to ensure that particularly sensitive operations are performed only by
descriptors that were created by trusted software. Trusted descriptors have the following
privileges not available to ordinary Job Descriptors :

• Access to trusted descriptor-only black keys (See Black keys)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 301
Confidential Proprietary

• Access to trusted descriptor-only blobs (See Blobs)
• Access to trusted descriptor-only Secure Memory partitions

Trusted descriptors allow trusted software to extend these privileges to untrusted software
in a carefully controlled fashion. The trusted software can generate trusted descriptors
that access specific privileged data objects in specific ways on behalf of specific
requestors and deny access to other data objects, access modes, or requesters. Note that
each Trusted Descriptor is associated with a particular SDID, and will run only if it is
executed with the same SDID as the Job Ring in which the Trusted Descriptor was
created. (The signature over the Trusted Descriptor will not validate if the SDID is
different.) The Trusted Descriptor can be run in the Job Ring in which it was created, or
another Job Ring, as long as the SDID is correct.

Any descriptor can jump to a trusted descriptor via any of the various means: CRJD,
RJD, nonlocal JUMP, or inline descriptor. However, while a trusted descriptor may use
any of those means to jump, the target of such a jump must be another trusted descriptor.
Otherwise, an error will be generated.

NOTE
In order to use the derived key protocol (DKP) in a trusted
descriptor, the input and output for the protocol must both be
via the sequence pointers. That is, the option selected must be
from SEQ IN PTR to SEQ OUT PTR. There are no restrictions
for other protocols.

10.6.3 Shared descriptors

Because descriptors can hold a lot of information required to process a job for a particular
flow, they can be large, particularly if efficiency is maximized by placing keys, context
data, and other information within the descriptor rather than referencing them with
pointers. To save overhead, CAAM supports a shared descriptor mechanism. Once a
shared descriptor has been fetched it is held internally for a while so it can be used by
several different related jobs. The information stored within the shared descriptor can
also be shared among multiple descriptors. This saves bandwidth and latency, particularly
when black keys are in use.

A shared descriptor (SD) is constructed with the expectation that it will be used for
multiple jobs. The general usage model is to have a shared descriptor for each security
session. Every time a job related to that security session is required, CAAM obtains job-
specific information about the data (length, pointer) from the job descriptor and obtains
its session context from the shared descriptor. Shared descriptors can store session state

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

302 NXP Semiconductors
Confidential Proprietary

and can include commands to update this session state as needed. Shared descriptors are
well suited for complex operations, as the software overhead of creating the shared
descriptor can be amortized over many individual jobs.

In order to optimize performance when a job descriptor references a shared descriptor,
use the following guidelines. The job descriptor should contain only commands specific
to one job in the sequence of jobs for which the shared descriptor will be used. Such
commands include where to find the input data and where to place the output data. In
addition, occasional tasks such as executing an RJD or overriding the normal operation of
the shared descriptor would also be found here. The shared descriptor should contain all
of the generic, flow-specific, commands. That is, references to keys, context, state,
operations, etc.

Job Descriptors indicate the presence of an associated shared descriptor by setting the
SHR bit in the job descriptor HEADER command. Software creates shared descriptors
using the same command set as all other types of descriptors. A shared descriptor always
starts with a shared descriptor HEADER.

The following restrictions are specific to shared descriptors:

• A shared descriptor cannot have its own shared descriptor.
• A shared descriptor can be, at most, 62 32-bit words. This limit is imposed because

the job descriptor and the shared descriptor must both fit into the 64-word descriptor
buffer (see Figure 10-8), and the minimum job descriptor consists of a one-word job
descriptor HEADER and a pointer to the shared descriptor (See Address pointers).
Note that larger jobs can be created by JUMPing to another job descriptor.

• Some bits in the shared descriptor HEADER and the job descriptor HEADER
commands differ.

• The creation of a trusted descriptor involves signing the entire job descriptor,
including a referenced shared descriptor, if any. As a result, shared descriptors are
signed as part of the job descriptor when creating trusted descriptors. Therefore the
final signature is never part of a shared descriptor. Note that the REO bit cannot be
set in a trusted descriptor.

The following figure illustrates two descriptors that reference the same shared descriptor.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 303
Confidential Proprietary

Job Descriptor or Trusted Descriptor

Job Descriptor or Trusted Descriptor

Shared Descriptor

Immediate Data

Key

Pointer to Scatter/Gather Table

Shared descriptors

are prohibited from

referencing another

shared descriptor

.

.

.

Figure 10-7. Two descriptors referencing the same shared descriptor

10.6.3.1 Executing shared descriptors in proper order

CAAM provides mechanisms that can be used to ensure that jobs referencing the same
shared descriptor execute in proper order. A shared descriptor may need to modify keys
embedded within the descriptor, or particular fields of a protocol data block within the
descriptor before a subsequent job uses the shared descriptor. Use the STORE command
to update the shared descriptor. Note that to correctly use sharing flows (wait or serial), if
one job in the flow updates the PDB in memory, all jobs in that flow must update the
PDB in memory even if the PDB did not change for that particular packet. If all jobs in
the flow update the PDB, CAAM will ensure that subsequent jobs do not read the PDB
from memory until all updates from prior jobs are complete.

NOTE
If a NEVER share shared descriptor is modified during
execution, and that modification is not written back to memory,
the modification will NOT be seen by any other job that uses
that shared descriptor. If a NEVER share shared descriptor is
modified during execution, and if memory is updated with that
change, subsequent jobs which reference that shared descriptor
might have already fetched the original version or, if fetched
during the update, might have a corrupted version of the shared
descriptor. Therefore, it is up to the user to ensure that no jobs
which use a NEVER share shared descriptor are in flight when
the shared descriptor is updated. Clearly, NEVER share shared
descriptors are not meant to be updated.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

304 NXP Semiconductors
Confidential Proprietary

When a shared descriptor uses sequences, the sequence definitions should be in the Job
Descriptor because the definitions can change from Job Descriptor to Job Descriptor. In
such cases, set the REO bit in the job descriptor header. Note that setting the REO bit in
the job descriptor header tells CAAM to execute the Job Descriptor before the shared
descriptor.

The sharing type may be changed to NEVER via a write to the DECO Control Register.
Doing so prevents the descriptor from being shared from the DECO. The descriptor could
be shared following a subsequent read from memory or from another DECO if that
DECO has already gotten a copy of the descriptor. If the descriptor is being shared at the
time the DECO Control Register is written to set the sharing type to NEVER, the
descriptor will be shared.

Since there is only one DECO in this design, sharing can only take place by sharing the
shared descriptor with the next job to execute in that DECO. If that next job isn't using
the same shared descriptor, then sharing will not take place.

10.6.3.2 Specifying different types of shared descriptor sharing

If two jobs are to be processed for the same data flow, they can share flow-specific data
by referencing the same shared descriptor, which would be written to either reference or
embed the flow-specific data. Sharing is sequential, i.e. the DECO uses the same shared
descriptor to process several jobs in a row without refetching the shared descriptor. This
can happen with "WAIT", "SERIAL", and "ALWAYS" sharing.

CAAM distinguishes shared descriptors from each other by the address and DID used to
fetch the shared descriptor.

To share shared descriptors, the SHARE bits in the job descriptor header, and sometimes
in the shared descriptor header itself, must be set. This lets CAAM know under which
circumstances the shared descriptors can be shared.

The following table shows the sharing possibilities supported by the HEADER command.
The full details of the Shared Descriptor HEADER command can be found in HEADER
command.

Table 10-8. Interpretation of the SHARE fields

SHARE
Name

Job
Descriptor

SHARE
(binary)

Shared
Descriptor

SHARE
(binary)

Description

NEVER 000 00 Never share the shared descriptor. Descriptors can execute in parallel, so no
dependencies are allowed between them. Fetching the shared descriptor is
repeated.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 305
Confidential Proprietary

Table 10-8. Interpretation of the SHARE fields (continued)

SHARE
Name

Job
Descriptor

SHARE
(binary)

Shared
Descriptor

SHARE
(binary)

Description

WAIT 001 00 Share the shared descriptor once set up has completed and processing has
begun. Sharing can begin after a LOAD Command (or a PROTOCOL
OPERATION) has set the OK to Share bit. Class 1 and Class 2 Key Registers
are shared if valid.

SERIAL 010 00 Share once the descriptor has completed. If the last output from a shared job is
not a PDB writeback and the next shared job in the flow does not arrive in time
for context to be shared, it is possible for the next job to start before the last
writes from the previous job have completed. If there is a data dependency
between these last writes and the reads for the subsequent job, it is possible for
the reads to return the wrong (older) data. This is unlikely because data within a
flow is normally shared via PDB writebacks, and because writes typically
complete more rapidly than reads. But the situation can be avoided by doing a
PDB update of the first few bytes of the Shared Descriptor, where "few bytes" is
chosen to be bus-friendly.Class 1 and Class 2 Key Registers are shared, if valid.
Context may optionally be shared.

ALWAYS 011 00 Always share the shared descriptor, but keys are not shared. No dependencies
can exist between the descriptors.

DEFER 100 00: NEVER

01: WAIT

10: SERIAL

11: ALWAYS

Use the value of the SHARE bits in the shared descriptor to determine the type of
sharing.

All other combinations are reserved

10.6.3.2.1 Error sharing

Error sharing between jobs is not possible in single DECO designs.

10.6.3.3 Changing shared descriptors

The best shared descriptors are independent, meaning that they do not need to be
modified by software for each Job Descriptor with which they are used. (Note that this is
a different topic than shared descriptors that update themselves.) Shared descriptors are
more easily used the more generic they are. However, shared descriptors may have to be
changed on occasion, e.g., when there is a key change. Replacement job descriptors can
be used for such changes to avoid requiring software to make the change.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

306 NXP Semiconductors
Confidential Proprietary

10.6.4 Using in-line descriptors

In the typical use case, the shared descriptor contains the main processing sequence.
However, by setting the INL bit in a SEQ IN PTR command and providing appropriate
address and length information, CAAM is directed to an in-line descriptor, which is a job
descriptor that software prepends to the data defined by an input sequence. (For more
information about the SEQ IN PTR command, see SEQ vs non-SEQ commands and SEQ
IN PTR command.)

Note that shared descriptors can point to in-line descriptors, but in-line descriptors cannot
point to shared descriptors. This means that the in-line descriptor is loaded at the start of
the descriptor buffer, overwriting as much shared descriptor, if one is present, and job
descriptor, as needed. This means the shared descriptor will no longer be executable by
this job and will no longer be shareable. Note that an in-line descriptor may be scattered
by means of an SGT.

Once the inline descriptor has been loaded, the detection of an error will result in a bit in
the completion status being set that indicates that a non-local jump was taken. There is no
indication of how many non-local jumps were made. For Job Ring jobs, the original job
descriptor address is placed in the appropriate output ring.

Once an inline descriptor has been loaded, use of the STORE convenience source for
updating the job descriptor (41h) will result in an error.

In some cases, an inline descriptor will be used when a shared descriptor had been shared
from a prior job. In such cases, it may be desirable to treat the job as if it had not been
shared. This may be accomplished by writing to the CDS bit in the Clear Written
Register.

10.6.5 Using replacement job descriptors

A replacement job descriptor (RJD) is an in-line descriptor that:

• Replaces the job descriptor that invoked the replacement descriptor.
• Does not replace the existing shared descriptor

To invoke the replacement job descriptor, execute a SEQ IN PTR with RJD = 1. This
immediately executes the replacement job descriptor. Note that the replacement job
descriptor must be at the start of the input sequence data at the time that this SEQ IN PTR
command is executed.

The replacement job descriptor can modify the shared descriptor before allowing it to
execute. This allows operations such as changing the keys and resetting the sequence
number within a shared descriptor without having to interrupt the flow of packets.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 307
Confidential Proprietary

However, because the shared descriptor has already been loaded, the length and address
of the shared descriptor must not be modified. Note that when there is no shared
descriptor, there is no difference between an in-line descriptor and a replacement job
descriptor.

When using the replacement job descriptor capability, the current job descriptor can be
replaced with any job descriptor. Other data, including an input frame, can follow the
replacement job descriptor in the input sequence data.

If there is a JUMP HALT command in the replacement job descriptor, the job terminates
without executing the shared descriptor. Otherwise, if the job descriptor has the REO bit
set, once the replacement job descriptor has finished, execution continues with the shared
descriptor so that data can be processed. If the shared descriptor will process data during
this job, before beginning that processing make sure that all the updates made to the
shared descriptor have completed both internally and externally (that is, the update to the
descriptor buffer has completed and the update to the shared descriptor in memory has
completed). This is discussed in the following two paragraphs.

The replacement job descriptor can insert new values in the shared descriptor with either
the MOVE command or the LOAD command. The MOVE command's default behavior
is to schedule the MOVE operation as soon as possible and then allow the next command
to execute. As a result, the MOVE happens in parallel with subsequent commands. Be
aware that the MOVE command can take multiple cycles to complete, and it is possible
that shared descriptor commands may be executed before the MOVE completes. This
could result in the intended updates not being used. If there is a chance that this may
occur, use the WC bit in the MOVE command to ensure correct operation. See MOVE,
MOVEB, MOVEDW, and MOVE_LEN commands for additional details about the
MOVE command.

If using the LOAD command to modify the shared descriptor, the replacement job
descriptor should use the JUMP command, waiting for the NIP (No Input Pending) bit to
evaluate true before proceeding. Note that the replacement job descriptor can also be used
to transfer data to other destinations, such as memory, context registers, or Math
registers. It is the replacement job descriptor's responsibility to ensure that any and all of
these transfers have completed before the shared descriptor uses the new data.

Replacement job descriptors can be trusted descriptors, and they must be trusted if the
current descriptor is a trusted descriptor.

CAAM also implements a different type of RJD known as a Control RJD (CRJD). In the
case of a CRJD, CAAM fetches the replacement job descriptor from memory
immediately following the shared descriptor. Note that it is an error to use a CRJD for a
Job Ring job if there is no shared descriptor.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

308 NXP Semiconductors
Confidential Proprietary

Once an RJD has been loaded, use of the STORE convenience source for updating the
job descriptor (41h) will result in an error.

The detection of an error will result in a bit in the completion status being set that
indicates that a non-local jump was taken. There is no indication of how many non-local
jumps were made. For Job Ring jobs, the original job descriptor address is placed in the
appropriate output ring.

In some cases, an RJD descriptor will be used when a shared descriptor had been shared
from a prior job. In such cases, it may be desirable to treat the job as if it had not been
shared. This may be accomplished by writing to the CDS bit in the Clear Written
Register.

Due to features of the AES encryption algorithm, special handling may be required when
using a replacement job descriptor to update a key in a shared descriptor. AES encryption
requires each block of data to be processed in a series of cryptographic rounds, and the
AES key is successively modified at each round. When decrypting, the AES CHA must
start with the fully modified form of the key (also called a decryption key or decap key)
and reverse the modifications at each round, eventually ending up with the original
encryption key. If the descriptor was shared, AES will have left the decryption key in the
key register. However, when using a replacement job descriptor to update a key in a
shared descriptor, the updated key is usually an encryption key (also called an encap
key). To resolve this problem, use the LOAD command to clear the fact that the shared
descriptor was, in fact, shared. That way, AES will expect the encryption key and will
automatically generate the decryption key. This avoids having to generate the decryption
key as part of the RJD.

10.6.6 Scatter/gather tables (SGTs)

When submitting jobs to CAAM, software can create Job Descriptors with address/length
entries that point directly to data or indirectly to data by means of scatter/gather tables.
An SGT consists of one or more SGT entries. The final entry in the SGT is marked by
setting the F (Final) bit in an SGT entry.

Each of the SGT entries occupies four 32-bit words, as seen in Table 10-9. Note that an
SGT entry with Length = 0 is legal. When this is the setting, no data will be read from or
written to the buffer pointed to by the Address Pointer.

An entry can point to another SGT that contains additional entries by setting the E
(Extension) bit in the entry. When the E bit is set, CAAM fetches SGT entries from the
new SGT and ignores any remaining entries in the old SGT.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 309
Confidential Proprietary

NOTE
An SGT with the E bit set in the first entry is considered
malformed.

The following table shows the SGT entry format.

Table 10-9. Scatter/gather table entry format

word 0 Reserved [32 bits] (must be 0)

word 1 Address Pointer [LS 32 bits]

word 2 E [1b] F [1b] Length [30 bits]

word 3 Reserved [19 bits]

(must be 0)

Offset [13 bits]

Table 10-10. Scatter/gather table field descriptions

Field Description

Offset Offset (measured in bytes) into memory where significant data is to be found. The use of an offset
permits reuse of a memory buffer without recalculating the address.

Length Length of significant data in buffer, measured in bytes

F Final Bit. If set to 1, this is the last entry in the scatter/gather table.

E Extension bit. If set to 1, the address pointer points to a scatter/gather table entry instead of a
memory buffer. In this case the Length and Offset fields are ignored, and this entry is regarded as
the last entry of the current scatter/gather table even if the F bit is 0. The next table entry is taken
from the scatter/gather table pointed to by the address pointer.

Address Pointer Pointer to memory buffer or discontinuous scatter/gather table entry, depending on the E bit.

Reserved Field not currently defined. Leave these bits 0 to ensure forward compatibility.

10.6.7 Using descriptor commands

Descriptors contain one or more commands that tell CAAM what operations to perform,
as well as what data on which to operate. Commands can also be used to enforce data
type separation. For example, specifying that input data be treated as a cryptographic key
forces CAAM to treat it exclusively as a key and prevents the key from being written
back out into memory in unencrypted form.

CAAM permits a great deal of flexibility in composing descriptors, but it is highly
recommended that descriptors be modeled after the examples in drivers or other reference
software. Some sequences of commands or combinations of command options may
produce unexpected results.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

310 NXP Semiconductors
Confidential Proprietary

10.6.7.1 Command execution order

NOTE
In the following discussion, the term Job Descriptor should be
taken to include both ordinary Job Descriptors and trusted
descriptors.

Before a Job Descriptor begins execution, the portion of the Job Descriptor contained in
the holding tank is loaded into the descriptor buffer. This includes the Job
Descriptor'sHEADER command, which is the first command executed. Once the
remainder of the Job Descriptor has finished loading, the next command to execute
depends upon three fields in the HEADER : SHR, REO, and START INDEX.

The following figure shows the layouts for Job Descriptors depending on whether SHR =
0 or 1.

Job Descr
HEADER

START
INDEX

SHR=0 DESCLEN.

Optional Data

. . .

Optional Data

. . .
Job Descriptor Command

Job Descriptor Command

Job Descriptor Command

Shared Descr
HEADER

START
INDEX

SC DESCLEN.

Optional Data

. . .

Optional Data

. . .

Shared Descriptor Command

Shared Descriptor Command

Shared Descriptor Command

Descriptor Buffer Descriptor Buffer

. . .

Job Descriptor Command

Job Descriptor Command

Job Descriptor Command

SHARED
DESC
LENGTH

SHR=1 DESCLEN.

Pointer to Shared Descriptor in Memory

Job
Descriptor

Job
Descriptor

Shared
Descriptor

Job Descr
HEADER

Job Descriptor without
a Shared Descriptor

Job Descriptor with
a Shared Descriptor

Figure 10-8. Job Descriptor layout in descriptor buffer

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 311
Confidential Proprietary

10.6.7.1.1 Executing commands when SHR = 0

When SHR = 0, the Job Descriptor does not reference a shared descriptor. Therefore, the
HEADER 's START INDEX field specifies the position of the next command that will
execute within the Job Descriptor. If the START INDEX value is 0, the next command to
execute is the command immediately following the HEADER command. Any other value
causes a jump to the position indicated by the START INDEX field. Note that within a
protocol Job Descriptor, the START INDEX value is used to skip over the PDB, if any.
Before the Job Descriptor continues execution, the remainder of the Job Descriptor is
fetched from memory and loaded into the DECO's descriptor buffer. The left half of
Figure 10-8 shows the layout of a Job Descriptor that does not reference a shared
descriptor.

Commands execute in the order in which they appear in the descriptor buffer until one of
the following is executed:

• The last command in the Job Descriptor
• A JUMP command when the JUMP is taken (see JUMP (HALT) command)
• An in-line descriptor (see Using in-line descriptors)
• A replacement job descriptor (see Using replacement job descriptors)

When JUMP commands are executed, the behavior is as follows:

• If DECO executes an unconditional halt type of JUMP or a conditional halt type
whose tested condition evaluates to true, execution of the Job Descriptor terminates.

• If DECO executes a JUMP whose type is conditional halt, local conditional jump,
non-local conditional jump, conditional subroutine call, or conditional subroutine
return and the tested condition evaluates to false, execution continues with the
command following the JUMP.

• If the JUMP type is local or non-local jump or conditional subroutine call and the
tested condition evaluates as true, the command indicated by the LOCAL OFFSET
field (for local jumps) or by the Pointer Field (for non-local jumps) is the next
command to execute.

• If the jump is local, the target of the JUMP should be within the current job
descriptor. If the target is beyond the end of the current Job Descriptor, it is up to
the programmer to ensure there is executable code at the target and that the
descriptor will be able to terminate properly. One common method for proper
termination is to use a JUMP HALT command.

• If the jump is non-local, the target of the JUMP must be the start of a job
descriptor.

• If the JUMP type is conditional subroutine return and the tested condition
evaluates as true, the next command to execute is the command following the
most recently executed conditional subroutine call.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

312 NXP Semiconductors
Confidential Proprietary

10.6.7.1.2 Executing commands when SHR = 1

As described in Executing commands when SHR = 0, the portion of the Job Descriptor
(including the HEADER command) contained in the holding tank is loaded into the
descriptor buffer. When SHR = 1, the Job Descriptor references a shared descriptor (see
Shared descriptors).

In this case, instead of a START INDEX field, the job descriptor HEADER contains a
SHR DESCR LENGTH field. This field specifies the length of the shared descriptor,
which allows DECO to leave enough space for the shared descriptor when the Job
Descriptor is loaded into the descriptor buffer. The right side of Figure 10-8 shows the
layout of a job descriptor that references a shared descriptor.

A pointer to the shared descriptor's location in memory appears in the word immediately
following the job descriptor HEADER. Note that the job descriptor HEADER may
occupy two words in addition to the shared descriptor address (see EXT field in
HEADER command). The pointer, together with the DID that was used when fetching
the descriptor, is used to determine if the shared descriptor is already resident in the
DECO and is therefore a candidate for sharing. If the shared descriptor is not resident or
cannot be shared, the shared descriptor is fetched from memory using the pointer as the
starting address. Processing cannot continue until the entire shared descriptor is present.
The START INDEX field within the shared descriptor's HEADER specifies the position
of the next command that will execute within the shared descriptor once the shared
descriptor begins execution. A START INDEX of 0 means start with the command
immediately following the shared descriptor HEADER. If either the shared or Job
Descriptor contain a PROTOCOL OPERATION command, the START INDEX value in
the shared descriptor is used to skip over the PDB, if any. Note that when a shared
descriptor is present, the PDB is always in the shared descriptor even if the PROTOCOL
OPERATION is in the job descriptor.

10.6.7.1.3 Executing commands when REO = 0

If the Job Descriptor references a shared descriptor, the REO bit in the HEADER
command determines the next command to be executed. 6 When REO = 0, DECO
executes the shared descriptor before the remainder of the job descriptor, as illustrated on
the left of Figure 10-9. After the job descriptor HEADER executes, the HEADER
command within the shared descriptor (2.0 in the diagram) is the next command to
execute. The commands within the shared descriptor then execute. Once the shared
descriptor starts executing, any job descriptor HEADER command will be treated as a
no-op until a new Job Descriptor is loaded.

6. Note that the REO bit cannot be set in a trusted descriptor.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 313
Confidential Proprietary

The shared descriptor ceases executing when any of the following occurs:

• an in-line job descriptor is executed
• a replacement job descriptor is executed
• a JUMP HALT command is executed
• a non-local JUMP is executed
• or the shared descriptor "falls through" to the Job Descriptor

Since the shared descriptor immediately precedes the Job Descriptor in the descriptor
buffer (see right side of Figure 10-8), unless the last command of the shared descriptor
causes a jump, the shared descriptor may complete by simply "falling through" to the Job
Descriptor. Once the shared descriptor completes, DECO executes the Job Descriptor,
starting with the Job Descriptor HEADER, which will be treated as a no-op. Execution
will continue with the next command of the Job Descriptor. Execution will end following
execution of the last command in the Job Descriptor unless the last command is a taken
JUMP.

Once the shared descriptor HEADER command has been executed, any further shared
descriptor HEADER commands will be used as absolute, unconditional, jump commands
if the START INDEX field is nonzero. The START INDEX field will be used to
determine the target. Note that, unlike the JUMP command, the START INDEX is the
value of the target index, not a relative index. No other fields in the shared descriptor
HEADER command will cause an action to take place although error conditions may be
triggered. If a subsequent execution of a shared descriptor HEADER command is done
where the START INDEX is zero, then the shared descriptor HEADER command will be
treated as a no-op.

It is important to note the difference in how subsequent Job Descriptor HEADER
commands are handled when REO=0 and REO=1.

10.6.7.1.4 Executing commands when REO = 1

When REO is 1, DECO executes the Job Descriptor before the shared descriptor, as
illustrated in the diagram on the right of Figure 10-9. In this case, the job descriptor
command (if any) that immediately follows the shared descriptor pointer (1.1 in the
diagram), or the extended HEADER word if it is present, executes immediately after the
job descriptor HEADER. After the Job Descriptor completes, DECO then executes the
shared descriptor commands, starting with the shared descriptor HEADER (2.0 in the
diagram).

Execution of a subsequent job descriptor HEADER, other than one reached via a non-
local JUMP, an RJD or inline descriptor, will terminate execution normally. Upon
execution of the command which ended the Job Descriptor, no matter how many times
this occurs, with the exception of taken JUMPs, execution will continue with the

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

314 NXP Semiconductors
Confidential Proprietary

command at the start of the descriptor buffer. After the first execution of the shared
descriptor HEADER, subsequent executions can be used as absolute, unconditional,
jumps in the same manner as subsequent shared descriptor HEADER commands are used
when REO=0.

REO= 0Job Desc
 HEADER

. . .

Pointer to shared descriptor location in memory

Optional data
e.g. Protocol Data Block

Command 1
Shared

Descriptor

Job Descriptor with a shared descriptor
when REO = 0

2.0

2.1

2.n

1.0 3.0

3.m

. . .Shared Desc
HEADER PD

REO= 1Job Desc
HEADER

Pointer to shared descriptor location in memory

Job Descriptor with a shared descriptor
when REO = 1

1.0

1.m

Shared Desc
HEADER PD

1.1

When Job
Descriptor

 ends

Job
Descriptor

Command 2

Command n

Command 1

Command m

Command 1

2.0

2.1

2.n

Shared
Descriptor

Job
Descriptor

...

. . .

...

Optional data
e.g. Protocol Data Block

.

Command 2

Command n

...

Command 1

Command m

...

.

3.1

When Shared
Descriptor

 ends

REO=0 in Job Desc
HEADER causes
Shared Descriptor

 to execute before
 Job Descriptor

REO=1 in Job Desc
HEADER causes
Job Descriptor
to execute before
Shared Descriptor

Figure 10-9. Order of command execution if a shared descriptor is referenced

10.6.7.1.5 Executing additional HEADER commands

A Job Descriptor must start with a job descriptor header, and a shared descriptor must
start with a shared descriptor header. These are typically the only HEADER commands
within a descriptor, but it is possible for the descriptor to have additional HEADER
commands.

No error is generated if a Job Descriptor or shared descriptor executes additional shared
descriptor HEADER commands. These are essentially no-ops, with one exception. If
START INDEX is non-zero, the Shared Descriptor HEADER command causes a jump to
that position within the descriptor buffer. That is, the Shared Descriptor HEADER
command executes as if it is an unconditional JUMP to an absolute index. Note that this
is different from the JUMP command, which uses relative addressing. The first shared

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 315
Confidential Proprietary

descriptor HEADER command is the one that is treated as real. All subsequent shared
descriptor HEADER commands executed, including the first one if executed again, are
no-ops (other than an absolute jump if the START INDEX is nonzero).

NOTE
It is an error to execute a shared descriptor HEADER command
in a Job Descriptor when there is no shared descriptor (when
SHR= 0).

If a Job Descriptor does not reference a shared descriptor, any additional Job Descriptor
HEADER commands that it executes (for example, by jumping back to the beginning of
the Job Descriptor) are treated as jumps to an absolute address within the descriptor
buffer. If a Job Descriptor does reference a shared descriptor, any additional job
descriptor HEADER commands that it executes are treated as no-ops. Executing a job
descriptor HEADER command within a shared descriptor terminates the shared
descriptor if the shared descriptor runs after the Job Descriptor runs (that is, REO = 1),
but the Job Descriptor header acts as a no-op if the shared descriptor runs before the Job
Descriptor runs (that is, REO = 0).

10.6.7.1.6 Jumping to another job descriptor

Note that either a job descriptor or a shared descriptor can execute a non-local JUMP to a
job descriptor. In these cases, the current job descriptor or shared descriptor terminates,
and the new job descriptor is fetched into the descriptor buffer and executes. Note that
this new job descriptor is not permitted to reference a shared descriptor, but can also
execute a non-local JUMP to another job descriptor. This mechanism allows the
construction of jobs that are larger than the descriptor buffer. Once the entire chain of job
descriptors terminates, a single job termination status word (see Job termination status/
error codes) is returned. The return status is as if the original job descriptor had
completed. That is, for Job Ring jobs, the original job descriptor address is placed in the
appropriate output ring. If an error is detected following a jump to another descriptor, a
bit in the status indicates that a non-local jump was taken. Note that there is no indication
of how many non-local jumps were made.

10.6.7.2 Command properties

As explained in the following subsections, three properties determine how CAAM
handles each command:

• Blocking
• Load/store checkpoint
• Done checkpoint

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

316 NXP Semiconductors
Confidential Proprietary

10.6.7.2.1 Blocking commands

A blocking command must complete before the next command can begin. Note that the
completion is from the standpoint of the DECO. If the command requires a read and the
DECO has scheduled the read, the next command can begin even if the read has not
completed.

Many commands are blocking commands. The notable exceptions are commands that
perform LOADs, STOREs, MOVEs and OPERATION algorithm commands. (That is,
not PROTOCOL OPERATIONS or PKHA OPERATIONS, which are blocking.) Note
that setting the WC bit in any of the MOVE commands causes the command to become
blocking.

10.6.7.2.2 Load/store checkpoint

If a command is a load/store checkpoint, it must wait for certain prior LOADs and/or
STOREs to complete before it can start. This property ensures that LOADs, STOREs,
and other commands occur in proper order.

10.6.7.2.3 Done checkpoint

If a command is a done checkpoint, it must wait until all current cryptographic activity
associated with the descriptor is done. The CHAs signal done once their computation has
completed. Note that this is different from the descriptor being done, since not all loads
and stores may have completed. It merely indicates that the CHAs in use have completed
their current tasks. Note that done checkpoints can be for only Class 1, or only Class 2, or
both Class 1 and Class 2.

10.6.7.3 Command types

The following is a list of commands that are supported in CAAM along with their
blocking and checkpoint properties.

Table 10-11. List of command types

Command name CTYPE Blocking Load/store checkpoint Done
checkpoint

KEY

(& SEQ KEY)

00000

(00001)

Yes, if not
immediate or if
encrypted

Load/Store, if not immediate or if
encrypted

Yes

LOAD

(& SEQ LOAD)

00010

(00011)

No Load, for some destinations No

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 317
Confidential Proprietary

Table 10-11. List of command types (continued)

Command name CTYPE Blocking Load/store checkpoint Done
checkpoint

FIFO LOAD

(& SEQ FIFO LOAD)

00100

(00101)

No Load, if immediate and another
FIFO LOAD is pending or if not
immediate and an immediate FIFO
LOAD or MOVE to the input FIFO
is pending

No

STORE

(& SEQ STORE)

01010

(01011)

No Store, if storing a scatter/gather
table and that table is still being
loaded

If from a Context
Register the
corresponding
CHA must be
done

FIFO STORE

(& SEQ FIFO STORE)

01100

(01101)

No Load checkpoint if encrypting Yes if encrypting

MOVE

(& MOVE_LEN)

(& MOVE_B)

(& MOVE_W)

01111

(01110)

Yes, if WC set Load or Store depending on type
of MOVE. It is a checkpoint if the
CCB DMA is being used for a prior
MOVE or for moving IMM data for
KEY, LOAD, or FIFO LOAD
commands.

If from a Context
Register the
corresponding
CHA must be
done

OPERATION

(ALGORITHM OPERATION)

(PROTOCOL OPERATION)

(PKHA OPERATION)

10000 Yes, if PKHA or
protocol

For PKHA No

SIGNATURE 10010 Yes, when
verifying or re-
signing

Yes if recomputing signature
following execution; no pending
reads or writes.

No

JUMP 10100 Yes Checkpoint based upon condition
bits

If Class bit or
bits are set

MATH and MATHI 10101

11101

Yes Will wait for data if SRC1 is Input
or Output Data FIFO and data is
not yet available

No

Job Descriptor HEADER

Shared Descriptor HEADER

10110

10111

Yes N/A N/A

ECPARAM 11100 No Load if an immediate FIFO LOAD
or MOVE to the input FIFO is
pending

No

SEQ IN PTR 11110 Yes Yes if there is a pending gather
table read.

No

SEQ OUT PTR 11111 Yes Yes if there is a pending scatter
table read.

No

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

318 NXP Semiconductors
Confidential Proprietary

10.6.7.4 SEQ vs non-SEQ commands

CAAM can process networking protocol packets that consist of separate fields, such as
headers, sequence numbers, AADs, payloads, and ICVs. (A complete discussion of
network security protocol packet formats is beyond the scope of this document. However,
examples using the protocols that CAAM supports can be found in Protocol
acceleration.) To help process such packets efficiently, CAAM provides sequence (SEQ)
versions of the following descriptor commands:

• KEY
• LOAD
• STORE
• FIFO LOAD
• FIFO STORE

SEQ and non-SEQ versions of descriptor commands have nearly identical functions, with
the major distinction being that the SEQ versions do not require pointers because CAAM
uses sequence addresses that were defined by previously executed SEQ IN PTR or SEQ
OUT PTR commands. Another difference is that SEQ commands (with the exception of
SEQ STORE) do not have immediate data modes.

For jobs submitted by means of the Job Ring interface, each Job Ring can be configured
via the INCL_SEQ_OUT field in each Job Ring Configuration Register to output an
additional word in each entry of the Output Ring that indicates the length of the output
sequence (that is, the number of bytes output via SEQ commands).

10.6.7.4.1 Creating a sequence

Sequences are generally associated with shared descriptors (see Shared descriptors)
which support a one-time definition of a set of commands to be performed on each packet
in a flow. The address and length of the input and output packets are usually specified in
a job descriptor (see Job Descriptors) that references a shared descriptor containing SEQ-
version commands to indicate how to process the data. The shared descriptor is analogous
to a subroutine, and the Job Descriptor is analogous to a software program supplying
arguments and then calling that subroutine.

The Job Descriptor uses the following commands to provide information about the data
to be processed by the sequence:

• A SEQ IN PTR command to specify the length and address of the data to be
processed (see SEQ IN PTR command).

• A SEQ OUT PTR command to specify the length and address of the buffer for the
output data (see SEQ OUT PTR command).

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 319
Confidential Proprietary

The SEQ IN PTR and SEQ OUT PTR commands each have an SGF field which, when
set to 1, allows sequence input and/or output areas to be defined by means of scatter/
gather tables.

The SEQ IN PTR command is used to create an input sequence. The SEQ OUT PTR is
used to create an output sequence. Once the input and/or output sequence pointers have
been set, subsequent SEQ commands indicate how to process the packet. The length of
the sequence may be extended by issuing additional SEQ IN PTR and SEQ OUT PTR
commands with the PRE bit set (see Table 10-95 and Table 10-97) or by using MATHor
MATHI commands to add length directly. DECO tracks how far into the output sequence
DECO has progressed, and this information is used if a rewind is needed so that a second
pass can be made over the sequence (see RTO field and SOP field in the SEQ IN PTR
command and REW field in the SEQ OUT PTR command).

An input sequence ends when any of the following occurs:

• All specified input data is consumed (unless a rewind is then done).
• A new input sequence is started.
• An error occurs.

An output sequence ends when any of the following occurs:

• All specified output space is consumed (unless a rewind is then done).
• A new output sequence is started.
• An error occurs.

There can be at most one scatter/gather table active for input and at most one scatter/
gather table active for output in the DECO at any time. Note that non-sequential
commands can be executed within the same descriptor while a sequence is running.
However, an input gather table can be in use by either an input sequence or by non-SEQ
KEY,LOAD, or FIFO LOAD commands, but not both. Likewise, an output scatter table
can be in use by either an output sequence or by non-SEQ STORE or FIFO STORE
commands, but not both.

To accelerate performance, CAAM caches gather table and scatter table entries in
registers (see the DECO Gather Table Registers and DECO Scatter Table Registers).

NOTE
If a scatter/gather table is being used for an input or output
sequence, and a non-SEQ command references a second scatter/
gather table for input or output data, entries from the second
scatter/gather table overwrite the entries from the initial scatter/
gather table. This can result in the input/output sequence
referencing the wrong data. (The opposite case is not a
problem. For example, a non-SEQ LOAD command which

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

320 NXP Semiconductors
Confidential Proprietary

references a scatter/gather table followed by a SEQ IN PTR
which references a scatter/gather table won't be an issue since
the LOAD has to complete the use of its scatter/gather table
before the SEQ IN PTR command can execute.)

NOTE
Hardware does not flag overwriting the scatter/gather table as
an error. The descriptor programmer must ensure this does not
happen.

10.6.7.4.2 Using sequences for fixed and variable length data

Some SEQ commands act on fixed length data (for example, keys, IVs, or packet header
fields) whereas other SEQ commands act on data that changes length from packet to
packet, such as packet payload. The VLF bit found in all SEQ commands indicates
whether the data associated with the SEQ command is a constant length or whether the
length is to be found in the corresponding variable length registers (VSIL and VSOL).

Note that the VSIL and VSOL are not accessible through the register bus, but rather they
are read from or written to by means of the MATHor MATHI Command (see Table
10-91). This allows commands within the descriptor to calculate variable lengths. Given a
total packet length, the descriptor can calculate the variable length portion of a job and
load it into the Variable Length Registers to be referenced by subsequent SEQ commands
(by setting the VLF bit).

10.6.7.4.3 Transferring meta data

When processing data, CAAM typically uses the DMA to read input data and write
output data. Because CAAM is primarily intended to accelerate cryptographic operations,
the output data is normally different from the input data. However, it is possible to use
CAAM's external DMA to transfer data from an input buffer to an output buffer without
modifying the data (that is, the identity transformation, also called null encryption),
typically to either:

• Benefit from CAAM's scatter/gather capabilities
• Transfer meta data in conjunction with cryptographic processing

The latter case is often useful because the meta data may describe the type, the source,
the destination, the classification, the priority and/or the amount of the cryptographic
data. If this meta data appears ahead of the data to be processed, it is called 'leading meta
data'. If it appears after, it is called 'trailing meta data'.

Three different tasks must be scheduled in order to transfer meta data from input to
output without modification:

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 321
Confidential Proprietary

• Data must be read. Most often, the data is read into the input data FIFO. FIFO LOAD
and SEQ FIFO LOAD are the most common methods for getting data into the input
FIFO.

• Data must be stored. Most often, the data is stored from the output FIFO. FIFO
STORE and SEQ FIFO STORE are the most common methods for storing data from
the output FIFO.

• If the data is brought into the input data FIFO, it must be moved, via one of the
MOVE commands, to the output FIFO.

While it is possible to transfer meta data without going through the input FIFO and
output FIFO, such transfer methods are discouraged as timing can be complex.
Furthermore, meta data is most often used with sequences so that multiple pointers don't
have to be specified.

It is possible to accomplish two or three of the above tasks using a single command. This
command is the SEQ FIFO STORE command with the meta data Output Data Type, 3Eh.
Depending on how the auxiliary bits are set, this type of SEQ FIFO STORE will adjust
the various lengths and obtain the data either from the input frame or from the input data
FIFO.

The above procdures work for leading meta data. To handle trailing meta data for a
sequence, start by subtracting the length of the meta data from the Sequence Input Length
Register. Then, process the input frame. Once the processing is complete, add the length
of the meta data back to the Sequence Input Length Register and handle the meta data.
(Note that if using SEQ FIFO STORE with meta data Output Data Type, you don't need
to add the length back into the register.)

10.6.7.4.4 Rewinding a sequence

Note that it is possible to rewind a sequence to make an additional pass over the input and
output data (see RTO field and SOP field in SEQ IN PTR command and REW field in
SEQ OUT PTR command. A rewind can fill in data that was skipped over in a previous
pass. For example, a rewind may be necessary if a field contains a hash value that is
computed over data that appears later in the output data.

10.6.7.5 Information FIFO entries

The CCB has an iNformation FIFO (NFIFO). The NFIFO holds entries that describe the
corresponding data to obtain from the input data FIFO, the output data FIFO, the
auxiliary data FIFO, or the padding module. (The padding module provides a means for
generating different types of padding and random numbers.) The data is obtained from
each source in the order in which the NFIFO entries are loaded. Note that there are two

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

322 NXP Semiconductors
Confidential Proprietary

formats for NFIFO entries, one format when STYPE is not 10 and one format when
STYPE is 10. Note that a single entry is able to describe the same (in-snooping) or
different (out-snooping) sources for the class 1 and class 2 alignment blocks.

Typically, a command that loads data to the input data FIFO or pulls data through one of
the alignment blocks will result in CAAM automatically generating the proper NFIFO
entries to handle that data. However, that functionality can be overridden to allow the
descriptor to directly specify the NFIFO entries. Entries can be placed into the NFIFO via
a LOAD Immediate command with a DST value of 7Ah or 70h through 75h.

10.6.7.6 Output FIFO Operation
Data can be pushed into the output FIFO via:

• a LOAD IMM to the output FIFO
• a MOVE command where the destination is the output FIFO
• CHAs pushing their results into the output FIFO

It is up to the descriptor writer to ensure that there are no collisions of data from these
sources. If such a collision does occur, an error will be generated.

The output FIFO does not track valid bytes. Therefore, it is up to the descriptor writer to
know which bytes in the output FIFO are valid. For example, if you push 3 bytes into the
output FIFO followed by 5 more bytes, these 8 bytes are not contiguous. The first three
bytes are in one dword and the other 5 bytes are in a second dword. However, the output
FIFO always stores 8 bytes per push. When a LOAD IMM to the output FIFO is done,
the specified number of bytes are left aligned and any other bytes are written as provided.
That is, if the immediate data is to be one byte, 55h, but the 4-byte value provided is
55443322h, then all four bytes are written to the output FIFO along with 4 more bytes of
0. MOVEs to the output FIFO will have similar results. However, if a CHA is pushing 3
bytes into the output FIFO, those bytes will be left aligned and the other 5 bytes will be 0.

The output FIFO provides data through two access points. The first is for the external
DMA and the second is shared by three consumers: the CCB DMA, DECO access via the
MATH command, and the NFIFO. The two access points have separate indices into the
output FIFO so each can track separately allowing consumption of data at different rates.
The following list illustrates how these indices work.

• If the current NFIFO entry is not pulling data from the output FIFO, then whenever
the external DMA pops an entry off the output FIFO, the two indices increment.

• If the CCB DMA pops an entry off the output FIFO, both indices will increment.
• If the DECO pops an entry off the output FIFO via the MATH command, both

indices will increment.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 323
Confidential Proprietary

• If the current NFIFO entry is pulling data from the output FIFO, then the two indices
will track separately if the NFIFO entry is not STYPE=01 and AST=1. This is a
critical point to understand: since the indices are tracking separately, if one of the
consumers, either the NFIFO or the external DMA, falls far enough behind the other,
the output FIFO can fill and operations will stall until the lagging consumer catches
up. If the NFIFO is consuming data but there are no FIFO STOREs to advance the
external DMA pointer, then the NFIFO can only consume as much data as the output
FIFO can hold before a hang will result.

• If the current NFIFO entry has STYPE=01 and AST=1, the indices will both
increment when the NFIFO pops entries from the output FIFO. This scenario is
useful when all of the data being pushed into the output FIFO is to be consumed via
one of the alignment blocks.

There are two ways to alter the behavior of the output FIFO via descriptor control. The
first is the means to set the index shared by the CCB DMA, DECO, and the NFIFO to
have the same value as the index used for the external DMA. This is done via a LOAD
IMM to the DECO control register. The second method is to reset the output FIFO, which
clears the data in the FIFO and resets both indices. The reset can also be done via a
LOAD IMM to the DECO Control Register. Another means of resetting the output FIFO
is via a LOAD IMM to the Clear Written register.

Another way to alter access to the output FIFO is via the OFIFO offset. This value is
tracked by DECO as a means of remembering where the last access left off. For example,
if a SEQ FIFO STORE of 3 bytes is done, what happens to the other 5 bytes in the output
FIFO entry? Both the NFIFO entry and the FIFO STORE commands allow the descriptor
to have these remaining bytes retained or discarded. If the OC bit in the NFIFO entry is
set when the NFIFO is pulling data from the output FIFO, the remaining bytes are
retained. A subsequent access via DECO, the CCB DMA, or the NFIFO will be able to
obtain this data. However, the descriptor writer will be responsible for shifting the data as
needed to get to the remaining bytes if the access is done via the DECO or the CCB
DMA since only the NFIFO will be tracking where it left off.

If the CONT bit in the FIFO STORE command is set, the remaining bytes are also
retained when the external DMA reads the specified number of bytes. In this case, it is
DECO which tracks how many remaining bytes there are so that the subsequent FIFO
STORE command will start where the prior one left off. The MOVE commands will also
use the OFIFO offset, so that it can also start with the remaining data. However, the CCB
DMA will always pop entries from which it takes data so that it is not possible for the
CCB DMA to leave any trailing bytes in the output FIFO. Please see the section for the
MOVE commands for important information on how this works.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

324 NXP Semiconductors
Confidential Proprietary

In order to provide greater control of access to the output FIFO, the value of the OFIFO
offset can be changed via a LOAD IMM to the DECO Control Register. This feature can
be useful in several scenrios:

• If there are 7, or fewer, bytes of interest in the current output FIFO entry, and this
data needs to be stored to memory and used within DECO but snooping is not
convenient, the descriptor could do a FIFO STORE with the CONT bit set, and then
do a move from the output FIFO to another destination in DECO or the CCB. (If the
original OFIFO offset was nonzero, the sum of the original OFIFO offset and the
number of bytes of interest must be less than 8.

• In order to do a single FIFO STORE of data that was sent to the output FIFO via
separate methods, e.g. a LOAD IMM to the output FIFO followed by data from a
CHA, the data must be contiguous in the output FIFO. For example, a LOAD IMM
to the output FIFO of 3 bytes followed by data from the CHA would have a 5-byte
gap between the loaded data and the CHA data. This could be solved by shifting the
load data 5 bytes to the right and then doing a LOAD IMM of 8 bytes with those 3
bytes of interest right aligned. But now there are 5 "garbage" bytes at the start of the
output FIFO data. These can be skipped over by setting the OFIFO offset to 5. Now,
a single FIFO STORE can be done with a length of the number of bytes pushed by
the CHA plus 3.

• The OFIFO offset can also be set to a smaller value than it currently contains. This
can allow the same data to be stored twice, although the limit is back to the start of
the current entry.

10.6.7.7 Cryptographic class
CAAM divides cryptographic algorithms into two different classes for the purpose of
selecting CHAs. Class 1 CHAs use cryptographic keys (or, in the case of the RNG, can
be used to generate keys) for encryption or decryption of data. This version of CAAM
includes the following Class 1 CHAs:

• AESA, which implements the AES encryption algorithm
• DESA, which implements the DES and Triple-DES encryption algorithms
• PKHA, which implements public key cryptographic algorithms (RSA, DSA, DH,

ECDSA, ECDH)
• RNG, which generates cryptographically strong random number streams

Class 2 CHAs are used for authentication of data by computing hashes (AKA message
digests) of the data. This version of CAAM includes the following Class 2 CHAs:

• MDHA, which implements the MD5, SHA-1, SHA-224, SHA-256 authentication
algorithms

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 325
Confidential Proprietary

Some key and data movement commands must have a CLASS value associated with
them so they are delivered to the proper CHA.

NOTE
A descriptor that requests both a Class 1 CHA and a Class 2
CHA must request the Class 2 CHA first. Otherwise, in
versions of CAAM that implement more than one DECO a
deadlock situation could occur as follows:

• Descriptor x executing in DECO x acquires CHA 1 and
then requests CHA 2.

• Descriptor y in DECO y acquires CHA 2 and then requests
CHA 1.

• Descriptor x and descriptor y wait until both CHAs are
available, but neither will release the CHA that it currently
has.

If descriptors always acquire CHAs in the same order, this
deadlock situation is avoided. The required order is Class 2
first, then Class 1. An error is generated if a Class 2 CHA is
selected after a Class 1 CHA.

Note that software written for versions of CAAM that
implement only one DECO must still follow this practice to
ensure that the software is portable to versions of CAAM that
implement two or more DECOs.

When specifying classes in commands, a two-bit field is used to specify class as follows:

Table 10-12. Class field

Class Value Meaning for LOAD and STORE Commands Meaning for Other Commands

00 CCB class independent None, sequence data skipped for SEQ FIFO LOAD
command.

01 CCB Class 1 Class 1

10 CCB Class 2 Class 2

11 DECO Both Class 1 and Class 2

10.6.7.8 Address pointers

Many of the descriptor commands and several data structures used by CAAM include
Pointer fields. All address pointers used by this version of CAAM are 32-bits in length.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

326 NXP Semiconductors
Confidential Proprietary

Table 10-13. Format of 32-bit pointers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit address

10.6.7.9 DECO/CCB behavior for jobs started via the register service
interface

The DECO/CCB complex does not perform any default actions upon completion of jobs
started via the register-based service interface. The service interface user is in complete
control and responsible to reset all utilized registers after service use so that subsequent
jobs from any service interface can be processed. Details on how to use the register-based
service interface are described in the chapter Register-based service interface. A simple
and effective way to clean up after use is to release the DECO, which resets the
DECO/CCB complex and resets and releases any utilized CHA. Additional detail on how
to handle more complex use cases is described in Using a CHA more than once in a job.

10.6.7.10 DECO/CCB default actions for one-off jobs

One-off jobs either do not utilize a Shared Descriptor (SD) or are processed with
sufficiently large delays so that previously processed jobs with the same SD are no longer
stored within CAAM.Any job utilizing an SD may start processing and be classified as a
one-off job (not being able to share a previously processed job having used the same SD),
but getting converted during job processing to be shared when CAAM becomes aware of
a second job utilizing the same SD. After a one-off job completes (a potentially present
SD could not be shared) all CCB/DECO registers are reset and any utilized CHAs are
reset and released.

10.6.7.11 DECO/CCB actions when sharing descriptors

Sharing descriptors is only possible when CAAM becomes aware that there are two or
more jobs utilizing the same Shared Descriptor (SD), i.e., this implies that two or more
descriptors using the same SD have been read from memory and either are, or queued to
be, processed by CAAM. Once an opportunity to share has been identified, CAAM
differentiates three scenarios:

• A subsequent job using an already fetched SD can be scheduled to be processed by
the DECO already processing the previous job (the DECO is self-sharing).

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 327
Confidential Proprietary

• A subsequent job using an already fetched SD can be scheduled to be processed by a
different DECO than the DECO processing the previous job (Sharing between 2
DECOs).

• While sharing would be possible, CAAM determines that sharing would lead to
unwanted preferential prioritization of a job flow sequence versus other jobs waiting
for a DECO to get processed. This only occurs if the flow has been going through the
same DECO. That is, one DECO has a limit as to how many jobs it can process from
a particular flow if, and only if, the oldest job in the job queue waiting to be
processed is not part of a flow already in a DECO. In this case sharing is suspended
and the subsequent job is processed as a one-off job (see DECO/CCB default actions
for one-off jobs) and thus potentially able to start another sequence of descriptor
sharing.

For the former two scenarios CAAM differentiates its end-of-job processing based on the
type of sharing (ALWAYS, WAIT, or SERIAL) as follows:

1. When sharing between 2 DECOs, the only items shared are the SD and, if the sharing
type is not ALWAYS, the keys.

2. When self-sharing the Input FIFO, Info FIFO, and the alignment blocks, are cleared
if the CIF bit in the SD HEADER is set.

3. The keys (for both Class 1 and Class 2 CHAs) are cleared for sharing type
ALWAYS, but not for types WAIT or SERIAL.

4. The context (for both Class 1 and Class 2 CHAs) is cleared unless the SC bit in the
SD HEADER is set.

5. The Output FIFO, any CHA done and error bits, as well as all Mode and Size
registers are always cleared between jobs.

For information on sharing types see Specifying different types of shared descriptor
sharing.

10.6.7.12 Using a CHA more than once in a job

Typical descriptors select CHAs, pass data through them, and then finish. However, there
are times when a descriptor needs to use a CHA more than once or needs to use one CHA
and then another CHA. There are several scenarios to consider. However, in all scenarios,
any registers in the CCB that will get new values should be cleared. If not clearing
everything in the CCB, the CCB Clear Written Register can be used to selectively clear
items. For example, if the key will be used again, the CCB Key Register should be left
alone, but the various size registers and context registers may need to be cleared. It is up
to the descriptor writer to know which registers should be cleared and which should be
left as is.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

328 NXP Semiconductors
Confidential Proprietary

To reuse the same CHA with the same mode, clear the done flag by writing to the CCB
Interrupt Control register. The CHA will start again since the CCB Mode Register is still
written. (As noted above, size, context, and any other registers should be cleared prior to
clearing the done flag.) Note that some CHAs may need to be reset between uses or may
need other special handling. See the sections on each CHA for details.

To reuse the same CHA with a different mode, the CCB Mode Register MUST be cleared
either before, or at the same time as, the CHA done bit in the CCB Interrupt Control
register is cleared. The Mode Register can be cleared either using the CCB Clear Written
Register or the CCB bit in the CCB CHA Control register. After this, the done flag for
the CHA can be cleared via the CCB Interrupt Control register. To clear the Mode
Register and the done flag simultaneously, use either the Clear Written Register selecting
the CCB items, including the Mode Register, to be cleared as well as the C1RST and/or
C2RST bits or use the CHA Control Register setting the CCB bit and the bit(s) of the
CHA(s) to be reset. However, resetting the CHA will release a Shared CHA and
arbitration will be required to reacquire it. It is up to the descriptor writer to determine if
releasing the CHA between uses is desired.

To use a different CHA of the same class as a CHA that was used and is no longer
required by this descriptor, use the Clear Written Register to clear the CCB Mode
Register, any other CCB registers that require clearing, and the C1RST and/or C2RST
bits. This will release the first CHA and allow another CHA to be selected.

NOTE
Whether a CHA is shared or dedicated, once it is selected via an
OPERATION command, DECO will own that CHA until the
job completes or the CHA is reset via the Clear Written
Register or the CHA Control Register. Clearing the CCB Mode
Register does NOT release the CHA. Since the DECO can only
own one CHA of each class at any one time, to use a CHA of
one class and then a different CHA of the same class, the first
CHA must be reset before requesting the second CHA. If this is
not done, an error will be reported and execution of that job will
stop.

Note that PKHA is an exception to the above in that when a PKHA operation completes,
the Mode Register and done flag are automatically cleared such that PKHA is
immediately ready for another operation. However, the PKHA will still be owned and the
PKHA contents and status flags will remain valid. To release the PKHA, it must be reset.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 329
Confidential Proprietary

10.6.8 HEADER command

Every descriptor begins with a HEADER command, which provides basic information
about the descriptor itself, such as length, ability of DECOs to share the descriptor, and
whether errors are propagated to other jobs in the same flow.

Job descriptor and Shared Descriptor HEADER commands share a base format, but some
fields are specific to descriptor type. The formats of the Job Descriptor HEADER
Command and Shared Descriptor HEADER Command are shown in the diagrams below,
and the fields of both are described in detail below each format diagram.

Table 10-14. Job descriptor header command format

31-27 26 25 24 23 22 21-16

CTYPE = 10110b EXT RSD DNR ONE Reser
ved

START INDEX / SHR DESCR LENGTH

15 14-13 12 11 10-8 7-6 5-0

ZRO TDES SHR REO SHARE Reserved DESCLEN

Optional additional words of HEADER command:

If SHR = 1, a one word pointer to a Shared Descriptor is located immediately after the HEADER.

If EXT = 1, a Job Descriptor HEADER extension is located immediately after the HEADER or, if SHR = 1, immediately after
the Shared Descriptor pointer. (see Job Descriptor HEADER extension format, below)

Table 10-15. Job descriptor header field descriptions

Job
descriptor

header fields

Description

31-27

CTYPE

Command type

10110b Job Descriptor HEADER

26

EXT

Extended Job Descriptor HEADER

If EXT=0 : There is no extended HEADER word.

If EXT=1 : The HEADER command contains an extended HEADER word, as illustrated in the format diagram
below. Note that if there is no Shared Descriptor a HEADER error (13h) is generated if EXT=1 and START
INDEX=1.

25

RSD

Requires DID to be the same. This bit is used to ensure that DID-based access control cannot be bypassed
by sharing Shared Descriptors. If RSD=0 the DIDs of two Job Descriptors do not have to match in order for
them to share the same Shared Descriptor. If RSD=1 the DIDs of two Job Descriptors do have to match in
order for them to share the same Shared Descriptor.

24

DNR

Do Not Run

If DNR=0 : Normal execution of the Job Descriptor.

If DNR=1 : Do Not Run the Job Descriptor. There was a problem upstream so this descriptor should not be
executed. This allows the job to be passed through the hardware and software pipeline to a point where the
problem might be corrected by software and the job resubmitted.

NOTE: If this bit is found in a Job Descriptor HEADER, CAAM still fetches any associated Shared
Descriptor. If the Shared Descriptor HEADER's PD bit is set and the DNR bit is not set, CAAM
updates the Shared Descriptor header's DNR bit. As a result, future Job Descriptors that use this

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

330 NXP Semiconductors
Confidential Proprietary

Table 10-15. Job descriptor header field descriptions (continued)

Job
descriptor

header fields

Description

Shared Descriptor do not run. Once software clears the DNR bit in the Shared Descriptor, any new
Job Descriptors that use this Shared Descriptor run normally.

23

ONE

One

The ONE bit is always 1. This bit is used in combination with the ZRO bit to verify that the endianness of the
header is correct. This is necessary because CAAM is used in chips with both big-endian and little-endian
processors.

22 Reserved

21-16

START
INDEX/ SHR

DESCR
LENGTH

Start Index or Shared Descriptor Length

If SHR = 0, this is the START INDEX field

Start Index specifies the position of the word in the descriptor buffer where execution of the Job Descriptor
should continue following execution of the Job Descriptor HEADER. That is, DECO should jump to the
specified word to continue processing. Note that if there is a HEADER extension word (EXT=1) the START
INDEX must not be 1, else a 13h (header) error will result.

If SHR = 1, this is SHR DESCR LENGTH field

The Shared Descriptor Length specifies the length of the Shared Descriptor (in 32-bit words).

15

ZRO

Zero

The ZRO bit is always 0. This bit is used in combination with the ONE bit to verify that the endianness of the
header is correct. This is necessary as CAAM is used in chips with both big-endian and little-endian
processors.

14-13

TDES

Trusted Descriptor

If TDES=00b : This is a normal Job Descriptor, that is, not a Trusted Descriptor. However, if the AMTD bit is
set in the JRaDID register this descriptor can be run as a trusted descriptor by setting the FTD bit in the
extended header word. In that case, no SIGNATURE command is required and no signature will be
generated or verified. Note that if FTD=1 in the extended header word then TDES must be 00b. An error will
be generated if this is not the case.

If TDES=01b : This is a TrustZone SecureWorld Trusted Descriptor - a special Trusted Descriptor created by
TrustZone SecureWorld.

If TDES=10b : This is a TrustZone non-SecureWorld Trusted Descriptor, that is, a Trusted Descriptor created
by TrustZone non-SecureWorld.

If TDES=11b : This is a candidate Trusted Descriptor, that is, a descriptor that will be made into a Trusted
Descriptor by appending a signature to it. If a candidate Trusted Descriptor is submitted via a Job Ring
owned by TrustZone SecureWorld the descriptor will be converted to a TrustZone SecureWorld Trusted
Descriptor (TDES=01b) when the descriptor is signed. If a candidate Trusted Descriptor is submitted via a
Job Ring owned by TrustZone non-SecureWorld the descriptor will be converted to a TrustZone non-
SecureWorld Trusted Descriptor (TDES=10b) when the descriptor is signed. Note that an error will be
generated if AMTD=0 in the Job Ring's DID register. The DESCLEN field must account for the eight 32-bit
words of signature which will be added.

See the discussion Trusted descriptors for an explanation of Trusted Descriptors.

12

SHR

Shared Descriptor (SHR) flag

If SHR=0 : This Job Descriptor does not have a Shared Descriptor and so does not include a Shared
Descriptor pointer.

If SHR=1 : This descriptor has a Shared Descriptor that is pointed to by the next word or words.

SHR controls how START INDEX / SHR DESCR LENGTH is used.

11 Reverse Execution Order (REO). Note that this bit is ignored if SHR = 0 (that is, no Shared Descriptor).

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 331
Confidential Proprietary

Table 10-15. Job descriptor header field descriptions (continued)

Job
descriptor

header fields

Description

REO If REO=0 : The Shared Descriptor is executed prior to the remainder of the Job Descriptor.

If REO=1 : The Job Descriptor will be executed prior to the Shared Descriptor. Setting REO=1 in a Trusted
Descriptor results in an error.

10-8

SHARE

Share State (SHARE)

This defines if, and when, the Shared Descriptor referenced by this Job Descriptor can be shared with
another Job Descriptor. (See Table 10-8.)

7-6 Reserved

5-0

DESCLEN

Descriptor Length

This field represents the total length in 4-byte words of the descriptor. A descriptor length of 0 is undefined.
The header word is included in the length. Note that the size of the descriptor buffer is 64 words, so that is
the maximum size of a single Job Descriptor with no Shared Descriptor.

Table 10-16. Job descriptor header extension format

31-16

Reserved

15-9 8 7 6 5 4 3 2 1 0

Reserved FTD DSELECTV
ALID

Reserved Reserved DECO_
SELECT

Table 10-17. Job descriptor header extension field descriptions

Field Description

31-9 Reserved

8

FTD

Fake Trusted Descriptor. Treat the current descriptor as a Trusted Descriptor but do not check the signature. If
the descriptor is run in a Job Ring owned by TrustZone SecureWorld, the descriptor will be treated as a
TrustZone SecureWorld Trusted Descriptor, otherwise the descriptor will be treated as a TrustZone non-
SecureWorld Trusted Descriptor. Note that an error will be generated if FTD=1 and the source Job Ring's
JRaDID register AMTD=0 (that is, the extended header says to run the descriptor as a Trusted Descriptor, but
the Job Ring is not allowed to make Trusted Descriptors). In order to use FTD, the TDES field in the first word
of the header command must be 00b. An error will be generated if this is not the case.

If FTD=1, no SIGNATURE commands are required. If any SIGNATURE skip commands are present they will
be treated as no-ops. If a final SIGNATURE command is present, it will be treated as the end of the descriptor.

7

DSELECT
VALID

DECO_SELECT field is valid.

If DSELECTVALID=0 : Any DECO can run the job. The DECO_SELECT field is ignored.

If DSELECTVALID=1 : The job must be run in the DECO specified in the DECO_SELECT field. If the number
specifies an unimplemented DECO, DECO error 026h will be generated.

6-4 Reserved

3-1 Reserved

0

DECO_SEL
ECT

DECO Select

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

332 NXP Semiconductors
Confidential Proprietary

Table 10-17. Job descriptor header extension field descriptions

Field Description

If DSELECTVALID = 1, the job is run in the DECO specified in the DECO_SELECT field. If the number
specifies an unimplemented DECO, an error will be generated. Note that for programming consistency, a one-
DECO version of CAAM has a one-bit DECO_SELECT field.

NOTE: DECO-specific jobs have the possibility to create a deadlock in CAAM when they are used as part of a
flow. Therefore, it is strongly recommended that DECO-specific jobs either not be part of a flow or all
the jobs in the flow be assigned to the same DECO.

Table 10-18. Shared descriptor header format

31-27 26 25 24 23 22 21-16

CTYPE = 10111 Reser
ved

RIF DNR ONE Reser
ved

START INDEX

15 14 13 12 11 10 9-8 7-6 5-0

ZRO Reser
ved

CIF SC PD Reser
ved

SHARE Reserved DESCLEN

Table 10-19. Shared descriptor header field descriptions

Shared
descriptor

header fields

Description

31-27

CTYPE

Command type

10111b Shared descriptor

26 Reserved

25

RIF

Read Input Frame

As soon as possible, DECO should read the entire input frame as defined in a SEQ IN PTR command in the
Job Descriptor. The length of the input frame is placed in the VSIL Register. The data is read into the input
data FIFO. This is the equivalent of a SEQ FIFO LOAD of the entire input frame without an NFIFO entry or
any data size registers being written.

This bit is intended to allow DECO to issue reads from the SEQ IN PTR as soon as possible, thereby
reducing processing latency. However, there are contraindications to its use:

• If the descriptor contains any LOADor KEY command that is not immediate.
• If the descriptor contains a KEY command that loads an encrypted key. The Derived Key PROTOCOL

OPERATION command is not included in this restriction.
• If the descriptor contains a SEQ IN PTR with RTO (Restore Input Sequence) set
• If the descriptor contains a PROTOCOL OPERATION Command specifying either Blob encapsulation

or Blob decapsulation.

There are restrictions with the use of RIF with Public Key Cryptography operations: RIF may be used, but
only if all the input FIFO is drained by other descriptor commands before the PROTOCOL COMMAND is
encountered.

24

DNR

Do Not Run

0 Normal execution

1 Do Not Run. There was a problem upstream so this descriptor should not be executed.

NOTE: If this bit is found in a Job Descriptor HEADER, CAAM still fetches any associated Shared
Descriptor. If the Shared Descriptor HEADER 's PD bit is set and the DNR bit is not set, CAAM

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 333
Confidential Proprietary

Table 10-19. Shared descriptor header field descriptions (continued)

Shared
descriptor

header fields

Description

updates the Shared Descriptor header's DNR bit. As a result, future Job Descriptors that use this
Shared Descriptor do not run. Once software clears the DNR bit in the Shared Descriptor, any new
Job Descriptors that use this Shared Descriptor run normally.

23

ONE

One

The ONE bit is always 1. This bit is used in combination with the ZRO bit to verify that the endianness of the
header is correct. This is necessary because CAAM is used in chips with both big-endian and little-endian
processors.

22 Reserved

21-16

START INDEX

This is the START INDEX field, which specifies the index of the word in the descriptor buffer where execution
of the Shared Descriptor should start. This allows protocol or other information to be jumped over.

15

ZRO

Zero

The ZRO bit is always 0. This bit is used in combination with the ONE bit to verify that the endianness of the
header is correct. This is necessary as CAAM is used in chips with both big-endian and little-endian
processors.

14 Reserved

13

CIF

Clear Input FIFO (CIF)

If set, the input FIFO and the NFIFO entries are reset between self-Shared Descriptors. That is, these are
reset if the next job to be run within the same DECO has the same Shared Descriptor as the previous job run
in that same DECO. (The Input FIFO and NFIFO are always reset between descriptors that don't share the
same Shared Descriptor.)

12

SC

Save Context (SC)

After this descriptor completes, if Serial-Sharing is selected, and if sharing of the Shared Descriptor occurs
within the same DECO (self-sharing):

0 The context registers are cleared.

1 The context registers are maintained and used by the subsequent descriptor.

Save Context is intended to allow multiple subsequent Shared Descriptors to maintain context when an
operation is split across multiple jobs.

11

PD

Propagate DNR (PD)

If the Job Descriptor's DNR bit is set and this bit is set, set the DNR bit of the Shared Descriptor HEADER if it
is not already set. And, if the DNR bit was not already set, update the Shared Descriptor in memory so that
the DNR bit is set there as well.

10 Reserved

9-8

SHARE

Share State (SHARE)

The SHARE field in the Shared Descriptor HEADER is used when the SHARE field in the Job HEADER is
defer: 100b. This field then determines if, and when, the Shared Descriptor referenced in this Job Descriptor
can be shared with another Job Descriptor. (See Table 10-8.) Also see Specifying different types of shared
descriptor sharing for further information.

7-6 Reserved

5-0

DESCLEN

Descriptor Length

This field represents the total length in 4-byte words of the Shared Descriptor. A Shared Descriptor length of
0 is undefined. The header word is included in the length. Note that the size of the descriptor buffer is 64
words, so the maximum size of a Shared Descriptor is 62 words (assuming that the Job Descriptor consists
of only the Job Descriptor HEADER command and the pointer to the Shared Descriptor).

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

334 NXP Semiconductors
Confidential Proprietary

If the SHR bit in a Job Descriptor HEADER command is set, a pointer to the Shared
Descriptor immediately follows the header.

10.6.9 KEY commands

NOTE
In the following discussion, the term 'KEY command' refers to
both the SEQ and non-SEQ forms of the command.

KEY commands are used to load keys into one of CAAM's key registers: Class 1 or Class
2 Key Register, AFHA S-box, or PKHA E-Memory. The SEQ KEY command is
identical to the KEY command except that no address is specified and the VLF bit
replaces the SGT bit and the AIDF bit replaces the IMM bit.

If the key to be loaded into a key register is encrypted, CAAM can be told to
automatically decrypt it as it is loaded into the key register. The MOVE command,
LOAD command, and KEY command can all be used to load a Red Key into a key
register, but only the KEY command can be used to load a Black Key. Note that Black
Keys can be loaded only into PKHA E-Memory or the AFHA Sbox or key registers
because only KEY commands decrypt Black Keys, and these registers are the only
possible destinations for KEY commands.

If the KEY command is loading a Black Key, the Class 2 key must be loaded prior to the
Class 1 key as the loading of encrypted keys has side effects on the Class 1 Key Register.

If ENC is set (that is, a Black Key is being loaded), the KEY command has significant
side effects, including clearing the following:

• Input Data FIFO
• Output Data FIFO
• Class 1 Key Register
• Class 1 Data Size Registers
• Class 1 Mode Register
• Class 1 Context (if EKT is also set)

As a result, the only commands that should precede loading a Black Key are:

• JUMP
• SEQ IN PTR
• SEQ OUT PTR
• LOADs to registers not mentioned above.
• MOVEs to or from registers not mentioned above.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 335
Confidential Proprietary

NOTE
The KEY command is blocking under the following
circumstances:

1. Decrypting a black key.
2. Loading a red key that is NOT immediate.
3. CHAs are not done.
4. The data must pass through the input FIFO and there are

info FIFO entries in the way.
5. The data must be read into the data FIFO and there is other

data in the input data FIFO that is in the way. (This does
not apply to SEQ KEY AIDF.)

6. The CCB DMA is required but is busy.
7. The hardware which schedules external reads is required

but is busy.

Table 10-20. KEY command format

31–27 26–25 24 23 22 21 20 19–18 17–16

CTYPE = 00000 or 00001 CLASS SGF
or

VLF

IMM
or

AIDF

ENC NWB EKT Reserved KDEST

15 14 13 12–10 9–0

TK PTS PKL
E

Reserved LENGTH

Additional words of KEY command:

Pointer (one word) or Value (if immediate, one or more words)

Table 10-21. KEY command field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=00000b : KEY command

If CTYPE=00001b : SEQ KEY command

26-25

CLASS

Class. This defines whether this key is for a Class 1 or Class 2 algorithm.

If CLASS=01b : Class 1 Key

If CLASS=10b : Class 2 Key

All other values are reserved.

NOTE: The CLASS field must be set to Class 1 if the Key Destination (KDEST) field is set to 01b or 10b. The
CLASS field must be set to Class 2 if the KDEST field is set to 11b.

24

SGF or
VLF

Scatter/Gather Table Flag (SGF) or Variable Length Flag (VLF)

If CTYPE = 00000b (KEY), this bit is the Scatter/Gather table Flag (SGF).

If SGF=0: Pointer points to actual data.

If SGF=1: Pointer points to a scatter/gather table.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

336 NXP Semiconductors
Confidential Proprietary

Table 10-21. KEY command field descriptions (continued)

Field Description

NOTE: It is an error if both the SGF bit and the IMM bit are set. It is also an error for the SGF bit to be set when
reading a key from a Secure Memory key partition (that is, a partition whose SMAP and SMAG register
settings do not permit an ordinary read transaction).

If CTYPE = 00001b (SEQ KEY), this bit is the Variable Length Flag (VLF).

If VLF=0: The number of bytes of data to be loaded into the key register is specified by the LENGTH field.

If VLF=1: The number of bytes of data to be loaded into the key register is specified by the value in the VSIL
register.

23

IMM or
AIDF

Immediate Flag (IMM) or Already in Input Data FIFO (AIDF)

If CTYPE = 00000 (KEY), this bit is the IMM flag.

If IMM=0 : The key value is found at the location pointed to by the pointer in the next word.

If IMM=1 : The key value follows as part of the descriptor, using as much space as defined by the LENGTH field
and then rounded up to the nearest 4-byte word.

NOTE: PKHA E-Register values can be very large and may not fit within the descriptor buffer. An AFHA SBOX
cannot be supplied as immediate data because it is too large to fit in the descriptor buffer. It is an error if
both the IMM bit and the SGF bit are set.

If CTYPE = 00001b (SEQ KEY), this bit is the AIDF flag.

If AIDF=0 : Read the Input Data Sequence data and load it into the specified destination.

If AIDF=1 : Do not read the Input Data Sequence data since it is already in the Input Data FIFO, but load the data
in the Input Data FIFO into the specified destination. It is an error for ENC and AIDF to both be 1.

22

ENC

Key is encrypted

If ENC = 0 : The key is assumed to be in plaintext and is loaded into the destination register without decryption.

If ENC = 1 : CAAM automatically decrypts the key (using the JDKEK, or if this is a trusted descriptor, using the
TDKEK if TK = 1) before putting it in the key register. Decrypting a key requires using the AESA, the input and
output data FIFOs, Class 1 Mode register, Key Size, context, and key registers. Therefore, Class 2 Black Keys (if
any) must be loaded prior to loading the Class 1 register, and Class 1 Black Keys must be loaded prior to loading
any of the resources noted above.

21

NWB

No Write Back

If NWB=0 : Enables write-back of key loaded in key register. Note that it is not usually possible to write a key back
out to memory as plaintext, but if NWB=0 the key can be written out as a Black Key by using the FIFO STORE
command.

If NWB=1 : Prevents the key that is loaded into the key register from being written back out to memory.

NWB applies to all available key locations:
• Class 1 Key Register
• Class 2 Key Register
• PKHA E Memory
• AFHA S-Box

Setting this bit sets the key register's NWB flag. The No Write Back setting lasts until the end of the descriptor (or
sequence of shared descriptors) or until the corresponding key register or CHA is cleared/reset.

It is an error if NWB is not set when reading a key from a Secure Memory key partition (meaning a partition whose
SMAP register settings do not permit an ordinary read transaction).

20

EKT

Encrypted Key Type

The EKT bit determines which decryption mode is used when a Black Key (ENC = 1) is loaded.

If EKT=0 : The Black Key is decrypted using AES-ECB.

If EKT=1 : The Black Key is decrypted using AES-CCM.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 337
Confidential Proprietary

Table 10-21. KEY command field descriptions (continued)

Field Description

A Black Key encrypted with AES-ECB must be decrypted with AES_ECB, and a Black Key encrypted with AES-
CCM must be decrypted with AES_CCM. If the wrong mode is selected it is possible that no error will be issued
but the value loaded into the key register will be incorrect.

Note that an error status is generated if EKT=1 and ENC=0.

19-18

Rsrvd

Reserved. Must be 0.

17-16

KDEST

Key Destination

If KDEST=00b : The key is loaded into the respective Key Register selected by the CLASS field.

If KDEST=01b : The key is loaded into the PKHA E-Memory. This key destination requires CLASS = 01b (Class 1
key). In versions of CAAM through Era 10 (including this version), loading a plaintext value to PKHA E-RAM via the
KEY command clears the contents of the Class 1 Key Register and the C1 Key Size Register. Starting with Era 11
this side-effect no longer occurs.

If KDEST=10b : The key is loaded into the AFHA S-box. This key destination requires CLASS = 01b (Class 1 key).
In versions of CAAM through Era 10 (including this version), loading a plaintext value into the AFHA S-box via the
KEY command clears the contents of the Class 1 Key Register and the C1 Key Size Register. Starting with Era 11
this side-effect no longer occurs.

If KDEST=11b : The key is regarded as a Derived HMAC Key, and is loaded into the Class 2 Key Register. This
key destination requires CLASS = 10b (Class 2 key).

15

TK

Trusted Key

This bit is used only by trusted descriptors. If not a trusted descriptor, setting TK = 1 and ENC = 1 is an error. If the
ENC bit is not set, this bit is ignored.

If TK=0 : Use the Job Descriptor Key Encryption Key (JDKEK) to decrypt the key that is to be loaded into a key
register.

If TK=1 : A trusted descriptor wants to use the Trusted Descriptor Key Encryption Key (TDKEK) to decrypt the key
that is to be loaded into a key register.

14

PTS

Plaintext Store

If PTS=0: The key loaded cannot later be stored in plaintext form.

If PTS=1: The key loaded can later be stored in plaintext form using a FIFO STORE or SEQ FIFO STORE
command. Note the following restrictions:

The AFHA S-box can be stored in plaintext form if the S-box was loaded with a KEY command with PTS=1 or if a
key is loaded with a KEY command with PTS=1 into the Class 1 Key register and the AFHA is run in INIT mode to
create an S-box.

The Class 2 Key register can be stored in plaintext form if a Derived HMAC Key key was loaded into it with a KEY
command with PTS=1 or if a key is loaded into the Class 2 Key register with a KEY command with PTS=1 and the
MDHA is run in INIT mode to create a Derived HMAC Key.

An error is generated

• if PTS=1 & ENC=1.
• if PTS=1 & NWB=1.
• if PTS=1 & KDEST=01b (PKHA E-Memory).
• if the Class 1 Key register is loaded with a KEY command and the AFHA S-Box was previously loaded with a

KEY command with PTS=1.
• if a key is stored from the Class 2 Key register after the Class 2 Key register was loaded with a KEY

command with PTS=1.
• if the Class 1 Key register is stored after the AFHA S-box or the Class 1 Key register was loaded using a

KEY command with PTS=1.

13 PKHA Little Endian key load

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

338 NXP Semiconductors
Confidential Proprietary

Table 10-21. KEY command field descriptions (continued)

Field Description

PKLE If PKLE=0: The key is not swapped as loaded into PKHA E-Memory.

If PKLE=1: The key is swapped as loaded into PKHA E-Memory.

This feature is intended to support curves like Curve25519 and Ed25519, which are typically represented as little-
endian byte strings, but not for Weierstrass curves, which are typically represented as big-endian byte strings.

An error is generated if PKLE=1 and KDEST is not 01b (i.e., if not loading to PKHA E-Memory).

PKLE must be set to 0 for black (encrypted) keys.

12-10

Rsrvd

Reserved. Must be 0.

9-0

LENGTH

Key Length

This field defines the length of the key in bytes. If the key is encrypted, this is the decrypted length of the key
material only. The built-in key decryption operation produces output whose length is as specified in the LENGTH
field. ECB encrypted keys are padded to 16-byte boundaries, so the KEY command reads enough input to read
the entire encrypted key. CCM-encrypted keys have a 6-byte nonce, a 6-byte MAC, and padding of up to 7 bytes.
The length is checked to ensure it is not too large for the specified destination. It is an error if LENGTH is less than
16 when reading a key from a Secure Memory key partition (meaning a partition whose SMAP register settings do
not permit an ordinary read transaction). If the destination is the AFHA S-box, the length must be exactly 258
bytes.

Additional words of KEY command:

POINTE
R

If IMM = 0, this field is a pointer to the key to be loaded.

If IMM = 1, this field is not present.

NOTE: This field is not present for SEQ KEY Commands.

10.6.10 LOAD commands

NOTE
In the following discussion, the term 'LOAD command' refers
to both the SEQ and non-SEQ forms of the command.

LOAD commands are used to load values into registers, either directly from the
descriptor (a LOAD IMMEDIATE command contains constant data within the
command) or from a memory location addressed by a pointer within the command. The
SEQ LOAD command is identical to the LOAD command except that no address is
specified, the VLF bit replaces the SGF bit, and the immediate bit cannot be set. See SEQ
vs non-SEQ commands. (Note that while SEQ KEY and SEQ FIFO LOAD have an
AIDF bit, SEQ LOAD does not.)

When reading from an external address, the LOAD command, whether SEQ or non-SEQ,
uses hardware within DECO to schedule DMA transactions. This command will block
until that hardware is available. For LOAD IMM, if the DMA hardware is required but is
in use, the command will block until the DMA hardware becomes available. (The
command may block for other reasons as well, as documented in a following table.) Once

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 339
Confidential Proprietary

the command is handed off to the responsible hardware, descriptor execution will
continue with the next command. Therefore, the requested data may not be present for
some time. It is up to the descriptor writer to ensure that the data arrives prior to
attempting to use it. Paying attention to the blocking nature just discussed is critical in
order to avoid hanging descriptors.

The definitions of the OFFSET and LENGTH fields in the LOAD command can depend
on the CLASS and destination (DST) fields. The first table below shows the LOAD
command fields, the second table defines the fields, and the third table defines the legal
destinations and how each destination affects the other fields.

Table 10-22. LOAD command format

31–27 26-25 24 23 22–16

CTYPE = 00010 or 00011 CLASS SGF
or

VLF

IMM DST

15-8 7 6-0

OFFSET PKLE LENGTH (when a PKHA Size Register is the LOAD
destination, or when the NFIFO is the destination,

and DTYPE selects PKHA)

OFFSET LENGTH (8 bits, not a PKHA size register or data type for
destination)

Additional words of LOAD command:

Pointer (one word, see Address pointers) or Value (if immediate, one or more words)

Table 10-23. LOAD command field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=00010b : LOAD command

If CTYPE=00011b : SEQ LOAD command

26-25

CLASS

Class. The algorithm class of the data to be loaded.

If CLASS=00b : Load class-independent objects in CCB.

If CLASS=01b : Load Class 1 objects in CCB.

If CLASS=10b : Load Class 2 objects in CCB.

If CLASS=11b : Load objects in DECO.

24

SGF or VLF

Scatter/Gather Table Flag (SGF) or Variable Length Flag (VLF) flag. Meaning depends on CTYPE.

If CTYPE = 00010 (LOAD), this bit is the Scatter/Gather table Flag (SGF).

If SGF=0 : The pointer points to actual data.

If SGF=1 : The pointer points to a scatter/gather table.

NOTE: If the IMM bit is set, it is an error for this bit to be set.

If CTYPE = 00011 (SEQ LOAD), this bit is the Variable Length Flag (VLF).

If VLF=0 : The LENGTH field indicates the length of the data.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

340 NXP Semiconductors
Confidential Proprietary

Table 10-23. LOAD command field descriptions (continued)

Field Description

If VLF=1 : The length of the data is variable. CAAM uses the length in the Variable Sequence In Length register
rather than the value in the LENGTH field. However, an error will be generated if the values in the VSIL register
and OFFSET field are not a valid combination as indicated in table Table 10-24.

23

IMM

Immediate Flag

If CTYPE = 00010 (LOAD)

If IMM=0, the data to be loaded is found at the location pointed to by the address pointer.

If IMM=1, the data to be loaded follows as part of the descriptor, using as much space as defined by the
LENGTH field and then rounded up, if necessary, to the nearest 4-byte word.

NOTE: If the SGF bit is set, it is an error for this bit to be set.

If CTYPE = 00011 (SEQ LOAD)

IMM must be set to 0. Setting IMM to 1 generates an error.

22-16

DST

The DST value defines the destination register. See Table 10-24 for a list of supported destinations.

15-8

OFFSET

OFFSET defines the start point for writing within the destination.

7

PKLE

PKHA Little Endian data load

If PKLE=0: data associated with this load of a size register or NFIFO entry is not swapped as loaded into a
PKHA Memory

If PKLE=1: data associated with this load of a size register or NFIFO entry is swapped as loaded into a PKHA
Memory.

This feature is intended to support curves like Curve25519 and Ed25519, which are typically represented as
little-endian byte strings, but not for Weierstrass curves, which are typically represented as big-endian byte
strings.

7-0

(for PKHA:
6-0)

LENGTH

Length of the data. The value in the DST field determines whether the length is specified in bytes or words. See
Table 10-24 for details.

Additional words of LOAD command:

31-0

POINTER/
VALUE

Address pointer if IMM = 0 or the immediate value if IMM = 1. Note that the immediate value occupies as many
words as required to fit the number of bytes specified in the LENGTH field. Data is left aligned.

NOTE: This field is present only for LOAD Commands (that is, not for SEQ LOAD Commands).

CAAM can accomplish the data transfer associated with a LOAD immediate command in
two different ways:

• Using a direct (non-DMA) path to the register, referred to as a direct immediate load
• Using CAAM's internal-transfer DMA

CAAM automatically selects the appropriate transfer mechanism as follows:

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 341
Confidential Proprietary

• CAAM selects the direct immediate load data path (the first bullet above) if the
restrictions are met because this is the fastest of the transfer mechanisms (see
following paragraph).

• If the data length or offset restrictions are not met, CAAM automatically selects the
internal-transfer DMA data path (the second bullet above).

The direct immediate load is the most efficient of the transfer mechanisms, but it has the
following restrictions:

• It can transfer only 4 or 8 bytes, unless the destination is the input Data FIFO, the
Auxiliary Data FIFO, or the output Data FIFO, in which case the length must be no
more than 8 bytes.

• The sum of the data length and the offset cannot be larger than 8, meaning the legal
combinations of length and offset are either

• 4 bytes with an offset of 0 or 4
• 8 bytes with an offset of 0
• 4 bytes with any multiple of a 4-byte offset if the destination is a context register
• 8 bytes with any multiple of an 8-byte offset if the destination is a context

register

As shown in Table 10-24, some registers can be loaded only with a LOAD IMM
command. These registers always use the direct immediate load data path. Other registers
can be loaded using either the LOAD or LOAD IMM form of the command.

As shown in Table 10-24, some LOAD destinations are control data registers and other
destinations are message data registers. Data loaded into or stored from control data
registers is regarded as word-oriented data, whereas data loaded into or stored from
message data registers is regarded as byte strings.

To facilitate operation in chips with different endianness configurations, the following
data-swapping operations can be configured:

• byte-swapping
• half-word swapping

and these swapping operations for control data registers can be configured independently
from the swapping for message data registers.

The same swapping operatings can be configured independently for each Job Ring (see
the Job Ring Configuration Register (JRCFGR)).

NOTE
For those destinations that allow immediate loads with a
nonzero offset, the combination of offset=0 length=4 is
equivalent to the combination of offset=4 length=4. This has
been done to maintain backward compatibility. Both of these

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

342 NXP Semiconductors
Confidential Proprietary

combinations will load the right-most word of the destination.
Therefore, in order to load the left-most word of the destination,
the combination must be offset=0 length=8. This is ONLY the
case when IMM=1 and, therefore, does not affect the SEQ
LOAD command. When IMM=0, offset=0 length=4 will load
the left-most word of the destination while offset=4 length=4
will load the right-most word. This behavior does not affect any
other commands.

Table 10-24. LOAD command DST, LENGTH, and OFFSET field values

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

01 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes C1KSR Class 1 Key Size
Register

The key size registers are
normally written with the KEY
command. Once KEY SIZE is
written, the user cannot modify
the key or key size until the key
is cleared.

10 C2KSR Class 2 Key Size
Register

02 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes C1DSR Class 1 Data Size
Register

Writes to the data size registers
block if there are any
outstanding context loads since
a write to a data size register
indicates that the corresponding
context is in place and ready.

10 C2DSR Class 2 Data Size
Register

03 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes C1ICVS
R

Class 1 ICV Size
Register

10 C2ICVS
R

Class 2 ICV Size
Register

05 11 Control See below Yes DCTRL2 DECO Control
Register 2

See notes below.

The DECO Control Register 2 is used to control the operation of DECO by means of a 1-
word command that uses the LOAD command fields that normally represent OFFSET and
LENGTH. This LOAD must be IMMEDIATE, which means that this DEST cannot be used
with SEQ LOAD. The OFFSET and LENGTH fields are redefined as follows:

LENGTH[4]: Transfer the value in the output frame tracking length register to the Variable
Sequence Output Length Register.

All other bits of OFFSET and LENGTH are reserved and must be 0.

06 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes CCTRL CHA Control
Register

11 Control See below Yes DCTRL DECO Control
Register

See notes below.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 343
Confidential Proprietary

Table 10-24. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

The DECO Control Register is used to control the operation of DECO by means of a 1-
word command that uses the LOAD command fields that normally represent OFFSET and
LENGTH. This LOAD must be IMMEDIATE, which means that this DEST cannot be used
with SEQ LOAD. The OFFSET and LENGTH fields are redefined as follows:

OFFSET[7:6]: Reserved

OFFSET[5:4]: Reserved

OFFSET[3]: Disable Automatic NFIFO Entries (If disable and enable are both set, disable
dominates)

OFFSET[2]: Enable Automatic NFIFO Entries

OFFSET[1:0]: Change Share Type

00 no change

01 NEVER share

10 OK to share, do propagate errors

11 OK to share, don't propagate errors

LENGTH[7]: Turn On Output Sequence Length Counting (turned off by doing sequence
output pointer rewind)

LENGTH[6]: Reset CHA pointer in Output Data FIFO

LENGTH[5]: Reset Output Data FIFO

LENGTH[4]: Process the Output Data FIFO Offset Field (automatically stalls if write burster
is busy)

LENGTH[3]: Reserved

LENGTH[2:0]: Output Data FIFO Offset

07 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes ICTRL IRQ Control Register -

11 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes DPOVRD DECO Protocol
Override Register

If bit 31 = 1 the value loaded into
DPOVRD overrides the default
values in some protocol PDB
fields. See individual protocol
sections for usage details.

If bit 31 = 0, DPOVRD is not
used as an override by the built-
in protocols.

The other bits are defined on a
protocol by protocol basis.

This register may be used as a
source or destination by MATH
and MATHI commands.

08 00 Control 4/0 bytes Yes CLRW Clear Written
Register

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

344 NXP Semiconductors
Confidential Proprietary

Table 10-24. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

8/0 bytes

4/4 bytes

11 Control 0-32/

0-7 bytes

No MATH0
W

DECO Math Register
0 (Words)

1, 2

09 11 Control 0-24/

0-7 bytes

No MATH1
W

DECO Math Register
1 (Words)

1, 2

0A 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes CISEL CHA Instance Select
Register

-

11 Control 0-16/

0-7 bytes

No MATH2
W

DECO Math Register
2 (Words)

1, 2

0B 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes AADSZ AAD Size Register -

11 Control 0-8/

0-7 bytes

No MATH3
W

DECO Math Register
3 (Words)

1, 2

0F 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes ALTDS1 Alternate Data Size
Class 1 Register

(aliased to the Class
1 Data Size Register)

The ALTDS1 destination can be
used only with a LOAD
Immediate command. Writes to
the ALTDS1 block if there are
any outstanding context loads
since a write to a data size
register indicates that the
corresponding context is in place
and ready.

10 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes PKASZ PKHA A Size
Register

This holds the size of the data in
the PKHA A RAM.

The descriptor writer must
ensure that any bits written to
this register above the width of
the register are 0.

11 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes PKBSZ PKHA B Size
Register

This holds the size of the data in
the PKHA B RAM.

The descriptor writer must
ensure that any bits written to
this register above the width of
the register are 0.

12 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes PKNSZ PKHA N Size
Register

This holds the size of the data in
the PKHA N RAM.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 345
Confidential Proprietary

Table 10-24. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

The descriptor writer must
ensure that any bits written to
this register above the width of
the register are 0.

13 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes PKESZ PKHA E Size
Register

This holds the size of the data in
the PKHA E RAM.

The descriptor writer must
ensure that any bits written to
this register above the width of
the register are 0.

20 01 Message 0-128/

0-128
bytes

No CTX1 Class 1 Context
Register

A LOAD IMM to a context
register blocks if there are any
outstanding external loads to
either context register.

A non_IMM LOAD to a context
register blocks if the CCB DMA
is writing to either context
register.

10 Message 0-128/

0-128
bytes

No CTX2 Class 2 Context
Register

30 11 Control 0-32/

0 bytes

No MATH0D
W

DECO Math Register
0 (Double Word)

1, 3

31 11 Control 0-24/

0 bytes

No MATH1D
W

DECO Math Register
1 (Double Word)

1, 3

32 11 Control 0-16/

0 bytes

No MATH2D
W

DECO Math Register
2 (Double Word)

1, 3

33 11 Control 0-8/

0 bytes

No MATH3D
W

DECO Math Register
3 (Double Word)

1, 3

38 11 Message 0-32/

0-7 bytes

No MATH0B DECO Math Register
0 (Bytes)

1, 4

39 11 Message 0-24/

0-7 bytes

No MATH1B DECO Math Register
1 (Bytes)

1, 4

3A 11 Message 0-16/

0-7 bytes

No MATH2B DECO Math Register
2 (Bytes)

1, 4

3B 11 Message 0-8/

0-7 bytes

No MATH3B DECO Math Register
3 (Bytes)

1, 4

40 01 Message 0-96/0-95
bytes

No KEY1 Class 1 Key Register The Key registers are normally
written by the KEY Command,
but can be written by a LOAD
Command using this DST value.
In the latter case, before the
value written into the Key

10 Message 0-128/

0-127
bytes

No KEY2 Class 2 Key Register

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

346 NXP Semiconductors
Confidential Proprietary

Table 10-24. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

register is used as a key the
KEY SIZE register must be
written by a separate command.

A LOAD IMM to a Key Register
blocks if there are any
outstanding external loads to
either Key Register.

A non_IMM LOAD to a Key
Register blocks if the CCB DMA
is writing to either Key Register.

11 Control 1-64/

1-63

No DESC

BUF

DECO descriptor
buffer

See comments below.

For LOADs into the Descriptor Buffer the values in the LENGTH and OFFSET field are
specified in 4-byte words.

An error is generated if the sum of the LENGTH and OFFSET fields is greater than 64. The
OFFSET is used to specify the starting word of the destination within the descriptor buffer.
Note that the OFFSET is relative to the start of the descriptor buffer. For SEQ LOAD, the
data written into the descriptor buffer is read from the current location pointed to by the
input sequence pointer (there is no offset with respect to the source address).

70 00 Control 4 or 8/

0 bytes

Yes NFSL NFIFO and size
register(s)

Using the Immediate data, write
an NFIFO entry and load the
Size register from the DL or PL
field in that NFIFO entry. Also
see note below.

- - - This creates an NFIFO entry from 4 or 8 bytes of IMM data and also writes to one or more
size registers. The entry's DL or PL field is filled in with the same value loaded into the size
register(s). The table below titled "Which Size Registers are loaded" indicates which size
registers are loaded.

71 00 Control 0-3

0 bytes

Yes NFSM NFIFO and size
register(s)

Using the Immediate data write
an NFIFO entry and load the
size register using for PL or DL
the least-significant 32-bits of
the MATH register selected by
means of the two ls bits of the
LENGTH field. Also see note
above.

72 00 Control 4 or 8/

0 bytes

Yes NFL NFIFO Using the Immediate data write
an NFIFO entry. This is
equivalent to DST value 7Ah.
Also see note below.

- - - This creates an NFIFO entry from 4 or 8 bytes of IMM data. No size registers are written.

73 00 Control 0-3

0 bytes

Yes NFM NFIFO Using the Immediate data write
an NFIFO entry filling in the DL
or PL field from the least-
significant 32-bits of the MATH

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 347
Confidential Proprietary

Table 10-24. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

register selected via the three ls
bits of the LENGTH field. Also
see note above.

74 00 Control 4 or 8/

0 bytes

Yes SL Size register(s) With the Immediate data in
NFIFO entry format, load the
size register(s) from the DL or
PL field in the Immediate data
but do not write an entry into the
NFIFO. The table below titled
"Which Size Registers are
loaded" indicates which size
registers are loaded.

75 00 Control 0-3

0 bytes

Yes SM Size register(s) Load the size register(s) from
the value in the MATH register
that is selected by means of the
three ls bits of the LENGTH
field. No NFIFO entry is loaded.
The table below titled "Which
Size Registers are loaded"
indicates which size registers
are loaded.

NOTE: For DST values 70h, 71h, 74h, and 75h, the particular size registers that are loaded depend on the CHAs that are
selected and the DTYPE field of the entry that is written into the NFIFO. The table below titled "Which Size Registers

are loaded" indicates which size registers are loaded.
NOTE: For DST values 70h, 72h, 74h, and 7Ah, the direct destination depends on the value in the LENGTH field. If the

LENGTH is 4, then the direct destination is the NFIFO. However, if the LENGTH field is 8, then the direct destination
is special control hardware which breaks up large lengths so that the maximum length permitted in an NFIFO entry is

not exceeded. This hardware pushes as many entries into the NFIFO as necessary. The special control hardware
will stall if the NFIFO is full, resuming when space becomes available.

NOTE: For DST values 70h-75h and 7Ah, the LOAD will block if the NFIFO is full. In addition, further access to the NFIFO
will block if the hardware which breaks up large entries is in use.

76 00 Message 4/0 bytes

8/0 bytes

4/4 bytes

Yes IDFNS Input Data FIFO
Nibble Shift Register

See notes below.

Inserts the rightmost 4 bits of the immediate value into the input to the Class 1 Alignment
Block, which causes the remainder of the input data to be shifted by one nibble. This nibble
alignment continues until the L1 bit or F1 bit in an NFIFO entry is encountered. Thereafter,
input to the Class 1 Alignment Block will not be nibble shifted unless the IDFNSR is written
again. Any nibble remaining in the shift register will remain there once the last or flush is
seen. This means that if there are N bytes of data, to get the last nibble out requires NFIFO
entries totaling N+1 bytes.

77 00 Message 4/0 bytes

8/0 bytes

4/4 bytes

Yes ODFNS Output Data FIFO
Nibble Shift Register

See notes below.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

348 NXP Semiconductors
Confidential Proprietary

Table 10-24. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

Inserts the rightmost 4 bits of the immediate value into the output from a Class 1 CHA, so
subsequent data from that Class 1 CHA is now shifted one nibble. Data from other sources
(such as MOVE Command or LOAD IMM to the Output Data FIFO) will not be
concatenated correctly. This nibble alignment continues until the CHA Done signal is
asserted. Thereafter, output from a second operation, even from the same CHA, is not
nibble shifted unless the ODFNSR is written again. Any valid nibble remaining is always
pushed into the output FIFO following the assertion of CHA Done.

78 00 Message 1-8/0 bytes Yes AUXDAT
A

Auxiliary Data FIFO See notes below.

This DST value can be used to provide data to the Auxiliary Data FIFO. Each LOAD IMM
command can load 1-8 left-aligned bytes. Byte swapping is done automatically if the
endianness settings require it. The LOAD IMM to AUXDATA will stall if there is no room left
in the AUXDATA buffer. The AUXDATA path should be treated in the same way as the
input DATA FIFO. If NFIFO entries are not used properly, execution will hang if more
LOADs are done to the AUXDATA buffer but room can't be created by draining that buffer
via NFIFO entries and the corresponding alignment block being drained by CHAs or the
MOVE command. Note that data can also be supplied to the Auxiliary Data FIFO by using
a MOVE command.

7A 00 Control 4/0 bytes

8/0 bytes
**

Yes NFIFO NFIFO See notes below.

The NFIFO can be written by means of the FIFO LOAD command or a MOVE command,
or by using this DST value with a LOAD Immediate command.

** If LENGTH = 8, the LOAD command is interpreted as follows:

word 1: LOAD IMM, LENGTH = 8, DST = 7Ah

word 2: bits [31:12] contain the NFIFO entry if not padding type, else bits [31:10] contain
the NFIFO entry

word 3: Extended Length (DECO creates as many NFIFO entries as needed to satisfy the
Extended Length - see the notes above)

7C 00 Message 1-8/0 bytes Yes IFIFO Input Data FIFO See notes below

The input data FIFO is normally written by means of the FIFO LOAD command, but the
Input Data FIFO can be written using this DST value with a LOAD Immediate Command.
The data must be left-aligned and byte swapping will be done if the endianness settings
require it. This LOAD will block if there is no more room in the input data FIFO or if there is
other data heading to the input data FIFO. Care should be taken since this block could turn
into a hang if the LOAD is unable to proceed.

7E 00 Message 1-8/0 bytes Yes OFIFO Output Data FIFO See notes below.

Must use a LOAD Immediate command. The data must be left-aligned and byte swapping
will be done if the endianness settings require it. This LOAD will block if there is no more
room in the output data FIFO. It is up to the descriptor writer to ensure that this LOAD will
not collide with a move to the output FIFO or a push to the output FIFO by one of the C1
CHAs. Care should be taken since this block could turn into a hang if the LOAD is unable
to proceed.

All combinations of value and class that do not appear in this table are reserved

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 349
Confidential Proprietary

1. May be affected by protocols. Note that using the LOAD command to place values in the math registers does not update
the MATH status bits (see MNV, MN, MC and MZ). Because the math registers are in contiguous addresses, it is possible
to load more than one math register simultaneously. A LOAD IMM to a math register blocks if there are any outstanding
external loads to any math register. A non_IMM LOAD to a math register blocks if the CCB DMA is writing to any math
register.

2. When this destination is used, the data loaded into the Math register will be treated as words.
3. When this destination is used, the data loaded into the Math register will be treated as double words. Offset must be 0.

Word swapping will be handled the same as address pointers. It is recommended that only full double words be loaded.
4. When this destination is used, the data loaded into the Math register will be treated as bytes.

The following table details which size registers are written when loading NFIFO entries
when one, or more, size registers are also written. (DST values 70h, 71h, 74h, and 75h.)
An entry of "None/Reserved" means that no size register will be written and NXP
reserves the right to assign that DTYPE to some size register in the future. Therefore,
such DTYPEs should not be used as they could break compatibility.

Which Size Registers are Loaded

DTYPE

(hex)

If PKHA selected If Class 1 CHA selected, but not
PKHA

If Class 2 CHA selected

0 PKHA A Size None/Reserved Class 2 Data Size

1 PKHA A Size AAD Size and Class 1 Data Size Class 2 Data Size

2 PKHA A Size IV Size and Class 1 Data Size Class 2 Data Size

3 PKHA A Size AAD Size and Class 1 Data Size Class 2 Data Size

4 PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

5 PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

6 PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

7 PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

8 PKHA N Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

9 PKHA E Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

A None/Reserved ICV Size If PKHA selected: Class 2 ICV Size

If PKHA not selected: if both Class 1 and
Class 2 CHAs selected, Class 2 Data Size
else Class 2 ICV Size

B None/Reserved None/Reserved None/Reserved

C PKHA A Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

D PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

E None/Reserved None/Reserved None/Reserved

F None/Reserved Class 1 Data Size Class 2 Data Size

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

350 NXP Semiconductors
Confidential Proprietary

10.6.11 FIFO LOAD command

NOTE
In the following discussion, the term 'FIFO LOAD command'
refers to both the SEQ and non-SEQ forms of the command.

FIFO LOAD commands are used to load message data, PKHA data (other than for the E
Memory), IV, AAD, ICV, and bit-length message data into the input data FIFO. The SEQ
FIFO LOAD command is identical to the FIFO LOAD command except that no address
is specified, the command contains an AIDF bit in place of the IMM bit, and the
command includes a VLF bit instead of a SGF bit. See SEQ vs non-SEQ commands.

Because the only destination is the input data FIFO, this command does not include a
DST field. The FIFO INPUT DATA TYPE is used to indicate what type of data is being
loaded and whether the length is specified in bits or bytes. The length of data other than
message data is measured in bytes. The length of message data can be specified in either
bits or bytes. If automatic info FIFO entries are enabled, the FIFO LOAD command
writes the appropriate size register(s) and the required info FIFO entry for the specified
input data type. This command will block for a variety of reasons:

1. FIFO LOAD IMM will block if the input FIFO is full.
2. FIFO LOAD IMM will block if the DMA is required to move the data but the DMA

is busy.
3. If a DMA transaction is required, the FIFO LOAD command will block if the

hardware which schedules DMA transactions is in use.
4. If there are external reads destined for the input data FIFO, FIFO LOAD IMM will

block until that data arrives.
5. The FIFO LOAD command uses the same logic as the LOAD command does when

loading NFIFO entries with LENGTH=8. If an NFIFO entry is required and this
logic is busy, the command will block.

Table 10-25. FIFO LOAD command format

31–27 26–25 24 23 22 21–16

CTYPE = 00100 or 00101 CLASS SGF
or VLF

IMM or
AIDF

EXT INPUT DATA TYPE

15 14–10 9–0

PKLE reserved LENGTH when FIFO LOAD data type selects a PKHA register

LENGTH (16 bits, when PKHA is not selected)

Additional words of FIFO LOAD command:

Pointer (one word, see Address pointers) or Value (if immediate, one or more words)

EXT LENGTH (one word, present if EXT=1)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 351
Confidential Proprietary

Table 10-26. FIFO LOAD command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=00100b : FIFO LOAD command

If CTYPE=00101b : SEQ FIFO LOAD command

26-25

CLASS

Class. Cryptographic algorithm class.

If CLASS=00b : Used for SEQ FIFO LOAD only. Skips the specified length in memory without
scheduling any read transactions and no data is actually read. However, Scatter/Gather Table
entries will be read as needed. FIFO INPUT DATA TYPE field is ignored. No info FIFO entry is
generated.

If CLASS=01b : Load FIFO with data for a Class 1 alignment block.

If CLASS=10b : Load FIFO with data for a Class 2 alignment block.

If CLASS=11b : Load FIFO with data for both Class 1 and Class 2 alignment blocks (both In Snoop
and Out Snoop; the INPUT DATA TYPE will distinguish between them).

NOTE: The CLASS field must be non-zero for FIFO LOAD commands because the 00b case
indicates skipping, which is illegal for FIFO LOAD. This is true even when automatic
information FIFO entries are disabled.

24

SGF or VLF

Scatter/Gather Table Flag (SGF) or Variable Length Flag (VLF).

If CTYPE = 00100b (FIFO LOAD), this bit is the Scatter/Gather table Flag (SGF).

If SGF=0, the pointer points to actual data.

If SGF=1, the pointer points to a Scatter/Gather Table.

NOTE: If the IMM bit is set, it is an error for this bit to be set.

If CTYPE = 00101b (SEQ FIFO LOAD), this bit is the Variable Length Flag (VLF).

If VLF=0, the LENGTH field indicates the length of the data.

If VLF=1, the length is variable. CAAM uses the length in the Variable Sequence In Length register
and ignores the LENGTH field.

NOTE: It is an error to set VLF = 1 when the EXT bit = 1.

23

IMM or AIDF

Immediate Flag(IMM) or Already in Input Data FIFO (AIDF)

If CTYPE = 00100 (FIFO LOAD), this bit is the Immediate Flag (IMM).

If IMM=0 and SGT=0 the data begins at the location pointed to by the Pointer field, but if SGT=1 the
data begins at the location pointed to by the Scatter-Gather Table, which is pointed to by the Pointer
field.

If IMM=1, the data follows as part of the descriptor, using as much space as defined by the LENGTH
field and then rounded up, if necessary, to the nearest 4-byte word.

NOTE: It is an error if this bit is set when SGF = 1 or EXT = 1.

If CTYPE = 00101 (SEQ FIFO LOAD), this is the Already in Data FIFO (AIDF) bit.

If AIDF is 0, CAAM will read the input sequence data from memory.

If AIDF is 1, CAAM will not read the input sequence data (because it is already in the Input Data
FIFO). This form is convenient since the NFIFO and Data Size Registers will be loaded automatically
if Automatic Info FIFO Entries is enabled. As a result, a 1-word command can replace two 2-word
commands.

22

EXT

Extended Length

If EXT=0 : Input data length is solely determined by the 16-bit LENGTH field,

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

352 NXP Semiconductors
Confidential Proprietary

Table 10-26. FIFO LOAD command field descriptions (continued)

Field Description

If EXT=1 : Input data length is determined by the 32-bit EXTENDED LENGTH. If the INPUT DATA
TYPE indicates a bit length, then the EXTENDED LENGTH field contains the number of full bytes,
and the right 3 bits of the LENGTH field, if nonzero, indicate the number of valid bits in the last byte.
See Bit length data.

NOTE: It is an error if this bit is set when IMM is also set.

21-16

INPUT DATA TYPE

FIFO input data type

See Table 10-28 for a description of the supported types. When automatic information FIFO entries
are disabled, (SEQ) FIFO LOAD Commands ignore the FIFO INPUT DATA TYPE field.

15

PKLE

(If data type selects a
PKHA register)

PKHA Little Endian data load

If PKLE=0: data is not swapped as loaded into a PKHA Memory.

If PKLE=1: data is swapped as loaded into a PKHA Memory.

This feature is intended to support curves like Curve25519 and Ed25519, which are typically
represented as little-endian byte strings, but not for Weierstrass curves, which are typically
represented as big-endian byte strings.

PKLE must be set to 0 for black (encrypted) keys.

NOTE: In this instance of CAAM DECO will report an 'Invalid FIFO LOAD command' error if PKLE
is set and the length is encoded in the first word. Instead set the EXT bit and encode length
in the extension word, or set the VLF bit and utilize VSOL.

15-0

(for PKHA data type:
length in 9-0)

LENGTH

Length of data

If EXT = 0 : LENGTH = number of bytes of input data or for bit-length message data, the number of
bits of input data. Setting EXT=0, VLF=0 and PKLE=1 will cause an error. If PKLE must be set, use
EXT=1 or VLF=1.

If EXT = 1 : The EXT LENGTH field indicates the number of full bytes of data. If the INPUT DATA
TYPE indicates a bit-length, the right 3 bits of the LENGTH field, if nonzero, indicate the number of
valid bits in the last byte. See Bit length data.

Additional words of FIFO LOAD command:

POINTER If IMM = 0, this field is a pointer to the data to be loaded.

If IMM = 1, this field is not present.

NOTE: This field is not present for SEQ FIFO LOAD Commands.

31-0

EXT LENGTH

For EXT = 0, this field not present.

For EXT = 1, EXTENDED LENGTH specifies number of full bytes of data to load. For bit-length data,
the least-significant 3 bits of the LENGTH field indicate the number of valid bits in an additional byte
of data. See Bit length data.

10.6.11.1 Bit length data

If the INPUT DATA TYPE indicates that the input data type being loaded is bit-length
message data, the LENGTH field is defined as a bit count, as shown in the "Number of
Bits" row in the following figure. This can also be interpreted as a "Number of Full Bytes
field" in bits positions 15-3, and a "Number of Additional Valid Bits" field in bit
positions 2-0. These additional valid bits are in the next byte after the number of full

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 353
Confidential Proprietary

bytes, starting with the bit on the left. For example, if the LENGTH field is 0101h,
CAAM loads 33 bytes, with only the leftmost bit of the 33rd byte valid. Note that the
entire 33rd byte is read and it is up to the consumer of that last byte to know that only the
specified number of bits in the last byte are valid.

The Number of Additional Valid Bits is placed in the NUMBITS field of the Class 1
and/or Class 2 Data Size Register. The NUMBITS field is not visible to any functional
logic in CAAM other than a subset of the CHAs. (The NUMBITS field may be read via
SkyBlue or a store of the Data Size Registers.)

The CHAs that receive the NUMBITS field are:
• AESA, which will error if it sees a nonzero NUMBITS field.

The following CHAs do not receive the NUMBITS field:
• PKHA
• DES
• AFHA
• MDHA
• RNG

It is possible to use a nonzero NUMBITS field with a CHA which does not receive the
NUMBITS field. To do this, add 1 more to the proper Data Size Register. However, note
that the remaining bits in the last byte will be whatever values they were at the source of
that byte. That is, the remaining bits are not masked to 0.

It is not possible for CAAM to automatically concatenate two separate bit fields. For
example, if an NFIFO entry for 3 bits is followed by an entry for 5 bits, these entries will
NOT result in a one-byte entry. To achieve such concatenation, use the shift operations in
the MATH command.

When using automatic NFIFO entries with the FIFO LOAD command to specify bit
lengths, C1 must always have Flush or Last set and C2 must always have Last set. Failure
to set the Last and Flush bits as stated will result in an error. When manually generating
NFIFO entries no error will be generated if the Flush or Last bits are not set as suggested.
However, as stated above, each incomplete byte's remaining bits will have whatever
values they had at the source.

If the FIFO LOAD command is used to generate the NFIFO entry, the number of bytes
specified in the LENGTH field for the NFIFO entry will be the number of full bytes if the
NUMBITS field is zero, and the number of full bytes plus one if the NUMBITS field is
nonzero. This ensures that the CHA will consume the last, partial, byte. If the descriptor
writer is manually generating the NFIFO entries, care must be taken to handle the length
properly.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

354 NXP Semiconductors
Confidential Proprietary

Table 10-27. Specifying data with residual bit length

15–0

Number of Bits

Alternate interpretation:

15–3 2–0

Number of Full Bytes Number of Additional
Valid Bits

If the input data's bit length is equal to or greater than 216, set the EXT bit and use the
EXTENDED LENGTH field to specify the number of full bytes. The upper 13 bits of
LENGTH must be zero, with the rightmost 3 bits specifying the number of additional
valid bits as before.

10.6.11.2 FIFO LOAD input data type

Table 10-28 contains an enumeration of the various built-in input data FIFO data types.
This field is ignored if neither of the Class bits are set. Only message data can have a bit
length (as opposed to a byte length), and such message data must always have Flush or
Last set.

Note that the NFIFO source type is not needed, as it is always inferred from the Table
10-28. The length for the NFIFO entry is the amount of data being placed in the data
FIFO. (One is added to the length in the case of bit-length data if the number of bits in the
last byte is nonzero.) Also, the Last and Flush bits are always sent as 0 except with the
last byte of data, in which case the values shown in the table are sent.

Note also that data should not be left in the Input Data FIFO with the expectation that it
will be shared with a subsequent shared descriptor executing in the same DECO.

With the exception of IV and AAD, the FIFO LOAD command does not do any padding.
This is because all algorithmic padding requires a pad length or a special last byte, which
means that at least one byte of padding is required. Therefore, the padding can be sent
using a padding NFIFO entry.

Table 10-28. FIFO LOAD input data type field

FIFO Input Type Field Bit # Meaning

21 20 19 18 17 16

00b PKHA PKHA Register Load

All values not specified below are reserved. This data is always flushed. An error is
asserted if the length is larger than fits in the PKHA RAM.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 355
Confidential Proprietary

Table 10-28. FIFO LOAD input data type field (continued)

FIFO Input Type Field Bit # Meaning

21 20 19 18 17 16

NOTE: Loading quadrants of a given PKHA register with different-sized values may
cause invalid data to be loaded into the quadrants. To avoid this issue, make
sure that all quadrants of a given register have the same size values by left-
filling short values with zero. If it is necessary to load different-sized values in
quadrants of the same register, insert a JUMP command between quadrant
loads (which will wait for automatic information FIFO entries to be
processed): jump jsl = 1, type = 0, cond = nifp, local offset = 1.

NOTE: The PKHA E RAM can not be loaded via the FIFO LOAD command using
automatic NFIFO entries. Use the KEY command or get the data into the
input data FIFO without an automatic NFIFO entry and then manually create
an NFIFO entry and write the PKHA E Size register.

0 0 0 0 PKHA A0

0 0 0 1 PKHA A1

0 0 1 0 PKHA A2

0 0 1 1 PKHA A3

0 1 0 0 PKHA B0

0 1 0 1 PKHA B1

0 1 1 0 PKHA B2

0 1 1 1 PKHA B3

1 0 0 0 PKHA N

1 1 0 0 PKHA A

1 1 0 1 PKHA B

00b 1 1 1 1 Place the data into the input Data FIFO but do not generate an NFIFO entry and do
not write any size registers, even if automatic NFIFO entries are enabled.

010b LC2 LC1 FC1 Message Data

011b LC2 LC1 FC1 Message Data for Class 1 out-snooped to Class 2

100b LC2 LC1 FC1 IV. No padding is done for Class2.If Last or Flush for Class 1 is set, Class 1 is padded
to 16-byte boundary with 0. No padding is done for Class 1 if the data naturally ends
on a 16-byte boundary.

101b 1 LC1 FC1 Bit-length message data. Last of Class 2 treated as set even if not set in the
command; either LC1 or FC1 must be set

110b LC2 LC1 FC1 AAD. If Last or Flush for Class 1 is set, Class 1 is padded to a 16-byte boundary with
0.No padding is done for Class 2.It is an error if Class 2 is specified and Class 1 is
not.

111b LC2 LC1 FC1 ICV

If CLASS 1 is asserted, LC1 means the data defined in the current NFIFO entry is the last data. When LC1 = 1, the last byte
of the specified length is made available from the Class 1 Alignment Block even if that last byte does not complete an 8-byte
entry. If CLASS 1 is negated, LC1 is ignored.

If CLASS 2 is asserted, LC2 means the data defined in the current NFIFO entry is the last data. When LC2 = 1, the last byte
of the specified length is made available from the Class 2 Alignment Block even if that last byte does not complete an 8-byte
entry. If CLASS 2 is negated, LC2 is ignored

If CLASS 1 is asserted, FC1 means the data defined in the current NFIFO entry is the last data of this type. When FC1 = 1,
the last byte of the specified length is made available from the Class 1 Alignment Block even if that last byte does not
complete an 8-byte entry. If CLASS 1 is negated, FC1 is ignored.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

356 NXP Semiconductors
Confidential Proprietary

Table 10-28. FIFO LOAD input data type field (continued)

FIFO Input Type Field Bit # Meaning

21 20 19 18 17 16

Note that the difference between LC1 and FC1 is only important when the data is going to a CHA. If the data is to be
consumed by the CCB DMA, then FC1 should be used as LC1 may confuse a CHA. LC2 should not be used if the data will
be consumed by the CCB DMA. In such cases, it is better to use a manual NFIFO entry with the FC2 bit set.

All values not specified are reserved.

10.6.12 ECPARAM command

The ECPARAM command is used to load one parameter from a set of built-in elliptic
curve parameters into one of the PKHA registers. This command will block until any data
already in transit to the Input Data FIFO has been received.

The DEST value 1111b is used to leave the selected parameter in the Input Data FIFO.
No NFIFO entry is generated. If automatic NFIFO entries have been disabled, the
ECPARAM command will leave the parameter in the Input Data FIFO and no NFIFO
entry is generated. Note that when no NFIFO entry is generated, no PKHA size register is
written. Furthermore, the descriptor writer is responsible for the NFIFO entry to get this
parameter to its final destination.8, 9 In all other legal cases, the ECPARAM command
will result in loading the parameter into the selected PKHA register by automatically
creating the NFIFO entry and automatically writing the correct PKHA size register with
the correct value.

Table 10-29. ECPARAM command, format

31–27 26-20 19–16

CTYPE = 11100 0100000 DEST

15 14-8 7–4 3–0

Reser
ved

DOMAIN Reserved PARAMETER

Table 10-30. ECPARAM command, field descriptions

Field Description

31-27 Command type

Table continues on the next page...

8. This parameter passes through the Input Data FIFO. It is up to the descriptor writer to ensure that any data already in the
Input Data FIFO already has corresponding NFIFO entries.

9. If parameters of different sizes are to be loaded into different quadrants of the same PKHA register, then it is up to the
user to ensure that the first parameter is completely loaded before executing the second ECPARAM command. This is
because the same size register is used and can't be changed for the second parameter until the first has been
successfully loaded.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 357
Confidential Proprietary

Table 10-30. ECPARAM command, field descriptions (continued)

Field Description

CTYPE IF CTYPE=11100b : ECPARAM command

26-20 0100000b. This particular 7-bit value is mandatory. Any other value will generate an error.

19-16

DEST

Destination. This field specifies which PKHA register to load:

0000b - PKHA A0

0001b - PKHA A1

0010b - PKHA A2

0011b - PKHA A3

0100b - PKHA B0

0101b - PKHA B1

0110b - PKHA B2

0111b - PKHA B3

1000b - PKHA N

1100b - PKHA A

1101b - PKHA B

1111b - Input Data FIFO--This parameter passes through the Input Data FIFO. It is up to the descriptor
writer to ensure that any data already in the Input Data FIFO already has corresponding NFIFO entries.

All other values are reserved.

15 Reserved

14-8

DOMAIN

Elliptic Curve Domain. This field selects one of the built-in elliptic curve domains:

DOMAIN ECC Domain Selected

0h P-192

1h P-224

2h P-256

3h P-384

4h P-521

5h brainpoolP160r1

6h brainpoolP160t1

7h brainpoolP192r1

8h brainpoolP192t1

9h brainpoolP224r1

Ah brainpoolP224t1

Bh brainpoolP256r1

Ch brainpoolP256t1

Dh brainpoolP320r1

Eh brainpoolP320t1

Fh brainpoolP384r1

10h brainpoolP384t1

11h brainpoolP512r1

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

358 NXP Semiconductors
Confidential Proprietary

Table 10-30. ECPARAM command, field descriptions

Field Description

12h brainpoolP512t1

13h prime192v2

14h prime192v3

15h prime239v1

16h prime239v2

17h prime239v3

18h secp112r1

19h wtls8

1Ah wtls9

1Bh secp160k1

1Ch secp160r1

1Dh secp160r2

1Eh secp192k1

1Fh secp224k1

20h secp256k1

40h B-163

41h B-233

42h B-283

43h B-409

44h B-571

45h K-163

46h K-233

47h K-283

48h K-409

49h K-571

4Ah wtls1

4Bh sect113r1

4Ch c2pnb163v1

4Dh c2pnb163v2

4Eh c2pnb163v3

4Fh sect163r1

50h sect193r1

51h sect193r2

52h sect239k1

53h Oakley3a

54h Oakley4a

All values not specified are reserved.

1. The "r", "R2mod r" and "k" parameters are not valid for either OAKLEY domain.
2. The "C" parameter is not valid for Fp domains (i.e. DOMAIN < 40h).

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 359
Confidential Proprietary

Table 10-30. ECPARAM command, field descriptions (continued)

Field Description

7-4 Reserved

3-0

PARAMETER

Elliptic Curve Parameter. This field specifies which elliptic curve parameter is to be loaded into the PKHA
register specified by DEST.

PARAMETER EC Domain Parameter Selected

0h q

1h r -1

2h Gx

3h Gy

4h a

5h b

6h R2mod q

7h R2mod r -1

8h c

9h k -1

All values not specified are reserved.

1. The "r", "R2mod r" and "k" parameters are not valid for either OAKLEY domain.
2. The "C" parameter is not valid for Fp domains (i.e. DOMAIN < 40h).

1. The "r", "R2mod r" and "k" parameters are not valid for either OAKLEY domain.
2. The "C" parameter is not valid for Fp domains (i.e. DOMAIN < 40h).

10.6.13 STORE command

NOTE
In the following discussion, the term 'STORE command' refers
to both the SEQ and non-SEQ forms of the command.

STORE commands are used to read data from various registers and write them to a
system address. The SEQ STORE command is identical to the STORE command except
that no address is specified and the VLF bit replaces the SGF bit. See SEQ vs non-SEQ
commands.

The definitions of the OFFSET and LENGTH fields in the STORE command can depend
on the CLASS and source (SRC) fields. Table 10-31 shows the command fields, and
Table 10-33 defines OFFSET and LENGTH as well as additional behaviors of the
command.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

360 NXP Semiconductors
Confidential Proprietary

As shown in the following table, STORE data sources can be both control and message
data registers. Data stored from control data registers are regarded as word-oriented data,
whereas data stored from message data registers are regarded as byte strings.

To facilitate operation in chips with different endianness configurations, the following
data-swapping operations can be configured:

• byte-swapping
• half-word swapping

and these swapping operations for control data registers can be configured independently
from the swapping for message data registers.

The same swapping operations can be configured independently for each Job Ring (see
the Job Ring Configuration Register (JRCFGR)).

Table 10-31. STORE/SEQ STORE command format

31–27 26–25 24 23 22–16

CTYPE = 01010 or 01011 CLASS SGF
or

VLF

IMM SRC

15–8 7–0

OFFSET LENGTH

Additional words of STORE/SEQ STORE command:

Pointer - present for STORE, but not for SEQ STORE (one word, see Address pointers)

If immediate (IMM = 1), one or more words of data appear here

Table 10-32. STORE/SEQ STORE command field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=01010b : STORE command

If CTYPE=01011b : SEQ STORE command

26-25

CLASS

Algorithm class of the data object to be stored

See the SRC field for additional explanation. If IMM = 1 a value other than 00b in the CLASS field will cause an
error to be generated.

If IMM = 0, the following definitions are used:

If CLASS=00b : Store class-independent objects from CCB.

If CLASS=01b : Store Class 1 objects from CCB.

If CLASS=10b : Store Class 2 objects from CCB.

If CLASS=11b : Store objects from DECO.

24

SGF or VLF

Scatter/Gather Table Flag (SGF) or Variable Length Flag (VLF).

If CTYPE = 01010b (STORE), this bit is the Scatter/Gather table Flag (SGF).

If SGF=0, the pointer contains the address of the destination for the data to be stored.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 361
Confidential Proprietary

Table 10-32. STORE/SEQ STORE command field descriptions (continued)

Field Description

If SGF=1, the pointer points to a Scatter/Gather Table, which defines the destinations for the data to be stored.
Note that SGF should not be set to 1 when using SRC values 41h or 42h. Doing so will cause an error to be
generated.

NOTE: If the IMM bit is set, it is an error for the SGF bit to be set.

If CTYPE = 01011b (SEQ STORE), this bit is the Variable Length Flag (VLF).

If VLF=0, the LENGTH field indicates the length of the data.

If VLF=1, the data length is variable. CAAM uses the length in the Variable Sequence Out Length register rather
than the value the LENGTH field. However, an error will be generated if the values in the VSOL register and
OFFSET field are not a valid combination as indicated in the table Table 10-33.

23

IMM

Immediate data.

If IMM=0 : Data to be stored is found at the location specified by the SRC field.

If IMM=1 : Data to be stored follows as part of the descriptor, using as much space as defined by the LENGTH
field and then rounded up, as necessary, to the nearest 4-byte word. For SEQ STORE, the data immediately
follows the command; for STORE, the data immediately follows the pointer.

NOTE: It is an error if the IMM bit is set when the SGF bit is set. However, the destination of a SEQ STORE
can be defined by a Scatter/Gather Table pointed to by the SEQ OUT PTR Command that initiated the
Output Sequence. It is an error if IMM =1 and the OFFSET field is non-zero.

22-16

SRC

SRC value defines the source (e.g. CONTEXT) of the data to be stored. See Table 10-33 for a list of supported
sources.

If IMM = 1 the data to be stored is located as immediate data within the command. Although the SRC field does
not specify the source of the data, the SRC field still determines whether the immediate data is treated as
message data or control data. When CAAM is configured for big endian operation, message data and control
data are treated the same. When CAAM is configured for little endian operation, control data is byte swapped
within words as the immediate data is stored into memory but message data is stored as-is, without byte
swapping. SRC = 00h will cause the immediate data to be treated as control data, so when CAAM is configured
for little-endian operation the data will be byte-swapped within words before it is written to memory. SRC = 7Eh
will cause the immediate data to be treated as message data, so the data will be written as-is, without byte
swapping. The use of any other SRC value with IMM=1 will cause an error to be generated.

15-8

OFFSET

OFFSET defines the start point for reading within the SRC. For example, if the SRC indicates a context register,
the offset can be used to indicate that the data should be read from the fourth byte of context rather than from
the beginning. The offset into the descriptor buffer is specified in 4-byte words, but in all other cases the offset is
specified in bytes. See Table 10-33 for the legal combinations of OFFSET and LENGTH values.

7-0

LENGTH

Length of the data. For the descriptor buffer, the length is specified in 4-byte words, but in all other cases the
length is specified in bytes. See Table 10-33 for the legal combinations of OFFSET and LENGTH values.

Additional words of STORE command:

31-0

POINTER

This field is a pointer to the address in memory where the data is to be stored.

NOTE: This field is not present for any SEQ STORE commands or for STORE commands that store the job
descriptor (41h) or shared descriptor (42h) from the descriptor buffer into memory which use the
pointers previously specified for the job and shared descriptors. (Type 40h requires a pointer for the
STORE command.)

31-0

VALUE

If IMM = 1, the value is located here. Enough 4-byte words are used to hold the data of size LENGTH.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

362 NXP Semiconductors
Confidential Proprietary

Table 10-33. STORE command SRC, OFFSET and LENGTH field values

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

00 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

MODE1 Class 1 Mode
Register

10 MODE2 Class 2 Mode
Register

11 Control 4/0 bytes

8/0 bytes

4/4 bytes

DJQCR DECO Job Queue
Control Register

01 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

KEYS1 Class 1 Key Size
Register

10 KEYS2 Class 2 Key Size
Register

11 Control 4/0 bytes

8/0 bytes

4/4 bytes

DDAR DECO Descriptor
Address Register

02 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

DATAS1 Class 1 Data Size
Register

10 DATAS2 Class 2 Data Size
Register

11 Control 4/0 bytes

8/0 bytes

4/4 bytes

DOPSTAT DECO Operation
Status register

Storing DOPSTAT captures
the current "math
conditions" (see Table
10-88, TEST CONDITION
field, TEST CONDITION
bits when JSL = 0) as well
as CAAM's current
command index. The status
is in the left four bytes of
this register. The right four
bytes contain the number of
bytes written to the SEQ
OUT PTR address.

03 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

C1ICVS Class 1 ICV Size
Register

10 C2ICVS Class 2 ICV Size
Register

04 11 Control 4/0 bytes

8/0 bytes

4/4 bytes

DDID DECO DID
Register

Consists of the following
fields: Shared DID, Job
DID, TZ/SDID, Trusted
DID.

06 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

CCTRL CHA Control
Register

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 363
Confidential Proprietary

Table 10-33. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

07 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

ICTRL IRQ Control
Register

08 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

CLRW Clear Written
Register

08 11 Control 0-32

0-7 bytes

MATH0W DECO Math
Register 0
(Words)

1, 2

09 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

CSTA CCB Status and
Error Register

11 Control 0-24

0-7 bytes

MATH1W DECO Math
Register 1
(Words)

1, 2

0A 11 Control 0-16

0-7 bytes

MATH2W DECO Math
Register 2
(Words)

1, 2

0B 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

AADSZR AAD Size
Register

1, 2

11 Control 0-8

0-7 bytes

MATH3W DECO Math
Register 3
(Words)

1, 2

10 11 Control 16/0 bytes

32/0 bytes

48/0 bytes

64/0 bytes

GTR Gather Table
Registers

10 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

PKASZ PKHA A Size
Register

-

11 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

PKBSZ PKHA B Size
Register

-

12 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

PKNSZ PKHA N Size
Register

-

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

364 NXP Semiconductors
Confidential Proprietary

Table 10-33. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

13 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

PKESZ PKHA E Size
Register

-

20 01 Message 0-128/

0-128 bytes

CTX1 Class 1 Context
Register

A STORE from the Class 1
Context Register will
automatically block until the
Class 1 CHA is done.

10 CTX2 Class 2 Context
Register

A STORE from the Class 2
Context Register will
automatically block until the
Class 2 CHA is done.

20 11 Control 16/0 bytes

32/0 bytes

48/0 bytes

64/0 bytes

STR Scatter Table
Registers

30 11 Control 0-32

0 bytes

MATH0DW DECO Math
Register 0
(Double Word)

1, 3, 2

31 11 Control 0-24

0 bytes

MATH1DW DECO Math
Register 1
(Double Word)

32 11 Control 0-16

0 bytes

MATH2DW DECO Math
Register 2
(Double Word)

33 11 Control 0-8 MATH3DW DECO Math
Register 3
(Double Word)

38 11 Control 0-32

0-7 bytes

MATH0B DECO Math
Register 0 (Bytes)

1, 4

39 11 Control 0-24

0-7 bytes

MATH1B DECO Math
Register 1 (Bytes)

3A 11 Control 0-16

0-7 bytes

MATH2B DECO Math
Register 2 (Bytes)

3B 11 Control 0-8

0-7 bytes

MATH3B DECO Math
Register 3 (Bytes)

40 01 Message 0-128/0-128
bytes

KEY1 Class 1 Key
Register

If the corresponding Key
Size register has not been
written, the STORE or SEQ
STORE command may be
used to store the key
register into memory. After

10 Message 0-128/0-128
bytes

KEY2 Class 2 Key
Register

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 365
Confidential Proprietary

Table 10-33. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

the key size has been
written, the key register can
be stored to memory only
via a FIFO STORE or SEQ
FIFO STORE command.

11 Control 0-64/

offset*

words

DESC_BUF DECO descriptor
buffer

See notes below.

This SRC value can be used to store any portion of the descriptor buffer into
memory.

The values in the LENGTH and OFFSET field are specified in 4-byte words.

offset* An error is generated if the sum of the LENGTH and OFFSET fields is
greater than 64. The OFFSET is used to specify the starting word of the source
within the descriptor buffer. Note that the OFFSET is relative to the start of the
descriptor buffer.

41 11 Control 0-64/

offset*

words

DESC_BUF DECO descriptor
buffer

See notes below.

This SRC value is valid only for STORE Commands, not SEQ STORE
Commands. This SRC value is used for writing back modifications to Job
Descriptors (including Trusted Descriptors). This overwrites the descriptor in
memory, using the address from which the descriptor was fetched. Since no
pointer is used, this is a one-word command. If an In-line descriptor, a
replacement job descriptor, or a Non-local JUMP was executed, an error will be
generated for a STORE command with SRC=41h. Note that SGF should not be
set to 1. Doing so will cause an error to be generated.

The values in the LENGTH and OFFSET field are specified in 4-byte words.

offset* An error is generated if the sum of the LENGTH and OFFSET fields is
greater than 64. The OFFSET is used to specify the starting word of the source
within the descriptor buffer, and the starting word of the destination within the
descriptor in memory. Note that the OFFSET is relative to the start of the Job
Descriptor (or Trusted Descriptor) (which will not be the start of the descriptor
buffer if there is a Shared Descriptor). See Figure 10-8.

42 11 Control 0-64/

offset*

words

DESC_BUF DECO descriptor
buffer

See notes below.

This SRC value is valid only for STORE commands, not SEQ STORE commands.
This SRC value is used for writing back modifications to shared descriptors. This
overwrites the shared descriptor in memory, using the address from which the
shared descriptor was fetched. Note that a STORE with SRC=42h results in an
error if there is no shared descriptor. Even if there is a shared descriptor in the
original descriptor, an error is generated if there has been a non-local jump to

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

366 NXP Semiconductors
Confidential Proprietary

Table 10-33. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

another descriptor or an in-line descriptor is being executed, and that descriptor
attempts a STORE with SRC=42h. Note that SGF should not be set to 1 for SRC
values 41h or 42h. Doing so will cause an error to be generated.

Since no pointer is used, this is a one-word command. The values in the LENGTH
and OFFSET field are specified in 4-byte words.

To correctly use sharing flows (wait or serial) in CAAM, if one job in the flow
updates the PDB in memory, all jobs in that flow must update the PDB in memory
even if the PDB did not change for that particular packet. If all jobs in the flow
update the PDB, CAAM will ensure that subsequent jobs do not read the PDB
from memory until all updates from prior jobs are complete.

offset* An error is generated if the sum of the LENGTH and OFFSET fields is
greater than 64. The OFFSET is used to specify the starting word of the source
within the descriptor buffer, and the starting word of the destination within the
descriptor in memory. Note that the OFFSET is relative to the start of the shared
descriptor in both the descriptor buffer and in memory. See Figure 10-8.

All combinations of SRC and CLASS that do not appear in Table 10-33 are reserved.

1. Because the math registers are in contiguous addresses, it is possible to store more than one math register
simultaneously.

2. When this source is used, the data stored from the Math register will be treated as words.
3. When this source is used, the data stored from the Math register will be treated as double words. Offset must be 0. Word

swapping will be handled the same as address pointers.
4. When this source is used, the data stored from the Math register will be treated as bytes.

10.6.14 FIFO STORE command

NOTE
In the following discussion, FIFO STORE command refers to
both the SEQ and non-SEQ forms of the command.

FIFO STORE commands are used to move data from the output data FIFO to external
memory by means of the DMA. Because the only source is the output data FIFO, this
command does not include a SRC field. The SEQ FIFO STORE command is identical to
the FIFO STORE command except that no address is specified and the SGT bit is
replaced by the VLF bit. See SEQ vs non-SEQ commands.

Note that data output by means of the output data FIFO is considered message data.
Therefore, it is byte-swapped, half-word-swapped, full-word-swapped, swapped in
accordance with the message data swapping configuration. The swapping can be
configured independently for each Job Ring (see the Job Ring Configuration Register
(JRCFGR)).

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 367
Confidential Proprietary

The following types of data can be output from the output data FIFO.

• S-box, which is read from the AFHA. The S-box may be encrypted as a Black Key,
so all crypto operations should be completed prior to this command being executed.

• PKHA registers, other than the E-Memory.
• PKHA E Memory. This data is encrypted as a Black Key prior to being written to

memory.
• Class 1 and Class 2 keys.
• RNG data, which can be left in the output data FIFO or stored away.
• Regular data, which is pulled and written as it appears in the output data FIFO. Note

that bit length data stores are not available.
• Data in the input sequence or in the input data FIFO

Note that even though this command is not a store check point, it does not start if a prior
STORE or FIFO STORE of any type has yet to be scheduled. This command is a done
checkpoint if asked to encrypt a key, because it has to wait until both class CHAs are
done. The FIFO STORE command will block if the internal CCB DMA is not available
when storing Class 1 or Class 2 keys.

The FIFO LOAD command supports bit-length data, (but the FIFO STORE command
does not support bit lengths.

It is occasionally necessary to skip over portions of the output buffer (meaning to
advance the output sequence pointer without actually writing data) before writing more
output. For instance, in certain networking protocols, portions of the output stream may
depend on out-of-order portions of the input stream. This processing can be done in two
or more passes through the input and output sequences by:

1. Skipping portions of the input and output data in one pass
2. Restoring the sequences for the next pass by means of the RTO bit in the SEQ IN

PTR command and the REW field in the SEQ OUT PTR command
3. Skipping over the portions of the output data that were written in the previous pass

To achieve skipping with SEQ FIFO STORE, use output data type 3Fh. Note that scatter
tables may be read while skipping if the sequence was defined with the SGF bit set in the
SEQ OUT PTR command. However, no data will be written while skipping.

Table 10-34. FIFO STORE command format

31–27 26–25 24 23 22 21–16

CTYPE = 01100 or 01101 AUX SGF or
VLF

CONT EXT OUTPUT DATA TYPE

15 14–10 9–0

PKLE reserved LENGTH when FIFO STORE data type selects a PKHA register

LENGTH (16 bits, when PKHA is not selected)

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

368 NXP Semiconductors
Confidential Proprietary

Table 10-34. FIFO STORE command format (continued)

Additional words of FIFO STORE command:

Pointer (one word, see Address pointers)

EXT LENGTH (Present if EXT = 1) (one word)

Table 10-35. FIFO STORE command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=01100b : FIFO STORE command

If CTYPE=01101b : SEQ FIFO STORE command

26-25

AUX

Auxiliary control bits. Used only for certain output data type codes. Set AUX = 00 for all other output data type
codes. See Table 10-36.

24

SGF or VLF

Scatter/Gather table Flag (SGF) or Variable Length Flag (VLF). Meaning depends on CTYPE.

If CTYPE = 01100 (FIFO STORE), this bit is the Scatter/Gather table Flag (SGF).

If SGT=0 : The pointer points to actual data.

If SGT=1 : The pointer points to a scatter/gather table.

If CTYPE = 01101 (SEQ FIFO STORE), this bit is the Variable Length Flag (VLF).

If VLF=0 : The number of bytes of data to be stored is specified in the LENGTH (if EXT=0) or EXT LENGTH (if
EXT=1) field.

If VLF=1 : The data length is variable. The number of bytes of data to be stored is specified in the VSOL
register. The LENGTH field is ignored.

NOTE: It is legal to set VLF=1 when storing a key
NOTE: It is illegal to set VLF=1 when EXT=1.

23

CONT

Continue

If CONT=0 : If the FIFO STORE pulls data from the output FIFO and finishes at an alignment other than at the
end of a dword, the remainder of the last dword is popped and discarded. If the read from the output FIFO ends
with the last byte of the dword, that dword is always popped.

If CONT=1 : The final dword that contributed data is not popped if the data did not end at an 8-byte boundary.
This is used to prevent data loss when a store leaves off in the middle of a dword.

NOTE: If this bit is set when there is no remaining data, subsequent operations may not work as expected.

22

EXT

Use Extended Length

If EXT=0 : Output data length is solely determined by the 16-bit LENGTH field in the first word of the command.

If EXT=1 : Output data length is determined by the 32-bit EXT LENGTH field.

NOTE: It is illegal to set VLF=1 when EXT=1.

21-16

Output Data
Type

This field identifies the type of data that the output data FIFO stores. See Table 10-36 for a list of the supported
types.

15

PKLE

PKHA Little Endian data store

If PKLE=0: data is not swapped as stored from a PKHA Memory

If PKLE=1: data is swapped as stored from a PKHA Memory.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 369
Confidential Proprietary

Table 10-35. FIFO STORE command field descriptions (continued)

Field Description

(If data type
selects a

PKHA
register)

This feature is intended to support curves like Curve25519 and Ed25519, which are typically represented as
little-endian byte strings, but not for Weierstrass curves, which are typically represented as big-endian byte
strings.

PKLE must be set to 0 for black (encrypted) keysand when storing from PKHA E RAAM.

NOTE: In this instance of CAAM DECO will report an 'Invalid FIFO STORE command' error if PKLE is set and
the length is encoded in the first word. Instead set the EXT bit and encode length in the extension
word, or set the VLF bit and utilize VSOL.

15-0

(for PKHA
data type:

9-0)

LENGTH

The length of the data to be stored.

If EXT=0 : The LENGTH field specifies the number of bytes to store.

If EXT=1 : The EXT FIELD specifies the number of bytes to store. The LENGTH field is ignored.

Additional words of the FIFO STORE command:

POINTER
Address pointer where to store the data in memory.

NOTE: This field is not present for SEQ FIFO STORE commands, nor is it present for FIFO STORE
commands if the data type is for RNG and the data is to be left in the output data FIFO.

EXT
LENGTH

Extended length field.

If EXT=0 : This field is not present. The LENGTH field specifies the number of bytes of data to be stored.

If EXT=1 : The EXT LENGTH field specifies the number of bytes of data to be stored. The LENGTH field in the
first word of the command is ignored.

Table 10-36 lists the various built-in FIFO STORE output data types.

Table 10-36. FIFO STORE output data type field

Bits
21-16

(hex)

Meaning Comment

00 PKHA A0 NOTE: The appropriate size register is automatically
written. A FIFO STORE from a PKHA register
should never be attempted with size greater than
the PKHA register size.

01 PKHA A1

02 PKHA A2

03 PKHA A3

04 PKHA B0

05 PKHA B1

06 PKHA B2

07 PKHA B3

08 PKHA N

0C PKHA A

0D PKHA B

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

370 NXP Semiconductors
Confidential Proprietary

Table 10-36. FIFO STORE output data type field (continued)

Bits
21-16

(hex)

Meaning Comment

10 AFHA S-Box, encrypted using AES-CCM with the
job descriptor key encryption key.

The S-Box will be stored in plaintext form (rather than
encrypted) if the S-Box was loaded with a KEY command
with PTS=1 or if a key was loaded into the Class 1 Key
register and AFHA was run in INIT mode to create an S-
Box.

11 AFHA S-Box, encrypted using AES-CCM with the
trusted descriptor key encryption key.

Available only to trusted descriptors. The S-Box will be
stored in plaintext form (rather than encrypted) if the S-Box
was loaded with a KEY command with PTS=1 or if a key
was loaded into the Class 1 Key register and AFHA was run
in INIT mode to create an S-Box.

12 PKHA E, encrypted using AES-CCM with the job
descriptor key encryption key

13 PKHA E, encrypted using AES-CCM with the trusted
descriptor key encryption key.

Available only to trusted descriptors.

14 Key Register, encrypted using AES-CCM with the
job descriptor key encryption key.

The AUX field determines the source register for the FIFO
STORE.

• AUX = 01 selects the Class 1 Key Register to be
stored.

• AUX = 10 selects the Class 2 Key Register to be
stored.

AUX values 00 and 11 are illegal.

15 Key register, encrypted using AES-CCM with the
trusted descriptor key encryption key.

Available only to trusted descriptors. The AUX field
determines the source register for the FIFO STORE.

• AUX = 01 selects the Class 1 Key Register to be
stored.

• AUX = 10 selects the Class 2 Key Register to be
stored.

AUX values 00 and 11 are illegal.

16 Class 2 Key Register Derived HMAC Key, encrypted
using AES-CCM with the job descriptor key
encryption key.

For performance and security, use of Derived HMAC Key is
highly recommended. Details about such keys can be found
in Using the MDHA Key Register with Derived HMAC Keys.
The length of Derived HMAC Key is twice the length of the
chosen MDHA algorithm's running digest (see MDHA use of
the Context Register). If the Class 2 Key register was
loaded with a Derived HMAC Key using a KEY command
with PTS=1, or if a key was loaded into the Class 2 Key
register and then the MDHA was run in INIT mode to create
a Derived HMAC Key, the Class 2 Key register will be
stored in plaintext form.

17 Class 2 Key Register Derived HMAC Key, encrypted
using AES-CCM with the trusted descriptor key
encryption key.

Available only to trusted descriptors. The comments for type
16h apply here as well.

20 AFHA S-Box, encrypted using AES-ECB with the job
descriptor key encryption key

The S-Box will be stored in plaintext form (rather than
encrypted) if the S-Box was loaded with a KEY command
with PTS=1 or if a key was loaded into the Class 1 Key
register and AFHA was run in INIT mode to create an S-
Box.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 371
Confidential Proprietary

Table 10-36. FIFO STORE output data type field (continued)

Bits
21-16

(hex)

Meaning Comment

21 AFHA S-Box, encrypted using AES-ECB with the
trusted descriptor key encryption key.

Available only to trusted descriptors. The S-Box will be
stored in plaintext form (rather than encrypted) if the S-Box
was loaded with a KEY command with PTS=1 or if a key
was loaded into the Class 1 Key register and AFHA was run
in INIT mode to create an S-Box.

22 PKHA E, encrypted using AES-ECB with the job
descriptor key encryption key

-

23 PKHA E, encrypted using AES-ECB with the trusted
descriptor key encryption key.

Available only to trusted descriptors.

24 Key Register, encrypted using AES-ECB with the job
descriptor key encryption key.

The AUX field determines the source register for the FIFO
STORE.

• AUX = 01 selects the Class 1 key register to be
stored.

• AUX = 10 selects the Class 2 key register to be
stored.

AUX values 00 and 11 are illegal.

25 Key Register, encrypted using AES-ECB with the
trusted descriptor key encryption key.

Available only to trusted descriptors. The AUX field
determines the source register for the FIFO STORE.

• AUX = 01 selects the Class 1 Key Register to be
stored.

• AUX = 10 selects the Class 2 Key Register to be
stored.

AUX values 00 and 11 are illegal.

26 Class 2 Key Register Derived HMAC Key, encrypted
using AES-ECB with the job descriptor key
encryption key.

For performance and security, use of a Derived HMAC Key
is highly recommended. Details about such keys can be
found in Using the MDHA Key Register with Derived HMAC
Keys. The length of the derived HMAC key is twice the
length of the chosen MDHA algorithm's running digest (see
MDHA use of the Context Register). If the Class 2 Key
register was loaded with a Derived HMAC Key using a KEY
command with PTS=1, or if a key was loaded into the Class
2 Key register and then the MDHA was run in INIT mode to
create a Derived HMAC Key, the Class 2 Key register will
be stored in plaintext form.

27 Class 2 Key Register Derived HMAC Key, encrypted
using AES-ECB with the trusted descriptor key
encryption key.

Available only to trusted descriptors. The comments for type
26h apply here as well.

30 Message Data

34 Store the specified amount of data to be obtained
from RNG to memory.

NOTE: The Class 1 Data Size Register is automatically
written and extended lengths are illegal.

The different types of random data that can be generated
are:

• Random data with no restriction
• Nonzero Random data
• Odd Parity Random data.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

372 NXP Semiconductors
Confidential Proprietary

Table 10-36. FIFO STORE output data type field (continued)

Bits
21-16

(hex)

Meaning Comment

The Mode Register controls the type of random data. Note
that the RNG must be selected by writing the Mode register.

35 Obtain the specified amount of data from RNG and
leave it in the output data FIFO.

In addition to the comments for type 34h, there is no pointer
and it is illegal to use type 35h with SEQ FIFO STORE.

3E Meta Data For this output data type, CONT and EXT must both be 0.
Either bit set to a 1 generates an error. This type can be
used only with SEQ FIFO STORE; an error is generated if
this output data type is used with FIFO STORE. Length can
be specified in the command (VLF = 0) or in the Variable
Sequence Out Length register (VLF = 1). If VLF = 1, the
length must fit in the lower 16 bits of the VSIL register or an
error is generated.

The AUX bits control the behavior of the SEQ FIFO STORE
command as follows:

00 Use the DECO alignment block to move the specified
number of bytes from the input FIFO to the output FIFO and
store them to the output frame. This variant of the command
is used when handling meta data that has already been
read. An example of this would be for a shared descriptor
where the RIF bit is set.

01 The same as 00, except that the VSIL is decremented by
the specified length. This form should be used when the RIF
bit is set and the VSIL contains the input frame length of the
packet. If the VSIL were not decremented in this case, the
descriptor would have to subtract the meta data length from
the VSIL register.

10 Load the specified number of bytes from the input frame,
as defined by a prior SEQ IN PTR command, to the input
FIFO and decrement the Sequence In Length by this
number of bytes. Move these bytes to the output FIFO by
means of the DECO alignment block and store them to the
output frame. This variant of the command is used when
handling meta data that precedes the packet data.

11 The same as 10, except that the Sequence In Length is
not decremented. This form should be used when moving
meta data that follows the packet data. Normally the length
of trailing meta data has to be subtracted from the input
frame length prior to running a protocol so that the protocol
knows how long the packet is. When using the AUX = 11
variant the descriptor does not have to add the meta data
length back to the Sequence In Length before executing the
SEQ FIFO STORE Meta Data command.

3F Skip Skip over the specified length in memory without using bus
cycles. Permitted to be used only by SEQ FIFO STORE.

NOTE: AUX must be set to 00 except when otherwise specified above. All combinations of output data type and AUX values
not specified are reserved.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 373
Confidential Proprietary

10.6.15 MOVE, MOVEB, MOVEDW, and MOVE_LEN commands

NOTE
In this section "Move Command" is used to refer to the MOVE,
MOVEB, MOVEDW, and MOVE_LEN forms of the
command.

The MOVE command is used to copy data between two resources internal to a DECO/
CCB. This allows data to be put in the proper registers without having to store data to
external memory and then load it.

The OFFSET field is used to define an offset into either the source or destination,
depending on the values in the SRC, DST, and AUX fields (see table Table 10-40). The
MOVE command has a limited number of sources and destinations as indicated in the
SRC and DST field descriptions below.

NOTE
MOVE cautions and restrictions:

• Keys can't be copied from a key register by means of a MOVE command if the
corresponding key size register has been written.

• Observe the cautions noted in the "RJD" field of SEQ IN PTR command if using a
MOVE command in a Replacement Job Descriptor.

• Moves may be checkpoints. For example, a move from the Class 2 Context Register
to the Input Data FIFO for the Class 1 CHA is a Load Checkpoint and is a Done
Checkpoint for the Class 2 CHA.

When moving data to or from the Descriptor Buffer or a MATH register, MOVEB treats
data as 32-bit words in those cases that MOVE treats data as bytes, and MOVEB treats
data as bytes when MOVE treats data as words if byte swapping is enabled, but is
identical to the MOVE command if byte swapping is not enabled. The MOVEDW
command and the MOVE_LEN command for dwords always treat data as double words
(i.e. 64 bits) and, by default, perform word swapping. MOVEDW and MOVE_LEN for
dwords can be configured to not do word swapping. The MOVEDW command and the
MOVE_LEN command for dwords never do byte swapping.

NOTE: For MOVEDW or MOVE_LEN for dwords, with one exception, the offset must
be a multiple of dwords (8 bytes). The one exception is when the offset is into the
descriptor buffer, in which case the offset is allowed to be a multiple of words (4 bytes).
If the source is the Output FIFO dword moves will always result in an error if the OFIFO
offset is not zero.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

374 NXP Semiconductors
Confidential Proprietary

In the MOVE, MOVEB, or MOVEDW command, the LENGTH field specifies the
amount of data to be moved. The MOVE_LEN command is identical to the MOVE,
MOVEB, and MOVEDW commands except that the length of the data being moved is
specified in a MATH register, rather than specified as a constant in the LENGTH field. In
the MOVE_LEN command, the MRSEL (Math Register Select) field, the TYPE field,
and a reserved field replace the MOVE command's LENGTH field.

The AUX field is used to select among a number of different options, depending on the
values in the SRC and DST fields (see the table Table 10-40 below).

The MOVE command will block if the CCB DMA is busy. Other conditions where the
MOVE command will block include:

• The SRC is context and the corresponding class CHA is not done or there is a data in
flight to either context register.

• The SRC is the Output FIFO but a request for the external DMA to pull data from the
output FIFO is pending.

• The DST is a context register and there is data in flight to either context register.
• The DST is the input data FIFO but there is data in flight to the input data FIFO.
• The DST is the input data FIFO for either of the C1 or C2 alignment blocks and an

NFIFO entry is to be written and there is a context load pending.

NOTE
For this device, the default is that byte swapping is enabled.
This means that MOVE, MOVEB, and MOVE_LEN (when the
TYPE is 00 or 10) will swap bytes.

NOTE
For this device, the default is that word swapping is enabled.
This means that MOVEDW and MOVE_LEN (when the TYPE
is 01) will swap words.

NOTE
This device does not prevent the byte and word swapping
defaults from being overridden. However, care should be used
when changing this behavior.

The Output FIFO provides data through two access points. The first is for the external
DMA and the second is shared by three consumers: the CCB DMA, DECO access via the
MATH command, and the NFIFO. The two access points have separate indices into the
Output FIFO so each can track separately allowing consumption of data at different rates.
However, the only time these indices track separately is when the NFIFO is consuming
data from the Output FIFO. Therefore, when using a move command to extract data from
the Output FIFO, it is critical that the descriptor writer know whether the indices are

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 375
Confidential Proprietary

tracking together and, if not, which index needs to be used to obtain the desired data.
Note that this is an extremely unusual circumstance which most descriptor writers will
seldom, if ever, encounter.

In prior versions of CAAM, different entities handled the move from the Output FIFO
depending on alignment. If the OFFSET specified was a multiple of words and the
current OFIFO offset was 0, then the CCB DMA handled the move. Otherwise, the
external DMA handled the move. The DMA used determined the index that was used to
access the data in the Output FIFO. This led to significant confusion about which data
was being read. In this version of CAAM, the CCB DMA handles all moves from the
Output FIFO, eliminating the confusion. However, it is possible for the descriptor to
manipulate the index.

NOTE
It is possible to make the earlier behavior forward compatible
by careful descriptor construction.

• To ensure that the move reads from the index where the external DMA left off,
perform a LOAD IMM to the DECO Control Register to reset the CHA pointer in the
Output FIFO. This has the effect of setting the shared index to the same value as the
index used by the external DMA. While this will lose the current index of the CHA
pointer, the move will get the expected data. (Remember that this is only necessary
when the two indices are different. If the amount snooped and the amount read by the
external DMA are the same, the indices will be the same.)

• To ensure that the move reads from the index where the NFIFO left off, ensure that
the OFIFO offset is 0 and that the OFFSET in the move command is 0.

The OFIFO offset is used in two ways. First, it is used by DECO to tell the external DMA
where in the 8-byte interface to the Output FIFO to start reading. Second, it is used by the
CCB DMA to know where in the 8-byte interface to the Output FIFO to start reading.
However, the two DMAs use different indices to access the Output FIFO so that the
offset could be referencing different dwords. While those indices are usually
synchronized, they can become different when the NFIFO has pulled data from the
Output FIFO. It is therefore critical that the descriptor writer keep track of where each
index is when moves from the Output FIFO follow snooping.

Table 10-37. MOVE, MOVEB, MOVEDW, and MOVE_LEN command format

31–27 26–25 24 23–20 19–16

CTYPE = 01111, 00110, 00111 or
01110

AUX WC SRC DST

Fields as
they appear

in the
MOVE,

15–8 7-0

OFFSET LENGTH

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

376 NXP Semiconductors
Confidential Proprietary

Table 10-37. MOVE, MOVEB, MOVEDW, and MOVE_LEN command format (continued)
MOVEB, or
MOVEDW

command:

Fields as
they appear

in the
MOVE_LEN
command:

15–8 7-6 5-2 1-0

OFFSET TYPE Reserved MRSEL

Table 10-38. MOVE command field descriptions

Field Description

31-27

CTYPE

Command Type

01111 - MOVE. Performs an internal move between two internal DECO/CCB locations. The length of the data is
specified by the value in the LENGTH field. If byte swapping is enabled, MOVE swaps bytes within words in
certain cases (see table Table 10-39).

00111 - MOVEB. When byte swapping is not enabled, the legal MOVEB moves are identical to the
corresponding MOVE moves. However, when byte swapping is enabled, the MOVEB moves byte swap within
words when the corresponding MOVE moves do not swap and vice versa (see table Table 10-39).

00110 - MOVEDW. Move Double Words. Performs an internal move between two internal DECO/CCB locations.
If word swapping is not enabled, the legal MOVEDW moves are identical to the corresponding MOVE moves
when byte swapping is disabled. If word swapping is enabled for the descriptor, the MOVEDW command swaps
the order of the two words in a double word. No byte swapping is done.

01110 - MOVE_LEN. Performs an internal move between two internal DECO/CCB locations. The length of the
data is specified by the value in the MATH register selected by the MRSEL field. Byte or word swapping may be
done based on the endianness settings and the value in the TYPE field.

26-25

AUX

AUX bits are used for some SRC and DST combinations to specify additional options. See table Table 10-40
below.

24

WC

Wait for Completion

0 - Do not Wait for Completion

1 - Wait for Completion. Causes the MOVE command to stall until the move operation completes. This is
necessary when the data to be moved must be in place before a subsequent command executes. While it is
sometimes possible to know a priori that the MOVE command will complete prior to reaching the subsequent
command in question, such completion can not always be guaranteed.

23-20

SRC

Source. This specifies the internal source of data that will be moved. See table Table 10-42 below for additional
information. Note that not all combinations of source and destination are allowed. The tables Table 10-40 and
Table 10-41 indicate which source and destination combinations are permitted.

19-16

DST

Destination. This specifies the internal destination of the data that will be moved. See table Table 10-43 below
for additional information. Note that not all combinations of source and destination are allowed. The tables Table
10-40 and Table 10-41 indicate which source and destination combinations are permitted.

15-8

OFFSET

Offset. (in bytes)

The interpretation of the OFFSET field depends on the source and destination, as shown in table Table 10-41.
The OFFSET is limited to 128 bytes except when the Descriptor Buffer is the source or destination, in which
case the OFFSET may be as large as 255 bytes. The offset is part of the length when going from one of the
alignment blocks to the output FIFO. This allows a 16-bit length to be specified. For MOVEDW and MOVE_LEN
for dwords, the OFFSET must be a multiple of 8 bytes unless the OFFSET is into the Descriptor Buffer, in which
case the OFFSET must be a multiple of 4 bytes.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 377
Confidential Proprietary

Table 10-38. MOVE command field descriptions (continued)

Field Description

7-0

LENGTH

Length for internal move. (in bytes, 128 max) This field appears only in the MOVE, MOVEB, or MOVEDW forms
of the command. In the MOVE_LEN form of the command this field is replaced by reserved bits and the MRSEL
field and TYPE field, as shown below.

Note that in the MOVE_LEN form of the command the LENGTH field is replaced by the following three fields:

7-6 TYPE Type of the data items that are to be moved.

00 - Data is treated the same as in the MOVE command

01 - Data is treated as dwords the same way as in the MOVEDW command

10 - Data is treated as bytes the same way as in the MOVEB command

11 - Reserved and reported as an error

5-2 These bits are reserved in the MOVE_LEN form of the command. These bits, the TYPE field and the MRSEL
field below replace the LENGTH field that appears in the MOVE form of the command.

1-0

MRSEL

MATH Register Select

This field is used only in the MOVE_LEN form of the command. The MRSEL field, TYPE field, and the reserved
bits above replace the LENGTH field that appears in the MOVE, MOVEB, and MOVEDW forms of the
command. The length (in bytes) of the data to be moved is specified in the MATH Register selected by the
MRSEL field. If the move is from the input FIFO or any of the alignment blocks to the Output FIFO, bits 15:0 of
the MATH Register are used for the length; otherwise, only bits 7:0 are used. Other bits are simply ignored.

00 - Math Register 0

01 - Math Register 1

10 - Math Register 2

11 - Math Register 3

Table 10-39. Byte swapping in move commands

When byte swapping is enabled, this table indicates when bytes within a word are swapped.

Legend:

• M refers to the MOVE command and the MOVE_LEN command when TYPE=00
• B refers to the MOVEB command and the MOVE_LEN command when TYPE=10
• Swap: indicates the move will swap bytes within words
• Not: indicates the move will not swap bytes within words
• Err: indicates the move command will generate an error

DST -->

SRC

|

v

0h: C1
Context

1h: C2
Context

2h:
Output

Data
FIFO

3h:
Descrip
tor

Buffer

4h:
Math 0

5h:
Math 1

6h:
Math 2

7h:
Math 3

8h:

Data
FIFO

9h:
Class 2
Input

Data
FIFO

Ah:
Input

Data
FIFO

(no
NFIFO
entries)

Ch:

PKHA
A RAM

(autom
atically
flushed
)

Dh: C1
Key

Eh: C2
Key

Fh: Aux
Data
FIFO

0h: C1 Context

1h: C2 Context

M:Not

B:Err

M:Swap

B:Not

M:Not

B:Swap

M:Not

B:Err

2h: Output FIFO M:Not

B:Err

M:Err

B:Err

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

378 NXP Semiconductors
Confidential Proprietary

Table 10-39. Byte swapping in move commands (continued)

3h: Descr Buffer M:Swap

B:Not

M:Err

B:Err

M:Swap

B:Not

M:Not

B:Swap

M:Swap

B:Not

4h: Math Reg 0

5h: Math Reg 1

6h: Math Reg 2

7h: Math Reg 3

M:Not

B:Swap

8h: DECO Alignment
Block (flushed)

M:Not

B:Err

M:Swap

B:Not

M:Not

B:Swap

M:Err

B:Err

M:Not

B:Err

M:Err

B:Err
9h: Class 1 or Class 2
Alignment Block

Ah: DECO, Class 1 or
Class 2 Alignment Block

Dh: Class 1 Key

Eh: Class 2 Key

M:Not

B:Err

Table 10-40. Usage of the AUX field in move commands

DST -->

SRC

|

v

0h: C1
Context

1h: C2
Context

2h:
Output

Data
FIFO

3h:
Descriptor

Buffer

4h: Math 0

5h: Math 1

6h: Math 2

7h: Math 3

8h:

Data
FIFO

9h:
Class 2
Input

Data
FIFO

Ah:
Input

Data
FIFO

(no
NFIFO
entries
)

Ch:

PKHA
A RAM

(autom
atically
flushed
)

Dh: C1
Key

Eh: C2
Key

Fh:
Aux
Data
FIFO

0h: C1 Context

1h: C2 Context

AUX
selects
offset into
Context
Register

00: 0 bytes

01: 16
bytes

10: 32
bytes

11: 48
bytes

AUX
selects
offset into
Math
Register

00: 0 bytes

01: 4 bytes

10: 6 bytes

11: 7 bytes

AUXMS :
Flush

AUXLS :
Last

AUXLS:
Last

AUXLS=0 :
OFFSET
field into
Context
Reg

AUXLS=1 :
OFFSET
into Key
Reg

2h: Output FIFO move
not
allowed

3h: Descr Buffer AUX
selects
offset into
Context
Register

00: 0 bytes

move not
allowed

AUX
selects
offset into
Math
Register

00: 0 bytes

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 379
Confidential Proprietary

Table 10-40. Usage of the AUX field in move commands (continued)
01: 16
bytes

10: 32
bytes

11: 48
bytes

01: 4 bytes

10: 6 bytes

11: 7 bytes

4h: Math Reg 0

5h: Math Reg 1

6h: Math Reg 2

7h: Math Reg 3

AUX
selects
offset into
Math
Register

00: 0
bytes>

01: 4 bytes

10: 6 bytes

11: 7 bytes

AUX
selects
offset into
Math
Register

00: 0 bytes

01: 4 bytes

10: 6 bytes

11: 7 bytes

AUX
selects
offset into
the source
Math
Register

00: 0 bytes

01: 4 bytes

10: 6 bytes

11: 7 bytes

8h: DECO
Alignment Block
(automatically
flushed)

move not allowed move
not
allowed

9h: Class 1 or
Class 2
Alignment Block

AUXMS : Flush

AUXLS =0 : Source is Class 2 Alignment Block

AUXLS =1 : Source is Class 1 Alignment Block

AUXMS :
Flush

AUXLS =0 :
Source is
C2 Align
Block

AUXLS =1 :
Source is
C1 Align
Block

Ah: DECO,
Class 1 or Class
2 Alignment
Block

AUX field selects Alignment Block

00: DECO Alignment Block

01: Class 1 Alignment Block

10: Class 2 Alignment Block

11: error

AUX field
selects
Alignment
Block

00: DECO
Alignment
Block

01: C1 AB

10: C2 AB

11: error

Dh: Class 1 Key

Eh: Class 2 Key

Determines
SRC/DST
offset

AUXMS :
Flush

AUXLS :
Last

AUXLS:
Last

Determines
SRC/DST
offset

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

380 NXP Semiconductors
Confidential Proprietary

Table 10-41. Usage of the OFFSET field in move commands

DST -->

SRC

|

v

0h: C1
Context

1h: C2
Context

2h: Output

Data FIFO

3h:
Descript
or

Buffer

4h: Math 0

5h: Math 1

6h: Math 2

7h: Math 3

8h:
Class
1
Input

Data
FIFO

9h:
Class
2
Input

Data
FIFO

Ah:
Input

Data
FIFO

(no
NFIFO
entries)

Ch:

PKHA
A RAM

(alway
s
flushe
d)

Dh: C1
Key

Eh: C2
Key

Fh: Aux
Data FIFO

0h: C1 Context

1h: C2 Context

OFFSET
field is used
for SRC

OFFSET
field is
used for
SRC

OFFSET
field is
used for
Descriptor
Buffer
(offset
into
Context
Reg is
determine
d by AUX
field)

OFFSET field is used for SRC AUXLS=0:

OFFSET
field is
used for
Context
Reg

AUXLS=1:

OFFSET
field is
used for
Key Reg

OFFSET
field is used
for SRC

2h: Output
FIFO

OFFSET
field is used
for DST

move not
allowed

OFFSET field is used
for DST

Error generated if OFFSET≠0 OFFSET
field is
used for
DST

Error
generated if
OFFSET≠0

3h: Descr
Buffer

OFFSET
field is used
for SRC

(offset into
Context
Reg is
determined
by AUX
field)

OFFSET
field is
used for
SRC

move not
allowed

OFFSET field is used for SRC OFFSET
field is
used for
SRC

OFFSET
field is used
for SRC

4h: Math Reg 0

5h: Math Reg 1

6h: Math Reg 2

7h: Math Reg 3

OFFSET
field is used
for DST

OFFSET
field is
used for
SRC

OFFSET field is used
for DST

OFFSET field is used for SRC OFFSET
field is
used for
DST

OFFSET
field is used
for SRC

8h: DECO
Align Block
(flushed)

OFFSET
field is used
for DST

OFFSET is
ignored in
MOVE_LE
N

In MOVE,
OFFSET
field is
prepended
to the
LENGTH
field to
form a 16-
bit length

OFFSET field is used
for DST

move not allowed OFFSET
field is
used for
DST

move not
allowed

9h: Class 1 or
Class 2
Alignment
Block

Ah: DECO,
Class 1 or
Class 2
Alignment
Block

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 381
Confidential Proprietary

Table 10-41. Usage of the OFFSET field in move commands (continued)

Dh: Class 1
Key

Eh: Class 2
Key

AUXLS =0 :
SRC; else
DST

SRC DST SRC SRC AUXLS
=0 : SRC;
else DST

SRC

Table 10-42. Move sources

Value Move Source Notes

0h Class 1 Context Reg —

1h Class 2 Context Reg —

2h Output Data FIFO —

3h Descriptor Buffer —

4h Math Register 0 A MOVE command that reads past the end of MATH Register 3 will return 0s for all
data past Math Register 3.5h Math Register 1

6h Math Register 2

7h Math Register 3

8h DECO Alignment Block
(always Flushed)

Input to the DECO Alignment Block is specified by an NFIFO entry which is
automatically generated if Automatic NFIFO entries are enabled.

9h Class 1 or Class 2
Alignment Block

The selection of the Class 1 or Class 2 Alignment Block is determined by the least-
significant bit of the AUX field:

• ALS = 0 selects C2 Alignment Block
• ALS = 1 selects C1 Alignment Block

Input to the Class 1 or Class 2 Alignment Block is specified by an NFIFO entry, which
is automatically generated if Automatic NFIFO entries are enabled.

The most-significant bit of the AUX field must be set (causing a FLUSH) only if the
destination is the Output Data FIFO.

Ah DECO, Class 1 or Class
2 Alignment Block, as
specified via the AUX
field.

no NFIFO entry generated;

AUX = 00b: use DECO Alignment Block

AUX = 01b: use Class 1 Alignment Block

AUX = 10b: use Class 2 Alignment Block

AUX = 11b: error

Dh Class 1 Key Error if C1 Key Size has been written either directly or by the KEY command and not
cleared.

Eh Class 2 Key Error if C2 Key Size has been written either directly or by the KEY command and not
cleared.

All other values are reserved

Table 10-43. Move destinations

Value Move Destination Notes

0h Class 1 Context —

1h Class 2 Context —

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

382 NXP Semiconductors
Confidential Proprietary

Table 10-43. Move destinations (continued)

Value Move Destination Notes

2h Output Data FIFO

3h Descriptor Buffer —

4h Math Register 0 —

5h Math Register 1 —

6h Math Register 2 —

7h Math Register 3 —

8h Input Data FIFO (C1) If Automatic NFIFO entries are enabled, the entries are generated for a Class 1 CHA.

9h Input Data FIFO (C2) If Automatic NFIFO entries are enabled, the entries are generated for a Class 2 CHA.

Ah Input Data FIFO No NFIFO entry generated

Ch PKHA A If Automatic NFIFO entries are enabled, the entries are generated for the PKHA A RAM
and the Flush bit is automatically set.

Dh Class 1 Key —

Eh Class 2 Key

Fh Auxiliary Data FIFO Data can be moved to the Auxiliary Data FIFO so that it can later be used as an input to
one or more of the Alignment Blocks. (An NFIFO entry with AST = 1 and STYPE = 00
should be created before the MOVE, else DECO may hang.) Note that a LOAD IMM to
destination 78 can also be used to supply data to the Auxiliary Data FIFO. If multiple
MOVEs and/or MOVEs and LOADs are used to provide data to the Auxiliary Data FIFO,
the MOVE commands may need the WC bit set to ensure that the data is not overwritten.

All other values are reserved

10.6.16 ALGORITHM OPERATION command

The OPERATION command (CTYPE = 10000) defines the type of CHA operation
CAAM performs. Setting OPTYPE = 010b or 100b specifies a type of OPERATION
command called an ALGORITHM OPERATION. Setting OPTYPE = 000, 110, or 111
specifies a different type of OPERATION command called a PROTOCOL
OPERATION.Setting OPTYPE = 001 specifies a third type of OPERATION command
called a PKHA OPERATION. More than one OPERATION command can be used in a
descriptor, allowing Class 1 and Class 2 operations to be specified separately, i.e.,
operations can range from performing a single command using a single CHA to
performing complex operations involving multiple CHAs and/or multiple commands.

For the ALGORITHM OPERATION command, the fields of the command are as shown
in the following table. Note that bits 23-0 of the ALGORITHM OPERATION command
are automatically written to the appropriate CHA's mode register.

Table 10-44. ALGORITHM OPERATION command format

31-27 26-24 23-16

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 383
Confidential Proprietary

Table 10-44. ALGORITHM OPERATION command format (continued)

CTYPE = 10000b OPTYPE = 010b
or 100b

ALG

15-13 12-4 3-2 1 0

format as it
appears for CHAs
other than RNG:

Reserved AAI AS ICV ENC

15-13 12 11 10 9 8 7-6 5-4 3-2 1 0

format as it
appears for RNG:

Reserved SK AI PS OBP NZB Reserved SH AS PR TST

Table 10-45. ALGORITHM OPERATION command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=10000b : OPERATION command; (ALGORITHM OPERATION or PKHA OPERATION or PROTOCOL
OPERATION, as determined by the OPTYPE field)

26-24

OPTYPE

Operation Type

If OPTYPE = 010b or 100b : ALGORITHM OPERATION; The ALG, AAI, AS, ICV, and ENC fields are interpreted
as shown in the field descriptions below.

If OPTYPE = 010b : Class 1 algorithm operation

If OPTYPE = 100b : Class 2 algorithm operation

If OPTYPE = 001b : PKHA OPERATION; The ALG, AAI, AS, ICV, and ENC fields are interpreted as shown in
PKHA OPERATION command.

If OPTYPE = 000b, 011b or 111b : PROTOCOL OPERATION; The ALG, AAI, AS, ICV, and ENC fields are
interpreted as shown in PROTOCOL OPERATION Command.

23-16

ALG

Algorithm

This field specifies the algorithm that is to be used for the operations.

• If OPTYPE = 010b (Class 1 algorithm)
• If ALG=10h : AES
• If ALG=20h : DES
• If ALG=21h : 3DES
• If ALG=30h : ARC4
• If ALG=50h : RNG
• All other values are reserved.

• If OPTYPE = 100b (Class 2 algorithm)
• If ALG=40h : MD5
• If ALG=41h : SHA-1
• If ALG=42h : SHA-224
• If ALG=43h : SHA-256
• All other values are reserved.

15-13 Reserved

12-4

AAI

Additional Algorithm Information

This field contains additional mode information that is associated with the algorithm that is being executed. See the
tables below for details specific to individual algorithms. See also the section describing the appropriate CHA. Note
that some algorithms do not require additional algorithm information and in those cases this field should be all 0s.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

384 NXP Semiconductors
Confidential Proprietary

Table 10-45. ALGORITHM OPERATION command field descriptions (continued)

Field Description

For RNG OPERATION commands the AAI field is interpreted as shown in the shaded SK, AI, PS, OBP, NZ and
SH fields below.

3-2

AS

Algorithm State

This field defines the state of the algorithm that is being executed. This may not be used by every algorithm. For
RNG commands, see the shaded AS field below.

00 Update

01 Initialize

10 Finalize

11 Initialize/finalize

1

ICV

ICV Checking

For the definition of this bit in RNG commands, see the shaded PR field below. This bit selects whether the current
algorithm should compare the known ICV versus the calculated ICV. This bit is ignored by algorithms that do not
support ICV checking.

0

ENC

Encrypt/Decrypt

For the definition of this bit in RNG commands, see the shaded TST field below This bit selects encryption or
decryption. This bit is ignored by all algorithms that do not have distinct encryption and decryption modes.

0 Decrypt

1 Encrypt

The rows below describe how bits 12-0 are interpreted for RNG commands.

12

SK

(RNG
only)

Secure Key. For RNG OPERATION commands this bit of the AAI field is interpreted as the Secure Key field. If
SK=1 and AS=00 (Generate), the RNG will generate data to be loaded into the JDKEK, TDKEK and TDSK. If a
second Generate command is issued with SK=1, a Secure Key error will result. If SK=0 and AS=00 (Generate),
the RNG will generate data to be stored as directed by the FIFO STORE command. The SK field is ignored if
AS≠00.

11

AI

(RNG
only)

Additional Input Included. For RNG OPERATION commands this bit of the AAI field is interpreted as the Additional
Input Included field. If AS=00 (Generate) and AI=1, the 256 bits of additional data supplied via the Class 1 Context
Register will be used as additional entropy during random number generation. If AS=10 (Reseed) and AI=1, the
additional data supplied via the Class 1 Context register will be used as additional entropy input during the
reseeding operation. The AI field is ignored if AS=01 (Instantiate) or AS=11 (Uninstantiate).

10

PS

(RNG
only)

Personalization String Included. For RNG OPERATION commands this bit of the AAI field is interpreted as the
Personalization String Included field. If AS=01 (Instantiate) and PS=1, a personalization string of 256 bits supplied
via the Class 1 Context register is used as additional "entropy" input during instantiation. Note that the
personalization string does not need to be random. A device-unique value can be used to further guarantee that
no two RNGs are ever instantiated with the same seed value. (Note that the entropy generated by the TRNG
already ensures this with high probability.) The PS field is ignored if AS≠01.

9

OBP

(RNG
only)

Odd Byte Parity. For RNG OPERATION commands this bit of the AAI field is interpreted as the Odd Byte Parity
field. If AS=00 (Generate) and OBP=1, every byte of data generated during random number generation will have
odd parity. That is, the 128 possible bytes values that have odd parity will be generated at random. If AS=00
(Generate) and OBP=0 and NZB=0, all 256 possible byte values will be generated at random. The OBP field is
ignored if AS≠00.

8

NZB

(RNG
only)

NonZero bytes. For RNG OPERATION commands this bit of the AAI field is interpreted as the NonZero Bytes
field. If AS=00 (Generate) and NZB=1, no byte of data generated during random number generation will be 00, but
(if OBP=0) the remaining 255 values will be generated at random. Note that setting NZB=1 has no effect if OBP=1,
since zero bytes are already excluded when odd byte parity is selected. If AS=00 (Generate) and OBP=0 and
NZB=0, all 256 possible byte values will be generated at random. The NZB field is ignored if AS≠00.

7-6 Reserved. For RNG commands these bits of the AAI field are reserved.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 385
Confidential Proprietary

Table 10-45. ALGORITHM OPERATION command field descriptions (continued)

Field Description

(RNG
only)

5-4

SH

(RNG
only)

State Handle. For RNG OPERATION commands these bits of the AAI field are interpreted as the State Handle
field. The command is issued to the State Handle selected via this field. An error will be generated if the selected
state handle is not implemented.

00 State Handle 0

01 State Handle 1

All other codes reserved

3-2

AS

(RNG
only)

Algorithm State. For RNG OPERATION commands these bits select RNG commands as shown in Table 10-49.

1

PR

(RNG
only)

Prediction Resistance. For RNG OPERATION commands this bit is interpreted as shown in Table 10-50.

0

TST

(RNG
only)

Test Mode Request. For RNG OPERATION commands this bit is interpreted as shown in Table 10-51.

Table 10-46. AAI Interpretation for AES modes

AAI Interpretation for AES Modes (See AES accelerator (AESA) functionality)

Code Interpretation Code Interpretation

00h CTR (mod 2128) 80h CCM (mod 2128), 1

10h CBC 90h GCM (mod 232)1

20h ECB

30h CFB128

40h OFB

60h CMAC

70h XCBC-MAC 12h CBC-CS2 (CTS)

The codes listed above are mutually exclusive, which means that they cannot be ORed with each other. All unlisted code
points (except those created by OR-ing AAI with the Decrypt Key selector bit described below) are reserved in this version of

CAAM.

Note that for AES the MSB of AAI is the DK (Decrypt Key) bit. Setting the DK bit (that is, OR-ing 100h with any AES code
above) causes the Key Register to be loaded with the AES Decrypt key, rather than the AES Encrypt key. See the discussion
in AES accelerator (AESA) functionality.

When a Class 2 OPERATION command specifies AES with CMAC or XCBC-MAC, it may be accompanied by a Class 1
OPERATION command specifying AES, if (and only if) the Class 1 OPERATION command specifies a Confidentiality-only
mode. Specifying a Class 2 AES OPERATION command in concert with a Class 1 AES Operation command specifying either
CCM or GCM is not permitted and will result in an error. Combo modes CBC-XCBC-MAC, CTR-XCBC-MAC, CBC-CMAC,

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

386 NXP Semiconductors
Confidential Proprietary

Table 10-46. AAI Interpretation for AES modes

AAI Interpretation for AES Modes (See AES accelerator (AESA) functionality)

CTR-CMAC-PDCP, and CTR-CMAC were specified for the built-in IPsec and PDCP protocol but are available for general
use. With the extension to AES permitting simultaneous Class 1 Confidentiality-only and Class 2 Integrity OPERATION,
these Combo modes are no longer recommended and may be deprecated in the future.

1. CCM and GCM use the key in the Class 1 Key Register.

Table 10-47. AAI Interpretation for DES modes

AAI Interpretation for DES modes (See Data encryption standard accelerator (DES) functionality)

Code Interpretation Code Interpretation

10h CBC 30h CFB8

20h ECB 40h OFB

The codes listed above are mutually exclusive, which means that they cannot be ORed with each other.

80h ORed with any DES code above: Check odd parity

Table 10-48. AAI Interpretation for MD5 and SHA modes

MD5, SHA-1, SHA-256 (See Message digest hardware accelerator (MDHA) functionality)

Code Interpretation Code Interpretation

00h Hash without key 03h Reserved

01h HMAC using a non-derived key 04h HMAC using the Derived HMAC Key Note, using
the Derived HMAC Key saves two block
computations from the HMAC computations.

02h SMAC 05h-FFh Reserved

Table 10-49. AS RNG OPERATION command settings

AS Value State Handle is already instantiated State Handle is NOT already instantiated

00 Generate Generate random data per the mode in which the
state handle was instantiated.

Error

01 Instantiate Error Instantiate the state handle in either test mode or
nondeterministic mode as specified by TST, and
either to support prediction resistance or not to
support prediction resistance as specified by PR.

10 Reseed Reseed the state handle. Error

11 Uninstantiate Uninstantiate the state handle. Error

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 387
Confidential Proprietary

Table 10-50. PR RNG Operation commands setting

AS Value PR = 0 PR = 1

00 Generate Do NOT reseed prior to generating new random
data. PR bit must be zero.

If the state handle was instantiated to support
prediction resistance, reseed prior to generating
new random data. If the state handle was NOT
instantiated to support prediction resistance,
generate an error.

01 Instantiate Instantiate the state handle to NOT support
prediction resistance

Instantiate the state handle to support prediction
resistance

10 Reseed Reseed the state handle. PR bit must be zero. Reseed the state handle. PR bit is ignored.

11 Uninstantiate Uninstantiate the state handle. PR bit must be
zero.

Uninstantiate the state handle. PR bit is ignored.

Table 10-51. TST RNG OPERATION command settings

AS Value TST = 0 TST = 1

00 Generate • If the selected state handle is in
nondeterministic mode, generate new
random data.

• If the selected state handle is in deterministic
mode, generate a Test error.1

• If the selected state handle is in deterministic
mode, generate new random data.

• If the selected state handle is in
nondeterministic mode, generate a Test
error.

01 Instantiate Instantiate the state handle in normal
(nondeterministic) mode.

Instantiate the state handle in test (deterministic)
mode.

10 Reseed • If the selected state handle is in
nondeterministic mode, reseed the state
handle.

• If the selected state handle is in deterministic
mode, generate a Test error.2

• If the selected state handle is in deterministic
mode, reseed the state handle.

• If the selected state handle is in
nondeterministic mode, generate a Test
error.

11 Uninstantiate • If the selected state handle is in
nondeterministic mode, uninstantiate the
state handle.

• If the selected state handle is in deterministic
mode, generate a Test error.3

• If the selected state handle is in deterministic
mode, uninstantiate the state handle.

• If the selected state handle is in
nondeterministic mode, generate a Test
error.

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in test mode but a Generate
operation requests nondeterministic data from State Handle 0. This permits deterministic testing of the built-in protocols
prior to setting the RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed
during the boot process after testing is complete.

2. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in test mode but a non test
reseed operation is requested State Handle 0. This permits deterministic testing of the built-in protocols prior to setting the
RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed during the boot
process after testing is complete.

3. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in test mode but a non test
uninstantiate operation is requested for State Handle 0. This permits deterministic testing of the built-in protocols prior to
setting the RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed during the
boot process after testing is complete.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

388 NXP Semiconductors
Confidential Proprietary

10.6.17 PROTOCOL OPERATION Commands

The OPERATION command (CTYPE = 10000) defines the type of cryptographic
operation that CAAM performs. The OPERATION command's Protocol OpType takes
advantage of well-known processing steps for standardized security protocols, so that the
user can invoke an existing hard-coded command sequence rather than having to use
SEQ commands to create a complex descriptor.

If the OPTYPE specifies a protocol operation (000, 110, 111), the PROTOCOL
OPERATION fields are as shown in Table 10-53. If OPTYPE specifies an algorithm
operation (OPTYPE = 010: Class 1, OPTYPE = 100: Class 2), see ALGORITHM
OPERATION command. If OPTYPE specifies a PKHA operation (OPTYPE = 001), see
PKHA OPERATION command.

Table 10-52. PROTOCOL OPERATION Command format

31-27 26-24 23-16

CTYPE = 10000 OPTYPE = 000, 110,
or 111

PROTID

15-0

PROTINFO

Protocols are used to execute complex built-in functions. Before beginning a protocol
operation, DECO waits for any pending (SEQ) FIFO STORE operations to complete.
When starting the protocol operation, DECO resets the output data FIFO; any data
remaining in the output data FIFO from previous operations is lost. It is the responsibility
of the programmer to ensure that once the protocol starts, no data is pushed into the
output data FIFO as a result of commands executed prior to the protocol operation. It is
the responsibility of the programmer to ensure that once the protocol starts, no data is in,
or will be pushed into, the input data FIFO or information FIFO as a result of commands
executed prior to the protocol operation.

The protocol ID codes and information on PROTINFO encoding are shown in Table
10-54,

Table 10-53. PROTOCOL OPERATION Command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=10000b : OPERATION command; (ALGORITHM OPERATION or PKHA OPERATION or
PROTOCOL OPERATION, as determined by the OPTYPE field)

26-24

OPTYPE

Operation Type

If OPTYPE = 000b, 110b or 111b : PROTOCOL OPERATION; The OPTYPE field indicates the "directionality"
of the protocol as shown below. The PROTID field is interpreted as shown in the following PROTID field
description table.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 389
Confidential Proprietary

Table 10-53. PROTOCOL OPERATION Command field descriptions (continued)

Field Description

If OPTYPE=000b : Unidirectional protocol

If OPTYPE=110b : Decapsulation protocol

If OPTYPE=111b : Encapsulation protocol

If OPTYPE = 010b or 100b : ALGORITHM OPERATION; The ALG, AAI, AS, ICV, and ENC fields are
interpreted as shown in ALGORITHM OPERATION command.

If OPTYPE = 001b : PKHA OPERATION; The ALG, AAI, AS, ICV, and ENC fields are interpreted as shown in
PKHA OPERATION command.

All others: reserved

23-16

PROTID

Protocol Identifier

This field represents the specific protocol that this descriptor is implementing. See Table 10-54 for the complete
description.

PROTINFO

15-0

This value is protocol-dependent.

Table 10-54. PROTID and PROTINFO field description

PROTID
(hex)

Description PROTINFO Information

0D For OPTYPE 110 or 111: Blob For blobs encapsulation or decapsulation, the PROTINFO field
is defined in Table 10-57 and Table 10-58. For further
information concerning blobs, see Blobs.

12 OPTYPE 000: (EC)DSA Verify with Private Key

else Reserved

For (EC)DSA Verify using Private Key, the PROTINFO field is
defined in Table 10-60. For further information, see Verifying
DSA and ECDSA signatures.

14 OPTYPE 000: DH, DSA, and ECC Key Pair
Generation

OPTYPE 110: MPPubK generation

OPTYPE 111: MPPrivK generation

else Reserved

For Key Pair Generation, MPPubK and MPPrivK, the
PROTINFO field is defined in Table 10-60. For further
information, see Discrete-log key-pair generation

15 OPTYPE 000: (EC)DSA_Sign

OPTYPE 110: MPSign

else Reserved

For (EC)DSA Sign, and MPSign, the PROTINFO field is
defined in Table 10-60. For further information, see Generating
DSA and ECDSA signatures.

16 OPTYPE 000: (EC)DSA_Verify

else Reserved

For (EC)DSA Verify, the PROTINFO field is defined in Table
10-60. For further information, see Verifying DSA and ECDSA
signatures.

17 OPTYPE 000: (EC)Diffie-Hellman

else Reserved

For this function the PROTINFO field is defined in Table 10-60.
For further information, see Using the Diffie_Hellman function.

18 OPTYPE 000: RSA_Encrypt

else Reserved

For RSA_Encrypt, the PROTINFO field is defined in Table
10-62. For further information concerning RSA Encrypt see
Implementation of the RSA encrypt operation.

19 OPTYPE 000: RSA_Decrypt

else Reserved

For RSA_Decrypt, the PROTINFO field is defined in Table
10-64. For further information concerning RSA Decrypt see
Implementation of the RSA decrypt operation.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

390 NXP Semiconductors
Confidential Proprietary

Table 10-54. PROTID and PROTINFO field description (continued)

PROTID
(hex)

Description PROTINFO Information

1A OPTYPE 000: RSA_Finish_KeyGen

else Reserved

For RSA_Finish_Keygen, the PROTINFO field is defined in
Table 10-65. See RSA Finalize Key Generation (RFKG) for
further information.

1E OPTYPE 000: EC Public Key Validation

else Reserved

For EC Public Key Validation use bit [0] to select F2m
validation. No other PROTINFO bits are used.

See Elliptic Curve Public Key Validation for details.

20 OPTYPE 000: Derived Key MD5

else Reserved

For Derived Key MD5, the PROTINFO field is defined in Table
10-55. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

21 OPTYPE 000: Derived Key SHA1

else Reserved

For Derived Key SHA1, the PROTINFO field is defined in
Table 10-55. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

22 OPTYPE 000: Derived Key SHA224

else Reserved

For Derived Key SHA224, the PROTINFO field is defined in
Table 10-55. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

23 OPTYPE 000: Derived Key SHA256

else Reserved

For Derived Key SHA256, the PROTINFO field is defined in
Table 10-55. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

24 else Reserved

25 else Reserved

2F OPTYPE 000: Derived Key ARC4

else Reserved

For Derived Key ARC4, the PROTINFO field is defined in
Table 10-56. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

60 OPTYPE 000: Derived Key MD5 with RIF

else Reserved

For Derived Key MD5 with RIF, the PROTINFO field is defined
in Table 10-55. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol. For
further information concerning the RIF option, see Table 10-18.

61 OPTYPE 000: Derived Key SHA1 with RIF

else Reserved

For Derived Key SHA1 with RIF, the PROTINFO field is
defined in Table 10-55. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 10-18.

62 OPTYPE 000: Derived Key SHA224 with RIF

else Reserved

For Derived Key SHA224 with RIF, the PROTINFO field is
defined in Table 10-55. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 10-18.

63 OPTYPE 000: Derived Key SHA256 with RIF

else Reserved

For Derived Key SHA256 with RIF, the PROTINFO field is
defined in Table 10-55. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 10-18.

64 else Reserved

65 else Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 391
Confidential Proprietary

Table 10-54. PROTID and PROTINFO field description (continued)

PROTID
(hex)

Description PROTINFO Information

6F OPTYPE 000: Derived Key ARC4 with RIF

else Reserved

For Derived Key ARC4 with RIF, the PROTINFO field is
defined in Table 10-56. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 10-18.

All other values reserved.

Table 10-55. PROTINFO definition when used with derived key protocol (DKP) for HMACs

PROTINFO Description

PROTINFO[15:14]

SRC

Input Source Control

00 - IMM - negotiated key is in words immediately following the DKP Operation Command.
This option can only be used with an Immediate Output Destination (OD=00).

01 - SEQ - negotiated key is found in the input frame as defined by the SEQ IN PTR
command.

10 - PTR - the input key is referenced by the address found immediately following the DKP
Operation Command.

11 - SGF - the input key is distributed amongst different memory locations as indicated by
the Scatter/Gather Table address found immediately following the DKP Operation
Command.

PROTINFO[13:12]

DST

Output Destination Control

00 - IMM - the resulting Derived HMAC Key will be written back to the descriptor,
immediately after the KEY command written to the descriptor, consuming as many words
as required. The contents of those words will be overwritten and will not be preserved. The
length of the resulting Derived HMAC Key is twice the underlying hash context length. See
Table 10-132

Note that IMM is not restricted when used as an Output Destination as it is when used as
an Input Source.

01 - SEQ - the resulting Derived HMAC Key will be written to the output frame as defined
by the SEQ OUT PTR command. Note that SEQ is a valid Output Destination only when
SEQ is provided as an Input Source.

10 - PTR - the resulting Derived HMAC Key will be written back to the memory location
specified by the address found immediately after the DKP Operation Command. This
option is not valid with Input Source options IMM or SGF.

11 - SGF - the resulting Derived HMAC Key will be written back to memory per the scatter/
gather table found at the address immediately following the DKP operation command. This
option is not valid with Input Source options IMM or PTR.

PROTINFO[11:0]

LEN

Length of the negotiated key provided to the DKP Operation command in bytes.

Table 10-56. PROTINFO definition when used with Derived Key Protocol (DKP) for ARC4

PROTINFO Description

PROTINFO [15] Keys Encrypted. Both the negotiated key and the derived key
are encrypted.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

392 NXP Semiconductors
Confidential Proprietary

Table 10-56. PROTINFO definition when used with Derived Key Protocol (DKP) for ARC4
(continued)

PROTINFO Description

KE 0 - Neither key encrypted

1 - both negotiated and derived key are encrypted

PROTINFO [14]

EKT

Encrypted Key Type

0 - ECB-encrypted key

1 - CCM-encrypted key

PROTINFO [13-12]

SD

source/destination

00 - Simple pointers for source and destination -- address
immediately after the DKP operation command is the memory
location where the negotiated key is read and where the
derived key is written.

01 - SGF pointers for source and destination -- address
immediately after the DKP operation command is the memory
location where a scatter/gather table resides. This scatter/
gather table directs where the negotiated key is read and
where the derived key is written.

10 - SEQ sequence for source and destination -- the
negotiated key is read from the input frame as defined by the
SEQ IN PTR command, and the derived key is written to the
output frame as defined by the SEQ OUT PTR command.

11 - Reserved

PROTINFO[11:0]

LEN

Length of the negotiated key provided to the DKP Operation
command in bytes.

Table 10-57. PROTINFO format when used with Blob Operations

15-10 9 8 7-4 3 2 1-0

Reserved TK EKT K2KR Sec_Mem Black_Key Blob_
Format

Table 10-58. PROTINFO field descriptions when used with Blob Operations

Field Description

15-10 Reserved.

9

TK

Trusted Key

Used only for trusted descriptors with black blob encapsulation/decapsulation. Ignored otherwise.

0 Use the JDKEK when encrypting or decrypting black keys.

1 Use the TDKEK when encrypting or decrypting black keys.

8

EKT

Encrypted Key Type

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 393
Confidential Proprietary

Table 10-58. PROTINFO field descriptions when used with Blob Operations (continued)

Field Description

Used only for black blob encapsulation/decapsulation. Ignored otherwise. Specifies the encryption/decryption
mode for black keys. Also used when deriving the blob key encryption key. Consequently, the same EKT
setting must be used when decapsulating a black blob as was used when encapsulating that black blob. This
prevents a black key being converted between AES-ECB and AES-CCM by encapsulating it as a blob and
then decapsulating the blob in the other encryption mode.

0 Use AES-ECB mode when encrypting/decrypting black keys.

1 Use AES-CCM mode when encrypting/decrypting black keys.

7-4

K2KR

Key to Key Register

Specifies the destination for the result of black blob decapsulation. Ignored otherwise. Black blob
encapsulation always uses a source from memory. The source and destination for red blob encapsulation
and decapsulation is always memory. (See Blob types differentiated by content)

0000 Memory

0001 Class 1 key register

0011 Class 2 key register

0111 Class 2 key register (Derived HMAC Key)

1001 PKHA E RAM

All other values are reserved.

3

Sec_Mem

Location of plaintext data

1 Plaintext data is in a Secure Memory partition.

0 Plaintext data is in general purpose memory external to CAAM.

2

Black_key

0 Red Blob. The data encapsulated into the blob or decapsulated from the blob is treated as plaintext.

1 Black Blob. The data encapsulated into the blob or decapsulated from the blob is treated as a black key
encrypted with the appropriate KEK (JDKEK or TDKEK). For blob encapsulation operations, the input data is
first decrypted using the appropriate KEK and then encrypted using the blob key. For blob decapsulation
operations, the data portion of the blob is decrypted using the blob key. If the resulting plaintext is to be
written into memory rather than into a key register, the plaintext is encrypted using the appropriate KEK.

1-0

Blob_Format

The format of the blob.

00 Normal Blob. The output is composed of the encrypted blob key, the encrypted data, and MAC tag.

01 Reserved

10 Master Key Verification Blob. This blob type is intended for verifying the master key and the key derivation.
The master key is used for key derivation in the Trusted and Secure security states. The test key is used in
the Nonsecure state. Only the derived blob key encryption key is output. Note that the Blob_Format value is
an input to the BKEK derivation, which ensures that the BKEK value that is exposed in a master key
verification blob is different than the BKEK value used for any other blob format. Furthermore, the use of a
one-way function in BKEK derivation ensures that the BKEK values used for other blob formats cannot be
learned by analyzing the BKEK values used for master key verification blobs.

11 Test Blob. The non-volatile test key is used for key derivation. The output is composed of the derived blob
key encryption key, the actual blob key, the encrypted blob key, the encrypted data, and MAC tag. Test blobs
can be exported or imported only when CAAM is in non-secure mode.

Table 10-59 shows the format of the PROTINFO field for discrete log public key
protocols, including:

• Key pair generation (see Discrete-log key-pair generation)

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

394 NXP Semiconductors
Confidential Proprietary

• DSA sign (see Generating DSA and ECDSA signatures)
• DSA verify (see Verifying DSA and ECDSA signatures)
• Diffie-Hellman (see Using the Diffie_Hellman function).

Table 10-60. describes the bit values of this field.

Table 10-59. PROTINFO format when used with Discrete Log Protocol

1
5

1
4

1
3

12 11 10 9 8 7 6 5 4 3 2 1 0

Format for Sign
function

Reser
ved

SIGN
_

NO_T
EQ

MES_R
EP

HASH SIGN_2
ND_

HALF_
ONLY

SIGN_1
ST_

HALF_
ONLY

EXT_PR
I

TEST ENC_
PRI

ECC/D
L

F2M/F
p

Format for
MPSign
functions

Reser
ved

SIGN
_

NO_T
EQ

MES_R
EP

HASH Reserve
d

Reserve
d

EXT_PR
I

TEST ENC_
PRI

ECC/D
L

F2M/F
p

Format for Verify
function

Reserved MES_R
EP

HASH Reserved ECC/D
L

F2M/F
p

Format for
Keypair

Generation
functions

Reserved KPG_I
ETF_D

H

EKT_Z ENC_Z EXT_PR
I

KPG_
NO_TE

Q

ENC_
PRI

ECC/D
L

F2M/F
p

Format for MP
Keypair

Generation
functions

Reserved KPG_
NO_TE

Q

Reserved

Table 10-60. PROTINFO field descriptions when used with Discrete Log Protocol

Field Description

SIGN_NO_TEQ For Signature Generation (SIGN) protocol and MPSign:
disable Timing Equalization during SIGN.

0 Run SIGN using normal Timing Equalization protection.

1 Run SIGN with NO Timing Equalization protection.

MES_REP For Signature Generation (SIGN) and Verification (VERIFY)
protocols, this field indicates the format of the message.

00 : F input is a message representative.

01 : Calculate the message representative from the message
(using a SEQ IN PTR command), and the hash function
specified by the HASH field. The message representative is
calculated using the equivalent of EMSA1 (IEEE-1363).

10 : F input is a hashed message, with length specified in the
PDB. Protocol will format the message as required.

11 : Reserved.

HASH Hash function used to calculate a message representative
from a message; valid when MES_REP=01.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 395
Confidential Proprietary

Table 10-60. PROTINFO field descriptions when used with Discrete Log Protocol
(continued)

Field Description

000 MD5

001 SHA-1

010 SHA-224

011 SHA-256

KPG_IETF_DH For KPG, this bit enables running IETF_style DH

0 No IETF-style DH.

1 Run KPG with IETF-style Diffie-Hellman.

PRI_VERIFY_NO_TEQ For Signature Verification with Private Key (PRI_VERIFY)
protocol only. Disable Timing Equalization protection.

0 Run PRI_VERIFY with Timing Equalization protection
enabled.

1 Run PRI_VERIFY with Timing Equalization protection
disabled.

SIGN_2ND_HALF_ONLY For Signature Generation (SIGN) protocol only; otherwise
reserved. Run 2nd half (signature "d" generation) only.

0 Run full SIGN or 1st half, depending on
SIGN_1ST_HALF_ONLY setting.

1 Run 2nd half of SIGN only, generating 'd' result. Requires
SIGN_1ST_HALF_ONLY = 0.

SIGN_1ST_HALF_ONLY For Signature Generation (SIGN) protocol only; otherwise
reserved. Run 1st half (signature "c" generation) only.

0 Run full SIGN or 2nd half, depending on
SIGN_2ND_HALF_ONLY setting.

1 Run 1st half of SIGN only, generating 'c' result. Requires
SIGN_2ND_HALF_ONLY = 0.

EKT_Z if ENC_Z=1, Key Encryption type (Used only with DH;
otherwise reserved.)

0 Secret output is encrypted with AES-ECB mode.

1 Secret output is encrypted with AES-CCM mode.

ENC_Z Encrypt the DH shared secret (Used only with DH; otherwise
reserved.)

0 The DH output is public and is unencrypted.

1 The DH output is secret and encrypted.

EXT_PRI if ENC_PRI=1, Encrypted key type for private key

0 Private key is encrypted with AES-ECB mode.

1 Private key is encrypted with AES-CCM mode.

KPG_NO_TEQ KPG_NO_TEQ For KPG, MPPrivK and MPPubK.

0 Key Pair Generation runs with Timing Equalization
protection.

1 Kep Pair Generation runs with Timing Equalization disabled.

TEST TEST

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

396 NXP Semiconductors
Confidential Proprietary

Table 10-60. PROTINFO field descriptions when used with Discrete Log Protocol
(continued)

Field Description

0 Signature generation protects the per message secret.

1 Signature generation outputs the per message secret, to aid
in testing and verification. This is not allowed in trusted or
secure states.

ENC_PRI Encrypted private key

0 Private key is not encrypted. ENC_PRI must be 0 if
SIGN_2ND_HALF_ONLY=1.

1 Private key must be decrypted before use (see KEY
command for further information.). For Key Generation, this
causes the Private Key to be encrypted.

ECC/DL Public Key operation type

0 DL: Discrete Log

1 ECC: Elliptic Curve Cryptography

F2M/Fp Finite Field type

0 Fp: Prime Field

1 F2M: Binary field

Table 10-61 shows the format of the PROTINFO field for the RSA encrypt protocol.
Table 10-62 describes the bit values.

Table 10-61. PROTINFO format when used with RSA Encrypt Protocol

15-13 12 1-7 6-4 3-2 1-0

Reserved FMT Reserved fff Reserved OP

Table 10-62. PROTINFO field descriptions when used with RSA Encrypt Protocol

Field Description

15-13 Reserved.

12

FMT

Format of data

0 No formatting

1 EME-PKCS1-v1_5 encryption encoding function

11-7 Reserved.

6-4

fff

Encryption type for f

000b f is not encrypted (This is the only value permitted when OP = 00b).

001b f is to be encrypted with the JDKEK using ECB mode.

011b f is to be encrypted with the JDKEK using CCM mode.

101b f is to be encrypted with the TDKEK using ECB mode.

111b f is to be encrypted with the TDKEK using CCM mode.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 397
Confidential Proprietary

Table 10-62. PROTINFO field descriptions when used with RSA Encrypt Protocol
(continued)

Field Description

All other values are reserved.

3-2 Reserved.

1-0

OP

Operation.

00b Public Key n, e, f in - f is a user-supplied value (fff must be 000b)

01b Public Key n, e, f out - f is a random value (f can be encrypted on output, fff can be any non-
reserved value)

All other values are reserved.

Table 10-63 shows the format of the PROTINFO field for the RSA Decrypt Protocol.
Table 10-64 describes the bit values.

Table 10-63. PROTINFO format when used with RSA Decrypt Protocol

15-13 12 11 10-8 7 6-4 3-2 1-0

Reserved FMT Reserved ppp Reserved fff Reserved Key Form

Table 10-64. PROTINFO field descriptions when used with RSA Decrypt Protocol

Field Description

15-13 Reserved.

12

FMT

Format of data

0 No formatting

1 EME-PKCS1-v1_5 encryption decoding function

11 Reserved.

10-8

ppp

Type of private key encryption

000 private key is not encrypted

001b private key components are each encrypted with the JDKEK using ECB mode

011b private key components are each encrypted with the JDKEK using CCM mode

101b private key components are each encrypted with the TDKEK using ECB mode

111b private key components are each encrypted with the TDKEK using CCM mode

All other values are reserved.

7 Reserved.

6-4

fff

Type of encryption for f.

000b f is not to be encrypted

001b f is to be encrypted with the JDKEK using ECB mode

011b f is to be encrypted with the JDKEK using CCM mode

101b f is to be encrypted with the TDKEK using ECB mode

111b f is to be encrypted with the TDKEK using CCM mode

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

398 NXP Semiconductors
Confidential Proprietary

Table 10-64. PROTINFO field descriptions when used with RSA Decrypt Protocol
(continued)

Field Description

All other values are reserved.

3 No TEQ option. Set to 1 to enable no-TEQ.

2 Reserved.

1-0

Key Form

Form of the Private Key

00b Private Key input in the form #1: n, d

01b Private Key input in the form #2: p, q, d

10b Private Key input in the form #3: p, q, dp, dq, c

11b Private Key input in the form #4: p, q, dp, dq, cr, rrp, rrq

Table 10-65. PROTINFO format when used with RSA Finish KeyGen

15-8 7 6 5 4 3 2 1-0

Reserved FMT4 ENC_OUT Reserved EKT SKIP_D SKIP_PQ FUNCTION

Table 10-66. PROTINFO field descriptions when used with RSA Finish Keygen Protocol

Field Description

15-8 Reserved.

7

FMT4

Format 4

0 Generate original format outputs

1 Generate original format outputs except c, but also generate cr, rrp, rrq

(If FUNCTION=10b, only n, d and d size are output.)

6

ENC_OUT

Encrypt Outputs

0 Do not encrypt generated private key components

1 Encrypt generated private key (ECB mode, unless EKT=1)

(Note that n and d size are not encrypted.)

5

Reserved

Reserved. Must be 0.

4

EKT

Encrypted Key Type

0 Do not use CCM-encryption

1 CCM-encrypt private key components (valid only if PROTOCOL OPERATION Command's ENC bit is 1)

3

SKIP_D

Skip length check of d

0 Check that d is at least one bit longer than 1/2 of the bit length of n.

1 Skip length check of d.

It is an error to set SKIP_D to 1b if FUNCTION is set to 11b.

2

SKIP_PQ

Skip check of upper 100 bits of p and q

0 Check upper 100 bits of p and q to see whether |p-q| is too small

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 399
Confidential Proprietary

Table 10-66. PROTINFO field descriptions when used with RSA Finish Keygen Protocol
(continued)

Field Description

1 Do not check upper 100 bits of p and q

1-0

FUNCTION

Function

00 Compute all key components listed in Key Form, including d

01 Compute all key components listed in Key Form except d, which is an input

10 From p, q, e, compute n, d and d size.

11 From p, q, c, compute just cr, rrp, rrq. This can be used to compute Form 4 from a private key that is
already in Form 3.

It is an error to set FUNCTION to 11b if FMT4 is not set to 1.

10.6.18 PKHA OPERATION command

If OPTYPE = 001 (PKHA), the fields are as shown in Table 10-67. This OPTYPE is used
to perform public key operations in the public key hardware accelerator (PKHA). All data
for a PKHA operation must already be in place before the function will begin executing.
Therefore, this operation does not start until all data transactions have completed and the
input data FIFO is empty.

The format of the PKHA MODE field depends on which of the four types of PKHA
functions the OPERATION command specifies:

• Clear memory
• Modular arithmetic
• Elliptic curve
• Copy memory

A detailed description of the PKHA MODE fields is found in Table 10-68. The
OPERATION command does not complete until the PKHA is done.

When the PKHA operation completes without error, DECO clears the DONE flag and the
Mode Register so another operation can be specified.

Table 10-67. PKHA OPERATION command format

31-27 26-24 23-20 19-16

CTYPE = 10000 OPTYPE = 001 ALG = 1000 PKHA_MODE_MS

15-12 11-0

Reserved PKHA_MODE_LS

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

400 NXP Semiconductors
Confidential Proprietary

Table 10-68. PKHA OPERATION command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=10000b : OPERATION command; (ALGORITHM OPERATION or PKHA OPERATION or
PROTOCOL OPERATION, as determined by the OPTYPE field)

26-24

OPTYPE

Operation Type

If OPTYPE = 001b :PKHA OPERATION : The PKHA_MODE fields are interpreted as shown in the
following tables.

If OPTYPE = 010b or 100b : ALGORITHM OPERATION; The ALG, AAI, AS, ICV, and ENC fields are
interpreted as shown in ALGORITHM OPERATION command.

If OPTYPE = 000b, 011b or 111b : PROTOCOL OPERATION; The ALG, AAI, AS, ICV, and ENC fields are
interpreted as shown in PROTOCOL OPERATION command.

23-20

ALG

Algorithm

Set ALG=1000b. All other values are reserved.

19-16

PKHA_MODE_
MS

PKHA Mode

This field contains the value that will be loaded into the upper 4 bits of the PKHA Mode register. Its content
depends on which of the four types of PKHA functions, clear memory, modular arithmetic function, or copy
memory, is specified in the Function field (bits 5-0). The formats for these four types of functions are shown
in the following sections: Clear Memory (CLEAR_MEMORY) function, PKHA OPERATION : Arithmetic
Functions, PKHA OPERATION : Elliptic Curve Functions and PKHA OPERATION : copy memory
functions.

15-12 Reserved

11-0

PKHA_MODE_L
S

PKHA Mode

This field contains the value that will be loaded into the lowest 12 bits of the PKHA Mode register. The
least-significant six bits of this field is interpreted as a Function field, as shown in the row below. The format
of the PKHA_MODE_MS field and the other bits of the PKHA_MODE_LS field depend on the PKHA
function specified in the Function field: clear memory, modular arithmetic function, or copy memory. The
formats for these four types of functions are shown in the following sections: Clear Memory
(CLEAR_MEMORY) function, PKHA OPERATION : Arithmetic Functions, PKHA OPERATION : Elliptic
Curve Functions, and PKHA OPERATION : copy memory functions.

5-0

Function

PKHA function to be performed. (Note that the function is encoded in the least-significant six bits of the
PKHA_MODE_LS field.)

If Function=000001b : Clear Memory. (See Clear Memory (CLEAR_MEMORY) function)

If Function=010000b or 010001b : Copy Memory. (See PKHA OPERATION : copy memory functions)

If Function=001001b, 001010b, 001011b, or 011100b : Elliptic Curve function. (See PKHA OPERATION :
Elliptic Curve Functions)

If Function=000010b - 001111b or 010110b .. 011111b : Modular Arithmetic function. (See PKHA
OPERATION : Arithmetic Functions)

All other values of the Function field are reserved.

10.6.18.1 PKHA OPERATION : clear memory function
Table 10-69. PKHA Mode register format for clear memory function

19 18 17 16 11-10 9 8 7 6 5-0

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 401
Confidential Proprietary

Table 10-69. PKHA Mode register format for clear memory function (continued)

Aram Bram Eram Nram .
.
.

Reserved Q3 Q2 Q1 Q0 Function

PKHA_MODE_MS PKHA_MODE_LS

If the Function field in PKHA MODE specifies the clear memory function, PKHA
expects to be in the format shown in Table 10-69. The PKHA RAMs to be cleared may
be selected in any combination. Selecting one or more Quadrants for clearing will cause
only the specified quadrants (of the specified RAMs) to be cleared. If no Quadrants are
selected, then the whole RAM will be cleared.

Table 10-70. PKHA mode register field descriptions for clear memory function

Bits Description

19 Aram

This bit selects the A RAM for zeroization.

0: A not selected

1: A selected.

18 Bram

This bit selects the B RAM for zeroization.

0: B not selected

1: B selected

17 Eram

This bit selects the E RAM for zeroization.

0: E not selected

1: E selected

16 Nram

This bit selects the N RAM for zeroization.

0: N not selected

1: N selected

11-10 Reserved

9 Quadrant 3

This bit selects the Quadrant 3 RAM for zeroization.

0: not selected

1: selected. Clearing will be only specified quadrant(s). Not valid if E RAM is selected.

8 Quadrant 2

This bit selects the Quadrant 2 RAM for zeroization.

0: not selected

1: selected. Clearing will be only specified quadrant(s). Not valid if E RAM is selected.

7 Quadrant 1

This bit selects the Quadrant 1 RAM for zeroization.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

402 NXP Semiconductors
Confidential Proprietary

Table 10-70. PKHA mode register field descriptions for clear memory function (continued)

Bits Description

0: not selected

1: selected. Clearing will be only specified quadrant(s). Not valid is E RAM is selected.

6 Quadrant 0

This bit selects the Quadrant 0 RAM for zeroization.

0: not selected

1: selected. Clearing will be only specified quadrant(s). Not valid if E RAM is selected.

5-0 Function

The Function value for clearmemory is 000001.

10.6.18.2 PKHA OPERATION : Arithmetic Functions
Table 10-71. PKHA Mode Register Format for Arithmetic Functions

19 18 17 16-12 11 10 9-8 7-6 5-0

inM outM F2m Reser
ved

Reser
ved

Teq OutSel Reserved Function

PKHA_MODE_MS PKHA_MODE_LS

Table 10-72. PKHA Mode register, format for arithmetic operation

Bits Description

19

inM

Inputs in Montgomery form. Indicates whether the inputs are in Montgomery form.

If inM=0 : Normal value representation

If inM=1 : Montgomery form. (Not valid for all functions.)

18

outM

Outputs in Montgomery form. Indicates whether the outputs are to be left in Montgomery form or
converted to normal values.

If outM=0 : Normal value representation

If outM=1 : Montgomery form. (Not valid for all functions.)

17

F2m

F2m. Indicates whether to use integer or binary polynomial arithmetic in executing the function.

If F2m=0 : Integer

If F2m=1 : Binary polynomial. (Not valid for all functions.)

16-12 Reserved

11 Reserved

10

Teq

Timing Equalized. Indicates that a timing equalized version of the function should be executed.

If Teq=0 : No timing equalization

If Teq=1 : Timing equalization. (Not valid for all functions.)

9-8

OutSel

Output destination select. Indicates which memory should contain the output of the selected function.

If OutSel=00b : B

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 403
Confidential Proprietary

Table 10-72. PKHA Mode register, format for arithmetic operation (continued)

Bits Description

If OutSel=01b : A

If OutSel=10b : Reserved

If OutSel=11b : Reserved

7-6 Reserved

5-0

Function

Function. Indicates which arithmetic function to execute.

If Function=000010b : Modular Addition (A + B) mod N

If Function=000011b : Modular Subtraction 1 (A - B) mod N

If Function=000100b : Modular Subtraction 2 (B - A) mod N

If Function=000101b : Modular Multiplication (A x B) mod N

If Function=000110b : Modular Exponentiation AE mod N

If Function=000111b : Modular Reduction A mod N

If Function=001000b : Modular Inversion A-1 mod N

If Function=001100b : Montgomery Radix Constant R2 mod N

If Function=001110 : Greatest Common Divisor GCD(A,N)-see note below

If Function=001111 : Miller-Rabin Primality Test -see note below

If Function=010110b : Modular Simultaneous Exponentiation A0E * A2B mod N

If Function=010111b : Modular Square Root

If Function=011000b : Modular Double A (A + A) mod N

If Function=011001b : Modular Double B (B + B) mod N

If Function=011010b : Modular Square A (A x A) mod N

If Function=011011b : Modular Cube A (A x A x A) mod N

If Function=011101b : Shift Right A

If Function=011110b : Compare A B

If Function=011111b : Evaluate A

All other values for this field are currently reserved or are Table 10-69,Table 10-76, or Table 10-80.

NOTE: When using the GCD function or any ECC function, a divide-by-zero error occurs if the value of
the most significant digit of N is all zeros.

NOTE: When using the Miller-Rabin primality test function, if the most-significant digit of N is all zeros,
the result is composite regardless of the value of N.

NOTE
Note that the arithmetic functions with outputs going to the A
RAM are identical to those with outputs going to the B RAM.
The only difference is the output destination.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

404 NXP Semiconductors
Confidential Proprietary

Table 10-73. List of mode values for PKHA Integer Arithmetic Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed description

MOD_ADD Integer Modular
Addition

B 0 00002 Integer Modular Addition
(MOD_ADD) functionA 0 00102

MOD_SUB_1 Integer modular
subtraction (A - B)

B 0 00003 Integer Modular Subtraction
(MOD_SUB_1) functionA 0 00103

MOD_SUB_2 Integer modular
subtraction (B - A)

B 0 00004 Integer Modular Subtraction
(MOD_SUB_2) functionA 0 00104

MOD_MUL

MOD_MUL_TEQ

Integer modular
multiplication

B 0 00005 Integer Modular Multiplication
(MOD_MUL)A 0 00105

Timing equalized
version

B 1 00405

A 1 00505

MOD_MUL_IM

MOD_MUL_IM_TEQ

Integer Modular
Multiplication with
Montgomery Inputs

B 0 80005 Integer Modular Multiplication with
Montgomery Inputs
(MOD_MUL_IM)

A 0 80105

Timing equalized
version

B 1 80405

A 1 80505

MOD_MUL_IM_OM

MOD_MUL_IM_OM_TEQ

Integer Modular
Multiplication with
Montgomery Inputs
and Outputs

B 0 C0005 Integer Modular Multiplication with
Montgomery Inputs and Outputs
(MOD_MUL_IM_OM) Function

A 0 C0105

Timinq equalized
version

B 1 C0405

A 1 C0505

MOD_EXP

MOD_EXP_TEQ

Integer Modular
Exponentiation

B 0 00006 Integer Modular Exponentiation
(MOD_EXP and MOD_EXP_TEQ)A 0 00106

Timing equalized
version

B 1 00406

A 1 00506

MOD_EXP_IM

MOD_EXP_IM_TEQ

Integer Modular
Exponentiation with
Montgomery Inputs

B 0 80006 Integer Modular Exponentiation,
Montgomery Input (MOD_EXP_IM
and MOD_EXP_IM_TEQ) Function

A 0 80106

Timing equalized
version

B 1 80406

A 1 80506

MOD_AMODN Integer Modular
Reduction

B 0 00007 Integer Modulo Reduction
(MOD_AMODN)A 0 00107

MOD_INV Integer Modular
Inversion

B 0 00008 Integer Modular Inversion
(MOD_INV)A 0 00108

MOD_R2 Integer R2 mod N B 0 0000C Integer Montgomery Factor
Computation (MOD_R2)A 0 0010C

MOD_GCD Integer Greatest
Common Divisor

B 0 0000E Integer Greatest Common Divisor
(MOD_GCD)A 0 0010E

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 405
Confidential Proprietary

Table 10-73. List of mode values for PKHA Integer Arithmetic Functions (continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed description

PRIME_TEST Miller_Rabin
primality test

B 0 0000F Miller_Rabin Primality Test
(PRIME_TEST)A 0 0010F

MOD_SML_EXP Integer Modular
Simultaneous
Exponentiation

B 0 00016 Integer Simultaneous Modular
Exponentiation (MOD_SML_EXP)A 0 00116

MOD_SQRT Integer Modular
Square Root

B 0 00017 Integer Modular Square Root
(MOD_SQRT)A 0 20017

MOD_DBL_A Integer Modular
Double A

B 0 20018

A 0 20118

MOD_DBL_B Integer Modular
Double B

B 0 20019

A 0 20119

MOD_SQR

MOD_SQR_TEQ

Integer Modular
Square A

B 0 0001A Integer Modular Square
(MOD_SQR and MOD_SQR_TEQ)A 0 0011A

Timing equalized
version

B 1 0041A

A 1 0051A

MOD_IM_SQR

MOD_IM_SQR_TEQ

Integer Modular
Square A.
Montgomery Input

B 0 8001A Integer Modular Square,
Montgomery inputs (MOD_SQR_IM
and MOD_SQR_IM_TEQ)

A 0 8011A

Timing equalized
version

B 1 8041A

A 1 8051A

MOD_IM_OM_SQR

MOD_IM_OM_SQR_TEQ

Integer Modular
Square A,
Montgomery Input,
Montgomery Output

B 0 C001A Integer Modular Square,
Montgomery inputs and outputs
(MOD_SQR_IM_OM and
MOD_SQR_IM_OM_TEQ)

A 0 C011A

Timing equalized
version

B 1 C041A

A 1 C051A

MOD_CUBE

MOD_CUBE_TEQ

Integer Modular
Cube A

B 0 0001B Integer Modular Cube
(MOD_CUBE and
MOD_CUBE_TEQ)

A 0 0011B

Timing equalized
version

B 1 0041B

A 1 0051B

MOD_CUBE_IM

MOD_CUBE_IM_TEQ

Integer Modular
Cube A,
Montgomery input

B 0 8001B Integer Modular Cube, Montgomery
input (MOD_CUBE_IM and
MOD_CUBE_IM_TEQ)

A 0 8011B

Timing equalized
version

B 1 8041B

A 1 8051B

MOD_CUBE_IM_OM

MOD_CUBE_IM_OM_TEQ

Integer Modular
Cube A,
Montgomery input,
Montgomery output

B 0 C001B Integer Modular Cube, Montgomery
input and output
(MOD_CUBE_IM_OM and
MOD_CUBE_IM_OM_TEQ)

A 0 C011B

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

406 NXP Semiconductors
Confidential Proprietary

Table 10-73. List of mode values for PKHA Integer Arithmetic Functions (continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed description

Timing equalized
version

B 1 C041B

A 1 C051B

1. PKHA_MODE_MS concatenated with 0000b concatenated with PKHA_MODE_LS

Arithmetic functions on a binary polynomials (characterestic two) (F2M). All operate in
polynomial basis.

Table 10-74. List of mode values for PKHA Binary Polynomial Arithmetic Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

F2M_ADD Binary Polynomial Modular Addition B 0 20002 Binary Polynomial
(F2m) Addition
(F2M_ADD) function

A 0 20102

F2M_MUL

F2M_MUL_TEQ

Binary Polynomial Modular
Multiplication

B 0 20005 Binary Polynomial
(F2m) Modular
Multiplication
(F2M_MUL)

A 0 20105

Timing equalized version B 1 20405

A 1 20505

F2M_MUL_IM

F2M_MUL_IM_TEQ

Binary Polynomial Modular
Multiplication with Montgomery
Inputs

B 0 A0005 Binary Polynomial
(F2m) Modular
Multiplication with
Montgomery Inputs
(F2M_MUL_IM)
Function

A 0 A0105

Timing equalized version" B 1 A0405

A 1 A0505

F2M_MUL_IM_OM

F2M_MUL_IM_OM_TEQ

Binary Polynomial Modular
Multiplication with Montgomery
Inputs and Output

B 0 E0005 Binary Polynomial
(F2m) Modular
Multiplication with
Montgomery Inputs
and Outputs
(F2M_MUL_IM_OM)
Function

A 0 E0105

Timing equalized version B 1 E0405

A 1 E0505

F2M_EXP

F2M_EXP_TEQ

Binary Polynomial Modular
Exponentiation

B 0 20006 Binary Polynomial
(F2m) Modular
Exponentiation
(F2M_EXP and
F2M_EXP_TEQ)

A 0 20106

Timing equalized version B 1 20406

A 1 20506

F2M_AMODN Binary Polynomial Modular
Reduction

B 0 20007 Binary Polynomial
(F2m) Modulo
Reduction
(F2M_AMODN)

A 0 20107

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 407
Confidential Proprietary

Table 10-74. List of mode values for PKHA Binary Polynomial Arithmetic Functions
(continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

F2M_INV Binary Polynomial Modular Inversion B 0 20008 Binary Polynomial
(F2m) Modular
Inversion (F2M_INV)

A 0 20108

F2M_R2 Binary Polynomial R2 mod n B 0 2000C Binary Polynomial
(F2m) R2 Mod N
(F2M_R2) Function

A 0 2010C

F2M_GCD Binary Polynomial Greatest Common
Divisor

B 0 2000E Binary Polynomial
(F2m) Greatest
Common Divisor
(F2M_GCD)
Function

A 0 2010E

F2M_SQR

F2M_SQR_TEQ

Binary Polynomial Modular A Square B 0 2001A

A 0 2011A

Timing equalized version B 1 2041A

A 1 2051A

F2M_IM_SQR

F2M_IM_SQR_TEQ

Binary Polynomial Modular A
Square. Montgomery input

B 0 A001A

A 0 A011A

Timing equalized version B 1 A041A

A 1 A051A

F2M_IM_OM_SQR

F2M_IM_OM_SQR_TEQ

Binary Polynomial Modular Square
A, Montgomery input, Montgomery
output

B 0 E001A

A 0 E011A

Timing equalized version B 1 E041A

A 1 E051A

F2M_CUBE

F2M_CUBE_TEQ

Binary Polynomial Modular Cube A B 0 2001B

A 0 2011B

Timing equalized version B 1 2041B

A 1 2051B

F2M_CUBE_IM

F2M_CUBE_IM_TEQ

Binary Polynomial Modular Cube A.
Montgomery input

B 0 A001B

A 0 A011B

Timing equalized version B 1 A041B

A 1 A051B

F2M_CUBE_IM_OM

F2M_CUBE_IM_OM_TE
Q

Binary Polynomial Modular Cube A,
Montgomery input, Montgomery
output

B 0 E001B Binary Polynomial
(F2m) Modular Cube,
Montgomery Input
and Output
(F2M_CUBE_IM_O
M and
F2M_CUBE_IM_OM
_TEQ)

A 0 E011B

Timing equalized version B 1 E041B

A 1 E051B

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

408 NXP Semiconductors
Confidential Proprietary

Table 10-74. List of mode values for PKHA Binary Polynomial Arithmetic Functions
(continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

F2M_SML_EXP Binary Polynomial Modular
Simultaneous Exponentiation

B 0 20016 Binary Polynomial
(F2m) Simultaneous
Modular
Exponentiation
(F2M_SML_EXP)

A 0 20116

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

These functions are grouped here because they do not fall into one of the previous
categories of PKHA functions.

Table 10-75. List of mode values for Miscellaneous Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

Shift Right A Right Shift B 0 0001D Right Shift A
(R_SHIFT) functionA 0 0011D

Compare A B Comparison (no
output)

0 0001E Compare A B
(COMPARE)
function

Evaluate A Compute sizes B 0 0001F Evaluate A
(EVALUATE)
function

A 0 0011F

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

10.6.18.3 PKHA OPERATION : copy memory functions
Table 10-76. PKHA Mode register, format for copy memory functions

19-17 16 11-10 9-8 7-6 5-0

Source Register Destination Register Source

Segment

Destination

Segment

Function

PKHA_MODE_MS PKHA_MODE_LS

Table 10-77. PKHA Mode register, field descriptions for copy memory functions

Bits Description

19-17 Source Register. Specifies the register to be copied from.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 409
Confidential Proprietary

Table 10-77. PKHA Mode register, field descriptions for copy memory functions
(continued)

Bits Description

Source Register If Source Register=000 : A

If Source Register=001 : B

If Source Register=011 : N

All other values are currently reserved.

16

Destination
Register

Destination Register. Specifies the register to be copied to.

If Destination Register=000 : A

If Destination Register=001 : B

If Destination Register=010 : E

If Destination Register=011 : N

All other values are currently reserved.

NOTE: The source register and destination register fields must not be the same.

11-10

9-8

Source
Segment

Source Segment. Used when copying a register segment to specify which segment in the source register to
copy from.

If Source Segment=00 : Segment 0

If Source Segment=01 : Segment 1

If Source Segment=10 : Segment 2

If Source Segment=11 : Segment 3

NOTE: These bits must be zero when E is the destination register.

7-6

Destination
Segment

Destination Segment. Used when copying a register segment to specify which segment in the Destination
Register to copy to.

If Destination Segment=00 : Segment 0

If Destination Segment=01 : Segment 1

If Destination Segment=10 : Segment 2

If Destination Segment=11 : Segment 3

NOTE: These bits must be zero when E is the destination register.

5-0

Function

Function. Indicates which copy function to execute.

If Function=010000 : Copy Memory N-Size (copies the same number of words as are in the modulus.)

If Function=010001 : Copy Memory SRC-Size (copies the number of words specified in the source's size
register)

This table gives the encodings for the PKHA memory-to-memory copy functions. The top encoding in each cell is for Copy
Memory, N-Size, and the bottom encoding is for Copy Memory, Source-Size (Copy memory, N-Size and Source-Size
(COPY_NSZ and COPY_SSZ)).

The encoding is in bits 19-0, including PKHA_MODE (i.e. PKHA_MODE_MS concatenated with 0h concatenated with
PKHA_MODE_LS) and reserved bits. (Hex)

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

410 NXP Semiconductors
Confidential Proprietary

Table 10-78. Mode values for PKHA copy memory functions

Destination Memory

Source Memory A B N E

A 00410

00411

00C10

00C11

00810

00811

B 20010

20011

20C10

20C11

20810

20811

N 60010

60011

60410

60411

60810

60811

This table gives the encodings for the PKHA memory-to-memory copy functions, when segments are involved. The top
encoding in each cell is for Copy Memory, N-Size, and the bottom encoding is for Copy Memory, Source-Size (Copy memory,
N-Size and Source-Size (COPY_NSZ and COPY_SSZ)).

The encoding is in bits 19-0, including PKHA_MODE (i.e. PKHA_MODE_MS concatenated with 0h concatenated with
PKHA_MODE_LS) and reserved bits. (Hex)

Table 10-79. Mode values for PKHA copy memory by segment functions

Destination Quadrant

Source
Quadra

nt

A0 A1 A2 A3 B0 B1 B2 B3 N0 N1 N2 N3

A0 00410

00411

00450

00451

00490

00491

004D0

004D1

00C10

00C11

00C50

00C51

00C90

00C91

00CD0

00CD1

A1 00510

00511

00550

00551

00590

00591

005D0

005D1

00D10

00D11

00D50

00D51

00D90

00D91

00DD0

00DD1

A2 00610

00611

00650

00651

00690

00691

006D0

006D1

00E10

00E11

00E50

00E51

00E90

00E91

00ED0

00ED1

A3 00710

00711

00750

00751

00790

00791

007D0

007D1

00F10

00F11

00F50

00F51

00F90

00F91

00FD0

00FD1

B0 20010

20011

20050

20051

20090

20091

200D0

200D1

20C10

20C11

20C50

20C51

20C90

20C91

20CD0

20CD1

B1 20110

20111

20150

20151

20190

20191

201D0

201D1

20D10

20D11

20D50

20D51

20D90

20D91

20DD0

20DD1

B2 20210

20211

20250

20251

20290

20291

202D0

202D1

20E10

20E11

20E50

20E51

20E90

20E91

20ED0

20ED1

B3 20310

20311

20350

20351

20390

20391

203D0

203D1

20F10

20F11

20F50

20F51

20F90

20F91

20FD0

20FD1

N0 60010

60011

60050

60051

60090

60091

600D0

600D1

60410

60411

60450

60451

60490

60491

604D0

604D1

N1 60110

60111

60150

60151

60190

60191

601D0

601D1

60510

60511

60550

60551

60590

60591

605D0

605D1

N2 60210 60250 60290 602D0 60610 60650 60690 606D0

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 411
Confidential Proprietary

Table 10-79. Mode values for PKHA copy memory by segment functions (continued)

Destination Quadrant

Source
Quadra

nt

A0 A1 A2 A3 B0 B1 B2 B3 N0 N1 N2 N3

60211 60251 60291 602D1 60611 60651 60691 606D1

N3 60310

60311

60350

60351

60390

60391

603D0

603D1

60710

60711

60750

60751

60790

60791

607D0

607D1

10.6.18.4 PKHA OPERATION : Elliptic Curve Functions

NOTE
The elliptic curve functions with outputs going to the A RAM
are identical to those with outputs going to the B RAM. The
only difference is the output destination.

Table 10-80. PKHA Mode Register Format for Elliptic Curve Functions

19 18 17 16 11 10 9-8 7-6 5-0

Reser
ved

Reser
ved

F2m R2 .
.
.

Reser
ved

Teq OutSel Reserved Function

PKHA_MODE_MS PKHA_MODE_LS

Table 10-81. PKHA Mode register, format for elliptic curve operation

Bits Description

17

F2m

F2m. Indicates whether to use integer or binary polynomial arithmetic in executing the function.

If F2m=0 : Integer (prime) curve

If F2m=1 : Binary polynomial curve. (Not valid for all curve types.)

16

R2

(R2 mod N). Indicates whether the term (R2 mod N) must be supplied as an input or will be calculated by
the routine.

If R2=0 : (R2 mod N) is calculated and applied, if needed

If R2=1 : (R2 mod N) is an input. (Not valid for all functions.)

11

Reserved

Reserved

10

Teq

Timing Equalized. Indicates that a timing equalized version of the function should be executed.

If Teq=0 : No timing equalization

If Teq=1 : Timing equalization. (Not valid for all functions.)

9-8

OutSel

Output destination select. Indicates which memory should contain the output of the selected function.

If OutSel=00b : B

If OutSel=01b : A

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

412 NXP Semiconductors
Confidential Proprietary

Table 10-81. PKHA Mode register, format for elliptic curve operation (continued)

Bits Description

If OutSel=10b : Reserved

If OutSel=11b : Reserved

7-6 Reserved

5-0

Function

Function. Indicates which elliptic curve function to execute.

If Function=001001b : ECC Point Add (P1 + P2)

If Function=001010b : ECC Point Double (P2 + P2)

If Function=001011b : ECC Point Multiply (E x P1)

if Function=011100b : ECC Check Point

All other values for this field are currently reserved or are Table 10-69,Table 10-76, or Table 10-71.

Elliptic Curve Functions over a prime field (ECC_MOD), where prime p > 3. For a
general discussion, see ECC_MOD: Point math on a standard curve over a prime field
(Fp).

Table 10-82. List of mode values for Prime Field (Fp) Elliptic Curve Arithmetic Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

ECC_MOD_ADD
ECC prime field point add - affine
coordinates

B 0 00009 ECC Fp Point Add,
Affine Coordinates
(ECC_MOD_ADD)
Function

A 0 00109

ECC_MOD_ADD_R2
ECC prime field point add - affine
coordinates, R2 input

B 0 10009 ECC Fp Point Add,
Affine Coordinates,
R2 Mod N Input
(ECC_MOD_ADD_R
2) Function

A 0 10109

ECC_MOD_DBL
ECC prime field point double - affine
coordinates

B 0 0000A ECC Fp Point
Double, Affine
Coordinates
(ECC_MOD_DBL)
Function

A 0 0010A

ECC_MOD_MUL

ECC_MOD_MUL_TEQ

ECC prime field point multiply - affine
coordinates

B 0 0000B ECC Fp Point
Multiply, Affine
Coordinates
(ECC_MOD_MUL
and
ECC_MOD_MUL_T
EQ) Function

A 0 0010B

Timing equalized version of ECC
prime field point multiply - affine
coordinates

B 1 0040B

A 1 0050B

ECC_MOD_MUL_R2

ECC_MOD_MUL_R2_TE
Q

ECC prime field point multiply - affine
coordinates, r2 mod n input

B 0 1000B ECC Fp Point
Multiply, R2 Mod N
Input, Affine
Coordinates
(ECC_MOD_MUL_R

A 0 1010B

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 413
Confidential Proprietary

Table 10-82. List of mode values for Prime Field (Fp) Elliptic Curve Arithmetic Functions
(continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

Timing equalized version of ECC
prime field point multiply - affine
coordinates, r2 mod n input

B 1 1040B 2 and
ECC_MOD_MUL_R
2_TEQ) FunctionA 1 1050B

ECC_MOD_CHECK_POI
NT

ECC Prime Field Point Validation
- 0 0001C ECC Fp Check Point

(ECC_MOD_CHECK
_POINT) Function

ECC_MOD_CHECK_POI
NT_R2

ECC Prime Field Point Validation,
R2 input

- 0 1001C ECC Fp Check Point,
R2 Mod N Input,
Affine Coordinates
(ECC_MOD_CHECK
_POINT_R2)
Function

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

Elliptic Curve Functions over a binary field (ECC_F2M). All operate in polynomial
basis. For a general discussion, see ECC_F2M: Point math on a standard curve over a
binary field (F2m).

Table 10-83. List of mode values for Binary Field (F2m) Elliptic Curve Arithmetic Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

ECC_F2M_ADD
ECC binary field point add - affine
coordinates

B 0 20009 ECC F2m Point Add,
Affine Coordinates
(ECC_F2M_ADD)
Function

A 0 20109

ECC_F2M_ADD_R2
ECC binary field point add - affine
coordinates, R2 input

B 0 30009 ECC F2m Point Add,
Affine Coordinates,
R2 Mod N Input
(ECC_F2M_ADD_R
2) Function

A 0 30109

ECC_F2M_DBL
ECC binary field point double - affine
coordinates

B 0 2000A ECC F2m Point
Double - Affine
Coordinates
(ECC_F2M_DBL)
Function

A 0 2010A

ECC_F2M_MUL

ECC_F2M_MUL_TEQ

ECC binary field point multiply -
affine coordinates

B 0 2000B ECC F2m Point
Multiply, Affine
Coordinates

A 0 2010B

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

414 NXP Semiconductors
Confidential Proprietary

Table 10-83. List of mode values for Binary Field (F2m) Elliptic Curve Arithmetic Functions
(continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

Timing equalized version of ECC
binary field point multiply - affine
coordinates

B 1 2040B (ECC_F2M_MUL
and
ECC_F2M_MUL_TE
Q) Function

A 1 2050B

ECC_F2M_MUL_R2

ECC_F2M_MUL_R2_TE
Q

ECC binary field point multiply -
affine coordinates, r2 mod n input

B 0 3000B ECC F2m Point
Multiply, R2 Mod N
Input, Affine
Coordinates
(ECC_F2M_MUL_R
2 and
ECC_F2M_MUL_R2
_TEQ) Function

A 0 3010B

Timing equalized version of ECC
binary field point multiply - affine
coordinates, r2 mod n input

B 1 3040B

A 1 3050B

ECC_F2M_CHECK_POI
NT

ECC Binary Polynomial Point
Validation

- 0 A001C ECC F2m Check
Point
(ECC_F2M_CHECK
_POINT) Function

ECC_F2M_CHECK_POI
NT_R2

ECC Binary Polynomial Field Point
Validation, R2 input

- 0 B001C ECC F2m Check
Point, R2

(ECC_F2M_CHECK
_POINT_R2)
Function

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

10.6.19 SIGNATURE command

Trusted descriptors end with a SIGNATURE command, which requires the descriptor's
signature (HMAC) to be validated before allowing it to run. SIGNATURE commands
also support regeneration of the signature if the trusted descriptor modifies itself.

Trusted descriptors can be created and signed with a signature (a keyed hash) when
executed from a specially privileged Job Ring. (See Trusted descriptors.) Trusted
descriptors can be used to integrity protect the descriptor and to bind a key to a
descriptor.

The SIGNATURE command that generates and verifies the keyed hash is always the last
command of a trusted descriptor, although additional SIGNATURE commands can
appear within the descriptor. The signature (HMAC) immediately follows the last
SIGNATURE command in the trusted descriptor. When the descriptor is created:

• Room must be left at the end of the buffer for the 32-byte signature
• The length of the descriptor must include the signature.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 415
Confidential Proprietary

DECO does not read the signature when creating the signature, so any initial value can be
placed there.

If a trusted descriptor has a shared descriptor, the shared descriptor is part of the keyed
hash computation. The shared descriptor is hashed first, followed by the descriptor; this is
the order in which they appear in the descriptor buffer. The final hash is the value
computed for both.

NOTE
It is an error for a SIGNATURE command to be in a descriptor
that is not trusted or being made trusted.

NOTE
Because the SIGNATURE command must be the last command
executed in the descriptor, trusted descriptors cannot have the
REO bit set in their header. Doing so results in an error.

SIGNATURE types are available that allow a portion of the following command to not
be included in the keyed hash. This provides flexibility in changing the address or the
immediate data specified by a command. For example, the following command may a
LOAD command, which contains the command word itself followed by a pointer. These
SIGNATURE types would allow the command word to be part of the keyed hash but
would exclude the pointer from the calculation. The writer of the trusted descriptor is
responsible for using these SIGNATURE types only when the skipped information does
not need to be integrity protected, meaning any immediate data or any address is
permissible.

NOTE
Skipping the signature over immediate data would allow a
malicious user to shorten the length of the immediate data and
insert additional commands that would not be included in the
keyed hash. Note that this could be done without altering the
overall length of the descriptor. To prevent this, it is
recommended that the first four bytes of an immediate
command always be protected by the keyed hash. Because the
length of the immediate data is included in the keyed hash, the
length cannot be altered such that additional commands can
substitute for a portion of the immediate data.

Table 10-84. SIGNATURE command format

31–27 26-20 19–16

CTYPE = 10010 Reserved TYPE

15-0

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

416 NXP Semiconductors
Confidential Proprietary

Table 10-84. SIGNATURE command format (continued)

Reserved

Additional words of SIGNATURE command

8 Words to hold the Signature (these are used in types 0000, 0001 and 0010 only)

Table 10-85. SIGNATURE command field descriptions

Field Description

31-27

CTYPE

Command type

IF CTYPE=10010b : Signature command

26-20 Reserved

19-16

TYPE

See Table 10-86

15-0 Reserved

Table 10-86. TYPE field description

Type Meaning Instructions

0000 SIGNATURE command types 0000, 0001, or 0010 must be
the last command that is executed in a trusted descriptor. If
one of these types is used, the trusted descriptor signature
(the keyed hash value) immediately follows the command. It is
an error for a SIGNATURE command with one of these types
to appear anywhere other than at the end of the descriptor.

Type 0000, when executed, terminates execution of
the descriptor normally.

0001 Type 0001 indicates that the descriptor should be
rehashed and the keyed hash updated following
descriptor execution. This type is used in cases
where the descriptor could modify itself during
execution. Note that the rehash and update is
always done whether the descriptor was modified or
not. Following the rehash and update, descriptor
execution terminates normally.

0010 Type 0010 indicates that the descriptor should be
rehashed and the keyed hash updated following
descriptor execution if, upon completion, the
MATH_Z bit is set. This type is used in cases where
the descriptor could modify itself during execution
but updating the keyed hash should be conditional.
This version allows the rehash and update to be
skipped when no change has been made to the
descriptor. If MATH_Z is 0, descriptor execution
immediately terminates normally. Otherwise,
descriptor execution terminates normally after the
rehash and update.

1010 SIGNATURE command types 1010, 1011, and 1100 are used
to include only a portion of the following command in the
keyed hash calculation, omitting the remainder of the
command from the calculation. There is no hash value
associated with this type, so it is an error for this type to
appear at the end of the descriptor. These types allow the
trusted descriptor to be modified with other offsets, addresses

Type 1010 instructs CAAM to hash only the first 2
bytes of the next command.

1011 Type 1011 instructs CAAM to hash only the first 3
bytes of the next command.

1100 Type 1100 instructs CAAM to hash only the first 4
bytes of the next command.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 417
Confidential Proprietary

Table 10-86. TYPE field description (continued)

Type Meaning Instructions

and lengths without invalidating the signature. Note that the
SIGNATURE command is, itself, included in the hash so that
it cannot be added later.

Others Reserved

Two types of the final SIGNATURE command, 0001 and 0010 described in the above
table, will recompute and update the signature in memory. These types are used when the
trusted descriptor modifies itself and the modified version is to be used thereafter. Note
that it is up to the descriptor writer to ensure that the copy of the descriptor in memory is
updated using a STORE command. However, this update should only be done once all
other commands in the descriptor have completed successfully. That is, the penultimate
command should be the STORE to update the descriptor and the final command must be
the SIGNATURE command. (If the update was done earlier and an error was detected
prior to the SIGNATURE command running, the trusted descriptor could never be run
again since the signature won't match.) The final signature command will wait to run
until all reads have completed, all write data has been taken by the DMA, and all internal
moves have completed. However, the final signature command is not a Done Checkpoint,
which means that it will not wait for CHAs to complete.

10.6.20 JUMP (HALT) command

The JUMP command has the following uses:

• Alters the execution order of descriptor commands
• Pauses execution until specified conditions are satisfied
• Halts the execution of the descriptor if specified conditions are satisfied

JUMP command format shows the format of the JUMP command, and Table 10-88
describes the JUMP command field definitions.

The JUMP command may or may not be a checkpoint depending on its conditions and
type.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

418 NXP Semiconductors
Confidential Proprietary

10.6.20.1 Jump type

The JUMP command has eight different types, distinguished by the value in the JUMP
TYPE field. All of these types specify a tested condition and take some execution flow
action if the tested condition evaluates as true, and simply continue with the next
command if the tested condition is false. See Test type for an explanation of what it
means for the tested condition to be true.

Four of these jump types are true conditional jumps, another two are conditional halts,
and the last two are a conditional subroutine call and a conditional subroutine return.
Regardless of the jump type, the execution of the command waits for any specified wait
conditions to be satisfied before the conditional action (jump, call, return, or halt) is
taken. Some wait conditions can be specified in the CLASS field (e.g. wait for the Class
1 CHA to be done, wait for the Class 2 CHA to be done,or both), and additional wait
conditions can be specified with the TEST CONDITION field (if JSL = 1).

10.6.20.1.1 Local conditional jump

The local conditional jump works as follows:

• If the tested condition is true, a JUMP command of the local conditional jump type
continues the execution sequence at a new point within the descriptor buffer.

• If the tested condition is false, the jump is not taken and execution continues with the
command that follows the JUMP command.

Local jumps are relative. The LOCAL OFFSET field is treated as an 8-bit 2's
complement number that is added to the position of the JUMP command within the
descriptor buffer. For example, a jump of one goes to the next 32-bit word and a jump of
two skips one 32-bit word. Backward jumps are performed using 2's complement
negative numbers.

A LOCAL OFFSET of 0 is a shorthand means of jumping back to the start of the
descriptor buffer, which is either the start of the job descriptor if there is no shared
descriptor or the start of the shared descriptor, if there is one. (see Figure 10-8)

10.6.20.1.2 Local conditional increment/decrement jump

The local conditional increment/decrement jump is simply a local conditional jump that
either increments or decrements a specified register, updates the math conditions based
upon the result, and then evaluates the selected math conditions to determine whether or
not the jump should be taken:

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 419
Confidential Proprietary

• If the tested condition is satisfied, command execution continues at a new point
within the descriptor buffer.

• If the tested condition is not satisfied, the jump is not taken and execution continues
with the command that follows the JUMP command.

Note that the increment and decrement jump types use a different JUMP command
format than the other jump types. The four most-significant bits of the TEST
CONDITION field are replaced with a SRC_DST field that specifies the register that is to
be incremented or decremented. The least significant four bits of the TEST CONDITION
field constitute the MATH CONDITION field, which specifies the tested conditions that
are evaluated to determine whether the jump is taken or not.

Any of the legal choices for the SRC0 field of the MATH command which are also legal
choices for the DEST field of the MATH command may be selected as the register to
increment or decrement. Use the same value to select the register as is used for the
MATH command.

10.6.20.1.3 Non-local conditional jump

The non-local conditional jump is just like the local conditional jump except that the
target of the jump must be the header of a job descriptor or trusted descriptor. Note that
the target descriptor may not be a shared descriptor nor may the target descriptor have a
shared descriptor. The pointer to the target descriptor is in the word following the JUMP
command.

• If the tested condition evaluates to true, the jump is taken.
• If the tested condition evaluates to false, the jump is not taken and execution

continues with the command following the pointer.

NOTE
It is permissible to JUMP from a job descriptor to another job
descriptor or from a job descriptor or a trusted descriptor to
another trusted descriptor, but jumping from a trusted descriptor
to a job descriptor results in an error.

10.6.20.1.4 Conditional halt

This JUMP command is actually a conditional halt, meaning it stops the execution of the
current descriptor if the tested condition evaluates to true. In this case the PKHA/Math
condition bits (see the "TEST CONDITION bits when JSL=0" column in the TEST
CONDITION field in JUMP command format) are written out right-justified in the SSED
field of the job termination status word (see Job termination status/error codes).

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

420 NXP Semiconductors
Confidential Proprietary

If the tested condition evaluates to false, the descriptor is not halted and execution instead
continues with the command that follows the jump.

NOTE
If the specified conditions evaluate as true, this command will
always result in a nonzero status being returned for this job.
Therefore, such a job will always appear to have encountered
an error. The 8-bit error code will, as described above, be the
PKHA and Math status flags rather than one of the predefined
error codes.

10.6.20.1.5 Conditional halt with user-specified status

A JUMP command with the user-specified status option is another type of conditional
halt. If the tested condition is true, it stops execution of the descriptor but instead of
writing the PKHA/Math condition bits, this conditional halt writes out the value in the
LOCAL OFFSET field (again, right-justified in the SSED field of the job termination
status word). The interpretation of the code in the LOCAL OFFSET field is user-
specified, so it could be used during debugging to indicate that execution reached a
certain point in a particular descriptor. If the tested condition evaluates to false, execution
continues with the command following the jump.

NOTE
If the specified conditions evaluate as true, and the LOCAL
OFFSET field is nonzero, this command will result in a nonzero
status being returned for this job. That is, it will appear that
such a job encountered an error. The 8-bit error code will, as
described above, be a copy of the LOCAL OFFSET field rather
than one of the predefined error codes.

NOTE
If the specified conditions evaluate as true, and the LOCAL
OFFSET is zero, this command will terminate execution of the
descriptor with normal status. That is, it will appear that such a
job terminated normally. This is a convenient way to terminate
execution in the middle of a descriptor when it can be
determined that all work is done rather than having to jump to
the end of the descriptor.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 421
Confidential Proprietary

10.6.20.1.6 Conditional subroutine call

A JUMP command with the subroutine call option is another type of local conditional
jump. If the tested condition is true, it jumps to the specified location in the descriptor
buffer but also saves the return address. The return address is the location immediately
following the JUMP command. If the tested condition evaluates to false, execution
continues with the command following the JUMP.

Note that only one return address can be saved, so subroutine calls cannot be nested. The
descriptor writer is responsible for enforcing this as no error will be thrown if subroutine
calls are nested.

NOTE
A built-in protocol is, in fact, also a special subroutine call. The
return address is used to note where execution should resume
following the execution of the built-in protocol. Therefore,
while a protocol may be called from within a subroutine, a
subsequent subroutine return will return to the command
following the protocol command rather than the command
following the subroutine call.

Each time a conditional subroutine call is taken or a built-in protocol is started, the return
address is saved. That return address will be maintained until it is overwritten by another
conditional subroutine call or built-in protocol. Therefore, it is possible to have one
subroutine call that corresponds to multiple subroutine returns. It is also possible to match
subroutine returns with calls to built-in protocols.

10.6.20.1.7 Conditional subroutine return

A JUMP command with the subroutine return option is another type of local conditional
jump. In this case the local offset is ignored because the target of the jump is taken from
the previously saved return address. If the tested condition is true, the subroutine return
jumps to the saved return address. This address is the location immediately following the
most recently executed command that updated the return address. One command that
updates the return address is a conditional subroutine call in which the tested condition
evaluated as true. The other command that updates the return address is a built-in
protocol. If the tested condition evaluates to false, execution continues with the command
following the subroutine return command.

NOTE
See the previous section, Conditional subroutine call, for
important details on the use of the conditional subroutine
return.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

422 NXP Semiconductors
Confidential Proprietary

10.6.20.2 Test type

The TEST TYPE field is used to specify when the conditional jump/halt tested condition
is considered to be met. The test type options are:

• 00—All specified test conditions are true. (Logical AND of all conditions.)
• 01—All specified test conditions are false. (Logical NOR of all conditions.)
• 10—Any specified test condition is true. (Logical OR of all conditions.)
• 11—Any specified test condition is false. (Logical NAND of all conditions.)

To create an unconditional jump, use TEST TYPE = 00 (all specified conditions true) and
clear all TEST CONDITION bits because the tested condition is considered to be true if
no test condition bits are set.

To create an unconditional jump/halt with a JSL = 1 conditional wait condition, use
TEST TYPE = 10 (any specified condition is true). This always jumps or halts once the
wait is completed because the selected conditional wait condition(s) are always true after
the wait is completed.

A local conditional jump with offset 1 (signifying a jump to the following command) is a
no-op because the next command in sequence is executed whether or not the jump is
taken. This is true regardless of the TEST TYPE and TEST CONDITION settings.
However, a wait condition can be specified to prevent the next command from executing
until the conditions are satisfied. This is a common use case for the local conditional
jump.

10.6.20.3 JSL and TEST CONDITION fields

The JSL field selects between two different interpretations of the TEST CONDITION
field:

• When JSL = 0, the conditional jump/halt bits select various MATHand PKHA status
conditions. These are used to jump or halt if the tested condition is satisfied.

• When JSL = 1, the bits in the TEST CONDITION field can affect the action taken by
the JUMP Command in two ways.

• Some of the TEST CONDITION bits are conditional jump/halt bits. The JQP,
SHRD, and SELF test conditions are typically used to avoid storing data that the
next descriptor might change or to prevent reloading data that is already
available because it was left by the previous descriptor.

• The remainder of the TEST CONDITION bits are conditional wait bits. The
CALM, NIP, NIFP, NOP, and NCP conditional wait bits are used to time loads,
moves, and stores properly. If conditional wait bits are set the JUMP command

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 423
Confidential Proprietary

stalls until all of the specified wait conditions become true. All of the conditional
wait bits must evaluate to true independent of the TEST TYPE specified. In
other words, you can't wait for one of two conditional wait conditions to become
true; you must wait for both. Once all the contional wait conditions are true, the
jump or halt either occurs or not, depending upon whether all of the specified
conditions are satisfied. Note that once the wait has completed, the selected
conditional wait conditions are always true; because they are evaluated as part of
the tested condition, they can affect whether the jump or halt action is taken.
Note that the CLASS bits are, in fact, conditional wait bits even though they are
not used in the decision on whether to take the JUMP.

For example, if a JUMP command is executed with JSL = 1 and the TEST CONDITION
bits NIP, NIFP, JQP, and SELF are set, the JUMP command stalls until both of the
following are true:

• No input to the input data FIFO is pending (NIP).
• No entry in the information FIFO is pending. That is, the NFIFO is empty. (NIFP).

Because these are conditional wait bits, the command waits until all of the wait
conditions are true before evaluating the remaining conditions. The evaluation depends
upon the test conditions that are selected, the state of the selected conditions, and the
value in the TEST TYPE field:

• TEST TYPE = 00 (if all conditions are true): the jump or halt occurs if another job
wants to share this shared descriptor (JQP) and this shared descriptor is running in
the same DECO (SELF) as the one from which it was shared.

• TEST TYPE = 01 (if all conditions are false): the jump or halt never occurs because
the NIP and NIFP conditions are true after the wait completes.

• TEST TYPE = 10 (if any condition is true): the jump or halt always occurs because
the NIP and NIFP conditions are true after the wait completes.

• TEST TYPE = 11 (if any condition is false): the jump or halt occurs if no job wants
to share this shared descriptor (JQP) or this shared descriptor is not running in the
same DECO (SELF) as the one from which it was shared.

10.6.20.4 JUMP command format
Table 10-87. JUMP command format

31-27 26-25 24 23-20 19-18 17-16

CTYPE = 10100 CLASS JSL JUMP TYPE Reserved TEST
TYPE

Format used with all jump types
except 0001 and 0011

15-8 7-0

TEST CONDITION LOCAL OFFSET

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

424 NXP Semiconductors
Confidential Proprietary

Table 10-87. JUMP command format (continued)

Format used with jump types
0001 and 0011

15-12 11-8 7-0

SRC_DST MATH CONDITION LOCAL OFFSET

Additional words of JUMP command

Pointer (one word); see Address pointers) (this field is present for non-local JUMPs
only)

Table 10-88. JUMP command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=10100 : JUMP command

26-25

CLASS

Class

Wait until specified class type CHA(s) is done before evaluating jump/halt conditions. For CLASS != 00, this
makes the JUMP command a DONE checkpoint.

If CLASS=00 : None

If CLASS=01 : Class 1

If CLASS=10 : Class 2

If CLASS=11 : Both Class 1 and Class 2

24

JSL

Jump Select Type

Selects which definition of the TEST CONDITION field to use.

If JSL=0 : MATHand PKHA status conditions

If JSL=1 : Various jump/halt and wait conditions (Note that JSL=1 is prohibited with jump types 0001 and 0011
and such usage will result in an error.)

23-20

JUMP TYPE

Jump Type

Specifies the action taken by the JUMP Command. See Jump type for more information.

If JUMP TYPE=0000 : Local conditional jump. Evaluates the specified TEST CONDITION to determine
whether the local jump should be taken.

If JUMP TYPE=0001 : Local conditional increment jump. Increments the register specified in SRC_DST before
evaluating the specified MATH CONDITION.

If JUMP TYPE=0010 : Conditional subroutine call. Evaluates the specified TEST CONDITION to determine
whether the local subroutine call should be taken.

If JUMP TYPE=0011 : Local conditional decrement jump. Decrements the register specified in SRC_DST
before evaluating the specified MATH CONDITION.

If JUMP TYPE=0100 : Non-local conditional jump. Evaluates the specified TEST CONDITION to determine
whether the non-local jump should be taken.

If JUMP TYPE=0110 : Conditional subroutine return. Evaluates the specified TEST CONDITION to determine
whether the subroutine return should be taken.

If JUMP TYPE=1000 : Conditional Halt. If the specified TEST CONDITION is true, this returns the PKHA/
MATH bits as status. (see "TEST CONDITION bits when JSL=0" column in the TEST CONDITION field) and
halts descriptor execution with error status.

If JUMP TYPE=1100 : Conditional Halt with user-specified status. If the specified TEST CONDITION is true,
this returns the value in the LOCAL OFFSET field as status and halts descriptor execution with error status
unless the LOCAL OFFSET is zero, in which case descriptor execution terminates normally.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 425
Confidential Proprietary

Table 10-88. JUMP command field descriptions (continued)

Field Description

All other codes are reserved, and will generate an error.

19-18 Reserved

17-16

TEST TYPE

Test Type. This field defines how the condition code bits (see TEST CONDITION field) should be interpreted.
See Test type for more information.

If TEST TYPE=00 : Jump/halt if ALL selected conditions are true. That is, jump or halt if all the status
conditions are true for all TEST CONDITION bits that are 1. Note that if JSL = 1 and one or more conditional
wait bits is set, the command waits for all selected conditional wait conditions to be true before the conditional
jump/halt conditions are evaluated. The jump/halt then takes place if these conditions are all true.

If TEST TYPE=01 : Jump/halt if ALL selected conditions are false. That is, jump or halt if all the status
conditions are false for all TEST CONDITION bits that are 1. Note that if JSL=1 and one or more Conditional
Wait bits is set, the command will wait for all selected Conditional Wait conditions to be true and the jump/halt
will not take place (since the Condition Wait condition(s) are now true). If no Conditional Wait bits are set, the
jump/halt will take place if all of the selected Conditional Jump/Halt conditions are false.

If TEST TYPE=10 : Jump/halt if ANY selected condition is true. That is, jump or halt if any status condition is
true for a TEST CONDITION bit that is 1. Note that if JSL=1 and one or more Conditional Wait bits is set, the
command will wait for all selected Conditional Wait conditions to be true and then the jump/halt will take place
(since the Condition Wait condition(s) are now true). If no Conditional Wait bits are set, the jump/halt will take
place if any of the selected Conditional Jump/Halt conditions are true.

If TEST TYPE=11 : Jump/halt if ANY selected condition is false. That is, jump or halt if any status condition is
false for a TEST CONDITION bit that is 1. Note that if JSL=1 and one or more Conditional Wait bits is set, the
command will wait for all selected Conditional Wait conditions to be true and then Tested Condition will be
evaluated. Whether a wait occurs or not, the jump/halt will take place if any selected Conditional Jump/Halt
condition is false.

15-8

TEST
CONDITION

Test Condition.This 8-bit field is used with all jump types except 0001 and 0011. The interpretation of the
TEST CONDITION field depends upon the value of the JSL field, a shown in Table 10-89. See JSL and TEST
CONDITION fields for more information.

15-12

SRC_DST

Source/Destination. This four-bit field is used only with jump types 0001 and 0011. It replaces the most-
significant four bits of the TEST CONDITION field. This field is used to select the register that will be
incremented (jump type 0001) or decremented (jump type 0011) before the selected math condition is
evaluated to determine whether the local jump will be taken. For 8-byte registers, only the least-significant 4
bytes are used. (That is, the length of the math operation is restricted to 4 bytes.)

If SRC_DST=0000 : Math Register 0

If SRC_DST=0001 : Math Register 1

If SRC_DST=0010 : Math Register 2

If SRC_DST=0011 : Math Register 3

If SRC_DST=0111 : DECO Protocol Override Register

If SRC_DST=1000 : Sequence In Length (SIL)

If SRC_DST=1001 : Sequence Out Length (SOL)

If SRC_DST=1010 : Variable Sequence In Length (VSIL)

If SRC_DST=1011 : Variable Sequence Out Length (VSOL)

All other values are reserved.

11-8

MATH
CONDITION

Math condition. This four-bit field is used only with jump types 0001 and 0011. It is identical with the
least-significant four bits of the TEST CONDITION field and uses the same definitions. This field is used
to select the math conditions that will be evaluated to determine whether the local jump should be taken.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

426 NXP Semiconductors
Confidential Proprietary

Table 10-88. JUMP command field descriptions (continued)

Field Description

bit 11 bit 10 bit 9 bit 8

MATH N MATH Z MATH C MATH NV

The result is negative. The result is zero. The operation resulted in
a carry or borrow.

Used for signed
compares. This is the
XOR of the sign bit and
2's complement overflow.

7-0

LOCAL
OFFSET

For local jumps this field specifies the offset of the JUMP target from the JUMP command's address in the
descriptor buffer. This field is ignored for non-local JUMPs. If the LOCAL OFFSET is 0, the target is the start
of the Descriptor Buffer. For non-zero values, the target address is relative to the JUMP Command. That is,
the field is interpreted as an 8-bit 2's complement number that is added to the index of the JUMP Command to
yield the 32-bit word of the target. For Halt with status, the LOCAL OFFSET will be returned in Descriptor
status. This will show up in the Output Job Status as the USTA field. If nonzero on halt with status, an error is
reported.

31-0

POINTER

Pointer (32-bit). This field is present only for non-local jumps. This is the address of the Descriptor to which to
jump if the jump is taken.

Table 10-89. TEST CONDITION bit settings

Bit
#

TEST CONDITION bits when JSL=0 TEST CONDITION bits when JSL=1

15 PKHA
IS_ZERO

For Finite Field
operations the result
of a PKHA operation
is zero. For ECC
operations, the
result is a Point at
Infinity.

Conditional
Jump/Halt

JQP Job Queue Pending. The Job Queue
Controller has identified that another job
wants to share this Shared Descriptor.
This bit can be used to avoid storing data
that the next Shared Descriptor would
just refetch. This condition is false if this
is not a Shared Descriptor.

Conditional
Jump/Halt

14 PKHA
GCD_1

The greatest
common divisor of
two numbers is 1
(that is, the two
numbers are
relatively prime).

Conditional
Jump/Halt

SHRD SHARED. This Shared Descriptor was
shared from a previously executed
Descriptor. Depending on the type of
sharing, this bit can be tested to
conditionally jump over commands. For
example, if the keys are shared they will
already be in the Key Registers so
decrypting and placing them in the Key
Registers must be skipped. This
condition is false if this is not a Shared
Descriptor.

Conditional
Jump/Halt

13 PKHA
IS_PRIME

The given number is
probably prime (that
is, it passes the
Miller-Rabin
primality test).

Conditional
Jump/Halt

SELF The SELF bit indicates that this Shared
Descriptor is running in the same DECO
as the one from which it was shared.
Hence, the Shared Descriptor may be
able to assume that Context Registers,
CHAs, and other items are still valid or
available. This condition is false if this is
not a Shared Descriptor.

Conditional
Jump/Halt

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 427
Confidential Proprietary

Table 10-89. TEST CONDITION bit settings (continued)

Bit
#

TEST CONDITION bits when JSL=0 TEST CONDITION bits when JSL=1

12 Reserved Must be 0. — CALM All pending bus transactions for this
DECO, whether internal or external, have
completed.

Conditional
Wait

11 MATH N The negative math
flag is set.

Conditional
Jump/Halt

NIP No input pending. No external loads,
whether from LOAD, FIFO LOAD, SEQ
LOAD, SEQ FIFO LOAD or SEQ FIFO
STORE (aux==10 or 10), are pending.

Conditional
Wait

10 MATH Z The zero math flag
is set.

Conditional
Jump/Halt

NIFP No iNformation FIFO entries pending.
The NFIFO is empty and no data is
waiting in the C1 or C2 alignment blocks.

Conditional
Wait

9 MATH C The carry/borrow
math flag is set.

Conditional
Jump/Halt

NOP No output pending. No external stores,
whether from STORE, FIFO STORE,
SEQ STORE, or SEQ FIFO STORE, are
pending.

Conditional
Wait

8 MATH NV The NV math flag is
set. This is the XOR
of the sign bit and
2's complement
overflow.

Conditional
Jump/Halt

NCP No context load pending. There is no
data in flight toward the context registers
via the internal or external DMA.

Conditional
Wait

10.6.21 MATH and MATHI Commands

The MATH and MATHI commands compute simple mathematical functions of values in
registers or specified via immediate data. The result can be written to a specified
destination register or the result can be dropped. The commands set MATH condition bits
that reflect the result of the mathematical operation (see MNV, MN, MC, and MZ). These
condition bits can be tested with the JUMP commands, providing CAAM with the
flexibility to implement conditional processing constructs, including loops. In addition,
the MC bit can be used to perform addition and subtraction of values larger than the math
registers via borrow or carry.

Length must always be specified in the command, as it determines the size of the
arguments used to set the MATH status bits. Note that the LENGTH field is used to mask
off results after the math operation, not before, so the user must present properly sized
data.

The MATHI command is useful when a one-byte immediate value is to be used. Since
this immediate value is contained within the MATHI command word, this allows the
MATHI command to be a single word rather than forcing the use of a two-word MATH
command. This is useful since one-byte arguments are common. In some large
descriptors, saving this one word several times can make the difference between fitting in
the descriptor buffer and having to use multiple descriptors.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

428 NXP Semiconductors
Confidential Proprietary

Table 10-90. MATH and MATHI Commands, format

31–27 26 25 24 23–20 19–16

MATH: CTYPE = 10101 IFB NFU STL FUNCTION SRC0

MATHI: CTYPE = 11101 Reser
ved

NFU SSEL FUNCTION SRC

15–12 11–8 7-4 3–0

MATH: SRC1 DEST Reserved LEN

MATHI: DEST IMM_VALUE LEN

Table 10-91. MATH command, field descriptions (field descriptions for the MATHI
command appear in the next table)

Field Description

31-27

CTYPE

Command Type

If CTYPE=10101b : MATH command (fields defined in this table)

If CTYPE=11101b : MATHI command (fields defined in table Table 10-92 below)

26

IFB

Immediate Four Bytes

If IFB=0 : Include full length immediate data in descriptor (length specified in LEN field)

If IFB=1 : Use only four bytes of immediate data even if LEN is 8. This shortens the descriptor by one
word when 1, 2, or 4-byte immediate data is to be used in an 8-byte operation. The immediate data will
automatically be zero padded out to 8 bytes. This bit has no effect if the LEN is less than 8.

25

NFU

No Flag Update

If NFU=0 : Math flags will be updated as appropriate.

If NFU=1 : Preserve the existing math flag values by blocking all updates to math flags.

24

STL

Stall.

If STL=0 : Don't stall the execution of the MATH command.

If STL=1 : Stall MATH command. Causes the MATH command to take one extra clock cycle.

23-20

FUNCTION

This field specifies which function to perform, as listed in the table below titled Table 10-93. The
operands are specified in the SRC0 and SRC1 fields and the result is written to the destination specified
in the DEST field.

19-16

SRC0

The SRC0 field indicates the source of operand 0.

Source of Operand 0 SRC0 Field Value

Math Register 0 0h

Math Register 1 1h

Math Register 2 2h

Math Register 3 3h

Immediate data from descriptor words following the MATH command1 4h

Protocol Override (DPOVRD), left-extended with 0s 7h

Sequence In Length (SIL), left-extended with 0s 8h

Sequence Out Length (SOL), left-extended with 0s 9h

Variable Sequence In Length (VSIL) Ah

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 429
Confidential Proprietary

Table 10-91. MATH command, field descriptions (field descriptions for the MATHI
command appear in the next table) (continued)

Field Description

Source of Operand 0 SRC0 Field Value

Variable Sequence Out Length (VSOL) Bh

ZERO (the value 0000 0000h) is used as operand 0 Ch

ONE (the value 0000 00001h) is used as operand 0 Fh

All other values for this field are reserved.

15-12

SRC1

The SRC1 field indicates the source of operand 1.

Source of Operand 1 SRC1 Field Value

Math Register 0 0h

Math Register 1 1h

Math Register 2 2h

Math Register 3 3h

Immediate data from descriptor words following the MATH command1 4h

Protocol Override (DPOVRD), left-extended with 0s 7h

Variable Sequence In Length (VSIL) 8h

Variable Sequence Out Length (VSOL) 9h

Input Data FIFO2,3 Ah

Output Data FIFO3,4 Bh

ONE (the value 0000 0001h) is used as operand 1 Ch

ZERO (the value 0000 00000) is used as operand 1 Fh

All other values for this field are reserved.

11-8

DEST

The DEST field specifies the destination for the result of the command as follows:

Destination for MATH operation result DEST Field Value

Math Register 0 0h

Math Register 1 1h

Math Register 2 2h

Math Register 3 3h

Protocol Override 7h

Sequence In Length 8h

Sequence Out Length 9h

Variable Sequence In Length Ah

Variable Sequence Out Length Bh

No Destination. The result should not be written anywhere.5 Fh

All other values for this field are reserved.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

430 NXP Semiconductors
Confidential Proprietary

Table 10-91. MATH command, field descriptions (field descriptions for the MATHI
command appear in the next table) (continued)

Field Description

7-4 This field is reserved. All bits must be 0.

3-0

LEN

LEN denotes the length, in bytes, of the operation and the immediate value, if there is one.

1h : 1 byte

2h : 2 bytes

4h : 4 bytes

8h : 8 bytes

9h : 8 bytes, with word swapping performed prior to use if CAAM STATUS REGISTER[PLEND]=0 (i.e.
Little-Endian). LEN=9h is equivalent to LEN=8h (no word swapping) if CAAM STATUS
REGISTER[PLEND]=1 (i.e. Big-Endian).6

All other values are reserved.

NOTE: If the selected FUNCTION is shift_l or shift_r, a LEN value other than 8h may yield unexpected
results. Also note that the IFB bit in the command can be used to override the LEN field for the
immediate value. When set, the IFB (Immediate Four Bytes) bit allows the MATH command to
use a 1, 2, or 4-byte immediate value (0 padded to the left) in the descriptor even though it is
doing an 8-byte operation.

NOTE: If the Length is 8h but the destination is only 4 bytes, an error will be generated. The 4-byte
destinations are SIL, SOL, and POVRD.

1. If the data is less than 8 bytes, it is left-extended with 0s. If the data is less than 8 bytes it must be right-aligned. If SRC0
and SRC1 both specify Immediate data, the SRC0 data is in the first word following the MATH command and the SRC1 data
is in the second word, and either the LEN field must be set to 4 bytes or the IFB field must be set to 1, else an error is
generated.

2. The input data FIFO is popped when the MATH command executes unless the function is shld (shift and load). Note that
this means a final pop may have to be done if the data consumed by the shld is the end of the data. If this is the last data to
be consumed by DECO, then it is not necessary to pop the data, because leaving it there is not a problem if the input data
FIFO is reset. The input FIFO is not automatically reset between job descriptors with the same shared descriptor unless the
CIF bit in the Shared Descriptor is set. The input data FIFO is always reset betwen jobs without, or with different, shared
descriptors. Note that the descriptor must have already created an NFIFO entry to get data to the DECO alignment block,
from which the MATH command will pop it.

3. If SRC1 specifies either input data FIFO or output data FIFO, the MATH command does not execute until the
corresponding FIFO has valid data. It is up to the user to ensure that a sufficient amount of data is present. The user must
also realize that data comes out of the FIFOs left aligned. This means that if there are only five bytes, the data is in the left 5
bytes, not in the right 5 bytes, of the 8-byte source word.

4. The output data FIFO is popped when the MATH command executes unless the function is shld (shift and load). Note that
this means a final pop may have to be done if the data consumed by the shld is the end of the data. If this is the last data to
be consumed by DECO, then it is not necessary to pop the data, because leaving it there is not a problem if the output data
FIFO is reset. The output FIFO is always cleared between descriptors whether shared or not.

5. No Destination is useful for setting flags when the actual result is not needed. An error will be generated if No Destination
is selected when the FUNCTION is shift_l or shift_r.

6. An error will be generated for LEN=9h if IFB=1 or if both or neither of the operands is Immediate.

Table 10-92. MATHI command, field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=10101b : MATH command (see field definitions in table Table 10-91 above)

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 431
Confidential Proprietary

Table 10-92. MATHI command, field descriptions (continued)

Field Description

If CTYPE=11101b : MATHI command (fields defined in this table)

26 Reserved. Must be 0.

25

NFU

No Flag Update

If NFU=0 : Math flags will be updated as appropriate.

If NFU=1 : Preserve the existing math flag values by blocking all updates to math flags.

24

SSEL

SSEL. Source Select. Selects the type and order of the operands to the math function: operand 0
<function> operand 1 -> destination

SSEL value operand 0
specified by

math function
specified by

operand 1
specified by

destination
specified by

0 SRC0 for MATH
command

FUNCTION IMM_VALUE DEST

1 IMM_VALUE FUNCTION SRC1 for MATH
command

DEST

NOTE: If FUNCTION=Ah (FBYT) it is illegal to set SSEL to 1.

23-20

FUNCTION

This field specifies which function to perform, as listed in the table below titled Table 10-93. The
operands are specified in the SRC field and the IMM_VALUE field, and the result is written to the
destination specified in the DEST field.

19-16

SRC

The SRC field indicates the source of one of the operands. The SRC field has two definitions selected
via the SSEL field:

• If SSEL=0: the SRC field is defined the same as the MATH command's SRC0 field (see SRC0)
except that IMM (4h) is not supported and will result in an error.

• If SSEL=1: the SRC field is defined the same as the MATH command's SRC1 field (see SRC1)
except that IMM (4h) is not supported and will result in an error.

15-12

DEST

The destination for the result of the math operation. The MATHI command DEST field is defined the
same as the MATH command's DEST field (see DEST), but is shifted to the left 4 bits to make room for
the IMM_VALUE field.

11-4

IMM_VALUE

The IMM_VALUE field contains an 8-bit immediate value that is left-extended with 0s. This is used as
either operand 0 or operand 1, as specified in the SSEL field.

3-0

LEN

LEN denotes the length, in bytes, of the operation (and the amount by which the IMM_VALUE is left-
extended with 0s).

1h : 1 byte

2h : 2 bytes

4h : 4 bytes

8h : 8 bytes

All other values are reserved.

NOTE: If the selected FUNCTION is shift_l or shift_r, a LEN value other than 8h may yield unexpected
results.

NOTE: If the Length is 8h but the destination is only 4 bytes, an error will be generated. The 4-byte
destinations are SIL, SOL, and POVRD.

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

432 NXP Semiconductors
Confidential Proprietary

Table 10-93. FUNCTION field values

Value Type Description Result

0h add Perform addition operation on operand 0 and operand 1. operand 0 + operand 1

1h add_w_carry Perform addition with a carry bit operation on operand 0 and
operand 1.

operand 0 + operand 1 +
MC

2h sub Perform subtraction operation on operand 0 and operand 1. operand 0 - operand 1

3h sub_w_borrow Perform subtraction with borrow operation on operand 0 and
operand 1.

operand 0 - operand 1 -
MC

4h or Perform bitwise OR operation on operand 0 and operand 1 operand 0 | operand 1

5h and Perform bitwise AND operation on operand 0 and operand 1 operand 0 & operand 1

6h xor Perform bitwise XOR operation on operand 0 and operand 1 operand 0 ^ operand 1

7h shift_l Perform shift left operation. operand 0 should be shifted left by
operand 1 bits; can't be used with "No Destination"

operand 0 << operand 1

8h shift_r Perform shift right operation. operand 0 should be shifted right by
operand 1 bits; can't be used with "No Destination"

operand 0 >> operand 1

9h
(MATH
comman
d only)

shld Perform 32-bit left shift of DEST and concatenate with left 32 bits
of operand 1. shld is only meaningful when DEST specifies Math
Registers 0-3. For all other destinations, this function will work like
an ADD with operand 0 set to 0. (That is, operand 1 will be placed
into DEST.) Note that if operand 1 and DEST are the same Math
Register, then shld would do a word swap.

Function type shld is prohibited for the MATHI command.

{DEST[31:0], operand
1[63:32]}

Ah zbyt or fbyt MATH command: zbyt. Find zero bytes in operand 0. The function
places into the destination seven bytes (if a 64-bit destination) or
three bytes (if a 32-bit destination) of zeros followed by a single
byte that contains a 1 in each bit position that corresponds to a
byte of operand 0 that is all zeros.

MATHI command: fbyt. Find the immediate byte in operand 0. The
function places into the destination seven bytes (if a 64-bit
destination) or three bytes (if a 32-bit destination) of zeros followed
by a single byte that contains a 1 in each bit position that
corresponds to a byte of operand 0 that is equal to IMM_VALUE.
For the fbyt function it is illegal to set SSEL=1.

result is shown at left

Bh
(MATH
comman
d only)

swap_bytes Swap the order of the four bytes in the ms half of operand 0, and
independently swap the order of the four bytes in the ls half of
operand 0.

operand 0[39:32], operand 0[47:40], operand 0[55:48], operand
0[63:56],

operand 0[7:0], operand 0[15:8], operand 0[23:16], operand
0[31:24]

If this is used in conjunction with shld, the result of the two MATH
operations will be an "end-for-end" swap of all 8 bytes.

Function swap_bytes is prohibited for the MATHI command.

result is shown at left

All other values for this field are reserved.

NOTE: A Compare operation is accomplished by selecting FUNCTION=sub, with DEST=No Destination and then doing a
JUMP based on the CZ and/or CN flags.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 433
Confidential Proprietary

All MATH and MATHI commands take one clock cycle to execute except for the shift_l
and shift_r functions. For the shift_l and shift_r functions, the number of bit positions that
the data is shifted is specified in operand 1.

• If the data is to be shifted 64 or more bit positions, the shift command takes two
clocks. One clock decodes the command, and one clock stores all zeros in the DEST
register. Because all bits are shifted off the end, the result is all zeros.

• If the data is to be shifted 63 or fewer bit positions, the shift_l and shift_r functions
take at most two clocks more than the number of bits in operand that are 1. The
shifter can shift any power-of-2 number of bit positions in one cycle, and there are up
to two additional cycles of overhead. If an intermediate shift result is all 0, the
remaining shifts are skipped, resulting in fewer clock cycles than the maximum.

Note that the shift_l and shift_r functions first copy the data specified by operand 0 into
the register specified by DEST and then shift the data in the DEST register. If the source
is 64 bits but the destination is a 32-bit register, the 64-bit source value is truncated to its
least-significant 32 bits before the shifting begins. A shift_l works as expected, but a
shift_r of data from a 64-bit source to a 32-bit destination shifts in 0s rather than shifts in
bits from the most-significant 32-bits of the source.

When one source, operand 0 or operand 1, is immediate, then the length may be any legal
value. If 1, 2, or 4 bytes, the value is right-aligned in the word following the command. If
the value is 8 bytes, then the value is in the two words that follow the command. Note
that the immediate data can be 4 bytes even if the LEN is 8 bytes if the IFB bit is set.

10.6.22 SEQ IN PTR command

The Sequence In Pointer (SEQ IN PTR) command is used to specify the starting address
for an input sequence and the length of that sequence (see SEQ vs non-SEQ commands).
Only one input sequence may be active within the DECO at any one time. An input
sequence is initiated by executing a SEQ IN PTR command with PRE = 0. This causes
the following:

• Starting address of the input sequence to be set to the value in the Pointer field or to
the original pointer if RTO=1 or to the original output sequence pointer if SOP=1.

• The Sequence In Length register to be set to the value in the LENGTH field (if EXT
= 0) or the EXT_LENGTH field (if EXT = 1). If rewinding, the LENGTH or
EXT_LENGTH field is added to the current length.

Note that if the EXT bit is 0, the EXT_LENGTH field is omitted from the SEQ IN PTR
command.

The input sequence terminates when one of the following occurs:

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

434 NXP Semiconductors
Confidential Proprietary

• All input data is utilized.
• An error occurs.
• A new input sequence is started by executing a SEQ IN PTR command with PRE =

0.

An error is flagged if a SEQ command attempts to input data if the execution of that
command would cause the remaining length to go below 0. To extend the length of the
sequence any number of additional SEQ IN PTR commands may be executed with PRE
= 1. If PRE = 1, the value in the LENGTH field (if EXT = 0) or the EXT LENGTH field
(if EXT = 1) is added to the current Sequence In Length register value, but the address for
the input sequence is unaffected. In this case the SEQ IN PTR command does not include
a Pointer field. Additional length may also be added via the MATH and MATHI
commands.

If the same input data needs to be processed again, the input pointer can be restored to the
original starting address by executing a SEQ IN PTR with RTO = 1. The SEQ IN PTR
command does not include a Pointer field in this case.

Table 10-94. SEQ IN PTR command, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CTYPE = 11110 Reser
ved

INL SGF PRE EXT RTO RJD SOP CTRL Reser
ved

Reser
ved

15–0

LENGTH (used if EXT = 0)

Optional words of SEQ IN PTR command:

Pointer (one word; see Address pointers)

NOTE: This pointer is omitted if PRE=1 or RTO=1

EXT_LENGTH (present if EXT = 1) (one word)

NOTE: This field is omitted if EXT=0

Table 10-95. SEQ IN PTR command, field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=11110b : SEQ IN PTR command

26 Reserved

25

INL

In-Line Descriptor. This specifies that a new descriptor is to be found at the start of the data pointed to by the
sequence.

If INL=0 : No in-line descriptor

If INL=1 : In-line descriptor present. An in-line descriptor is found at the start of the data pointed to by the
sequence. DECO reads that descriptor (which must not have a shared descriptor) and then executes it.
Therefore, a SEQ IN PTR with INL = 1 is the last command that is executed in the current descriptor.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 435
Confidential Proprietary

Table 10-95. SEQ IN PTR command, field descriptions (continued)

Field Description

If the INL bit is 1 and the current Input Sequence length is not as large as the in-line descriptor, an error is
flagged. Note that it is an error for INL and RJD to both be 1.

See Using in-line descriptors for more information.

24

SGF

Scatter/Gather Table Flag.

If SGF=0 : Pointer points to actual data.

If SGF=1 : Pointer points to a scatter/gather table. SGF is ignored if RTO=1.

23

PRE

Previous. Add more length to the previously specified length of the input sequence.

If PRE=0 : The sequence pointer is set to the value of the Pointer and the input sequence length is set to the
value specified in the LENGTH or EXT LENGTH field.

If PRE=1 : Command has no pointer field, and the specified length (LENGTH or EXT LENGTH) is added to
the current input sequence length.

It is an error for the PRE bit and the RTO bit to both be set.

22

EXT

Extended Length

If EXT=0 : Input data length value is in the 16-bit LENGTH field in the first word of the command (before the
pointer). The EXT LENGTH field is omitted from the command.

If EXT=1 : Input data length value is in the 32-bit EXT LENGTH following the pointer. The 16-bit LENGTH
field is ignored.

21

RTO

Restore. Used to restore an input sequence.

If RTO=0 : Do not restore.

If RTO=1 : Restore. This command has no POINTER field. The length specified in LENGTH or EXT
LENGTH is added to the current Input Sequence length. The original sequence address and RBS and SGF
bits are automatically restored. The intended use is to be able to go back to the beginning of a sequence to
reprocess some or all of the data.

It is an error for the PRE bit and the RTO bit to both be set. SGF is ignored if RTO=1.

20

RJD

Replacement Job Descriptor

If RJD=0 : Don't replace job descriptor

If RJD=1 : Replace job descriptor. If there is no shared descriptor, and CTRL=0, this is synonymous with the
INL bit (that is, setting either bit yields the same result). However, if there is a shared descriptor, setting the
RJD bit causes the job descriptor to be replaced without affecting the shared descriptor, which will have
already been loaded. See Using replacement job descriptors for more information. It is an error if both RJD =
1 and INL = 1.

NOTE: See the description below for the CTRL bit to understand how that bit can modify the above
behavior.

19

SOP

Sequence Out Pointer

If SOP=0 : This bit has no effect.

If SOP=1 : Start a new input sequence using the pointer and SGF bit used when the current output sequence
was defined. (If there was no previous sequence, behavior is undefined.) The length used is the length that
has already been written to the current output sequence. This functionality is used when a multi-pass
operation is required. The results of the first pass are stored in the output frame. By using the SOP bit, the
SEQ IN PTR command allows the second pass to reference the results of the first pass.

It is an error to assert SOP if PRE, EXT or RTO are set. SGF and LENGTH are ignored.

18

CTRL

CTRL. This bit is used in conjunction with the RJD bit to differentiate between a normal RJD and a control
RJD. See Using replacement job descriptors for more information.

If CTRL=0 and RJD=0 : This bit has no effect.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

436 NXP Semiconductors
Confidential Proprietary

Table 10-95. SEQ IN PTR command, field descriptions (continued)

Field Description

If CTRL=0 and RJD=1 : The new descriptor is the next data to be read from the input frame.

If CTRL=1 and RJD=0 : An error will be thrown.

If CTRL=1 and RJD=1 : The new descriptor is found following the shared descriptor in memory. If there is no
shared descriptor, an error will be thrown.

17 Reserved

16 Reserved

15-0

LENGTH

LENGTH. This is the length of the input frame.

If EXT = 0 : The LENGTH field specifies the number of bytes in (or to be added to) the input sequence. The
Extended Length word is omitted.

If EXT = 1 : The number of bytes in (or to be added to) the input sequence is specified in the Extended
Length field. The LENGTH field is ignored.

Optional words of SEQ IN PTR command:

31-0

POINTER

Pointer

Note, if PRE = 1, RTO = 1, or SOP = 1, this field is omitted.

If PRE = 0, Pointer specifies the starting address for an Input Sequence. See Address pointers.

31-0

EXT_LENGTH

Extended Length Field

Note, if EXT = 0, this field is omitted.

If EXT = 1, EXT_LENGTH specifies the number of bytes in (or to be added to) the Input Sequence.

10.6.23 SEQ OUT PTR command

The Sequence Out Pointer (SEQ OUT PTR) command is used to specify the starting
address for an output sequence and the length of that sequence (see SEQ vs non-SEQ
commands). Only one output sequence may be active within the DECO at any one time.

An output sequence is initiated by executing a SEQ OUT PTR command with PRE = 0.
This causes the following:

• The starting address of the output sequence to be set to the value in the Pointer field
or to the original pointer if rewinding.

• The Sequence Out Length register to be set to the value in the LENGTH field (if
EXT = 0) or the EXT LENGTH field (if EXT = 1). If rewinding, the LENGTH or
EXT_LENGTH field is added to the current length if REW = 10b and is ignored if
REW = 11b.

If the EXT bit is 0, the EXT LENGTH field is omitted from the SEQ OUT PTR
command.

The output sequence terminates when one of the following occurs:

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 437
Confidential Proprietary

• An error
• A new output sequence is started by executing a SEQ OUT PTR command with PRE

= 0.

To extend the length of the sequence, any number of additional SEQ OUT PTR
commands may be executed with PRE = 1. If PRE = 1, the value in the LENGTH field (if
EXT = 0) or the EXT LENGTH field (if EXT = 1) is added to the current value in the
Sequence Out Length register, but the address for the output sequence is unaffected. In
this case, the SEQ OUT PTR command does not include a Pointer field. Additional
length may also be added via the MATH and MATHI commands.

If the same output data needs to be processed again, the output pointer can be restored to
the original starting address by executing a SEQ OUT PTR using the REW field. The
SEQ OUT PTR command does not include a Pointer field in this case.

Table 10-96. SEQ OUT PTR command, format

31–27 26 25 24 23 22 21-20 19 18-17 16

CTYPE = 11111 Reserved SGF PRE EXT REW EWS Reserved Rese
rved

15–0

LENGTH (used if EXT = 0)

Additional words of SEQ OUT PTR command:

This pointer
is omitted if
PRE=1 or if
rewinding

Pointer (one word; see Address pointers)

This word is
omitted if

EXT=0

EXT LENGTH (used if EXT = 1)

Table 10-97. SEQ OUT PTR command, field descriptions

Field Description

31-27

CTYPE

Command Type.

If CTYPE=11111b : SEQ OUT PTR command

26-25 Reserved

24

SGF

If SGF=0 : Pointer points to actual data.

If SGF=1 : Pointer points to a scatter/gather table.

23

PRE

Previous. Add more length to the previously specified length of the Output Sequence.

If PRE=0 : The sequence pointer is set to the value of the pointer and the Output Sequence Length is set to
the value specified in the LENGTH or EXT LENGTH field.

If PRE=1 : The SEQ OUT PTR command has no pointer field, and the specified length (LENGTH or EXT
LENGTH) is added to the current Output Sequence Length.

Note that it is an error if PRE = 1 and REW = 10b or 11b.

Table continues on the next page...

Descriptors and descriptor commands

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

438 NXP Semiconductors
Confidential Proprietary

Table 10-97. SEQ OUT PTR command, field descriptions (continued)

Field Description

22

EXT

Extended Length

If EXT=0 : The output data length value is in the 16-bit LENGTH field in the first word of the command
(before the pointer). The EXT LENGTH field is omitted from the command.

If EXT=1 : The output data length value is in the 32-bit EXT LENGTH field following the pointer. The 16-bit
LENGTH field is ignored.

21-20

REW

Rewind. Used to rewind an Output Sequence.

If REW = 00b : Do not rewind.

If REW = 01b : Error

If REW = 10b : Rewind. This command has no POINTER field. The length specified in LENGTH or EXT
LENGTH is added to the current sequence output length. The original sequence address and SGF bit are
automatically restored. This allows returning to the beginning of a sequence to reprocess some or all of the
data. DECO automatically disables the counting of bytes written to the output frame. In order to re-enable
counting, use a write to the DECO CTRL Register.

If REW = 11b : Rewind and Reset. The same as 10b, except that any length provided is ignored, the current
output frame length is added back to the SOL (sequence output length) register and the tracking length 1 of
bytes written to the output frame is reset to 0. Care must be taken if the descriptor has modified the SOL
register other than as a result of decrements caused by SEQ STORE and SEQ FIFO STORE commands.
Since the number of bytes written to the output frame has been reset, counting such bytes remains enabled
in this case.

The REW = 10b or 11b functionality is used when a multi-pass operation is required. The results of the first
pass are stored in the output frame. Executing the SEQ OUT PTR command with REW = 11b allows the
second pass to start from the beginning of the output frame as if this were the original output stream. That
way the final status reported back contains the correct length.

19

EWS

Enable Write Safe.

When this bit is set, write-safe bus transactions are permitted for this output sequence. See AXI master
(DMA) interface.

18-16 Reserved

15-0

LENGTH

If EXT = 0 : The LENGTH field specifies the number of bytes in (or to be added to) the output sequence.

If EXT = 1 : The LENGTH field is ignored.

Optional words of SEQ OUT PTR command:

POINTER Pointer. Specifies the starting address for an Output Sequence. See Address pointers. If PRE = 1 or
REW != 00b, this
field is omitted.

One word

EXT LENGTH

If EXT = 0 : The EXT LENGTH field is omitted.

If EXT = 1 : The EXT LENGTH field specifies the number of bytes in (or to be added to)
the output sequence.

If EXT = 0, this
field is omitted.

1. DECO tracks how many bytes have been written to the output frame so that this number can be part of the status reported
when a job completes.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 439
Confidential Proprietary

10.7 Protocol acceleration
CAAM is designed to accelerate the cryptographic operations associated with various
network protocols. These cryptographic operations can be implemented using the
descriptor commands described in sections KEY commands through SEQ OUT PTR
command, but CAAM also implements specialized descriptor commands for particular
networking protocols. Each such command performs a sequence of operations that are
equivalent to a series of the more general descriptor commands; for example, all the
protocols in this section manage the input data and output FIFOs directly -- a SEQ FIFO
LOAD command is required in a descriptor only if there is data in the input frame that is
not to be handled by the protocol. These protocols often require that state information
(for example, sequence numbers) be maintained per security association.

The specialized protocol commands implemented by CAAM use data structures called
protocol data blocks (PDBs) embedded within the descriptor to specify protocol options
and hold state information. Typically these protocol commands and their associated
PDBs are contained in shared descriptors, so that the same protocol options and state
information can be shared among all the Job Descriptors that identify the PDUs within a
particular security association. The PDB is embedded within the shared descriptor
immediately following the header, and the START INDEX field in the header is used to
skip over the PDB to continue executing the commands within the shared descriptor.

If the protocol requires that state information be updated, CAAM writes the updated
information back to the PDB in the shared descriptor located in system memory.

Sharing is described in Shared descriptors. Sharing significantly impacts Protocol
operation in particular, because CAAM protocols tend to use a shared descriptor PDB to
share state across many jobs within a flow. One example is a sequence or packet number
-- it is important that only one packet be encapsulated with a given sequence number.
Therefore sharing type as described in Table 10-8 is to be carefully considered when
crafting a descriptor.

CAAM protocols maintain a lock called OK to Share in order to allow for wait sharing.
For example, consider IPsec encapsulation using CBC mode. CBC requires every packet
include an Initialization Vector (an IV). For IPsec, either the IV can be the final block of
ciphertext from the previous packet (a Chained IV), or it can be a random value (a
Random IV). The IPsec protocol state machine will block WAIT sharing of a shared
descriptor until a Chained IV has been prepared and OK to Share is signalled. If instead a
Random IV is used, OK to Share can be set as soon as the IPsec protocol state machine
has updated Sequence Number in the PDB. It is probably not useful to use WAIT sharing
with a Chained IV; two jobs from a single flow can only be present in multiple DECOs
for a very limited period of time.

Protocol acceleration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

440 NXP Semiconductors
Confidential Proprietary

Never and Always Sharing should be used with extreme care. Selecting share type of
Always will cause a shared descriptor to be shared between DECOs without
consideration of state. In the IPsec encapsulation example, Always sharing can result in
packets with duplicate sequence numbers. Duplicate sequence numbers can also result
from using Never sharing, as a DECO will get a fresh copy of a Shared Descriptor from
system memory, without any consideration for any pending writes to update the Shared
Descriptor PDB from another DECO.

CAAM includes built-in descriptor programming shortcuts for the following functions:

• Cryptographic Blob Encapsulation and Decapsulation

Each detailed description of the function includes color-coded diagrams. Figure 10-10
shows the color coding key. Note that in the diagrams, processing order is reflected top-
to-bottom, and PDU content is reflected left-to-right.

Data received in the input data frame as plaintext

Data received in the input data frame as ciphertext (including encrypted MAC values)

Computed MAC value

Computed CRC value

Values extracted from protocol context region in descriptor

Values manipulated by CAAM other than by encryption,
CRC, or MAC computations

CAAM-generated padding data

Multi-source data (RNG or in protocol data field)

Software-prepended frame data not strictly part of PDU

Computations:

Portion of data
only authenticated

Portion of data
authenticated and encrypted

Encrypted
only

Plain frame data
Number of bytes

Encrypted frame data
Number of bytes

MAC data
Number of bytes

CRC data
Number of bytes

Descriptor data
Number of bytes

Derived data
Number of bytes

Padding
Number of bytes

Multi-source
Number of bytes

Descriptor data
Number of bytes

Type of computation

Figure 10-10. Protocol diagram color-coding key

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 441
Confidential Proprietary

10.8 Public Key Cryptography Operations
CAAM implements, through protocol commands, a number of public (and private) key
functions. These are:

• DSA and ECDSA sign / DSA and ECDSA verify
• Diffie-Hellman (DH) and ECDH key agreement
• ECC key generation (for ECDH, ECDSA, etc.)
• ECC public key validation
• DLC key generation (for DH, DSA)
• RSA public-key and private-key primitives, for use with RSA encryption/decryption

and RSA signature generation/verification
• RSA key-generation finalization, once suitable primes have been found.

In addition to public (and private) key protocol commands, CAAM also contains a
Public-Key Hardware Accelerator (PKHA) that can be programmed directly for such
calculations.

10.8.1 Conformance considerations

The DSA and ECDSA key-generation, signing, verification, and Diffie-Hellman
functions described are intended to conform to the following specifications (except where
noted). For more information refer to the NIST Cryptographic Algorithm Validation
Program (CAVP) Certifications whitepaper, www.nxp.com/security, or consult these
standards:

• FIPS PUB 186-4, Digital Signature Standard (DSS), July 2013
• NIST SP800-90A, Recommendation for Random Number Generation Using

Deterministic Random Bit Generators, January 2012
• IEEE1363-2000, IEEE Standard Specifications for Public-Key Cryptography,

January 30, 2000
• ANSI X9.42-2003, Public Key Cryptography for the Financial Services Industry,

Agreement of Symmetric Keys Using Discrete Logarithm Cryptography, November
19, 2003

• ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry,
Key Agreement and Key Transport Using Elliptic Curve Cryptography, November
20, 2001

• ANSI X9.62-2005, Public Key Cryptography for the Financial Services Industry,
The Elliptic Curve Digital Signature Algorithm (ECDSA), November 16, 2005

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

442 NXP Semiconductors
Confidential Proprietary

http://www.nxp.com/files/32bit/doc/support_info/FSLNISTCAVP.pdf
http://www.nxp.com/files/32bit/doc/support_info/FSLNISTCAVP.pdf
http://www.nxp.com/security

The notation used is from IEEE 1363-2000 because only that document provides a set of
variable names and definitions consistent between both DSA and ECDSA.

Private keys for DSA and ECDSA, (as well as per-message secrets), are generated using
the method of extra random bits, equivalent to that described in FIPS 186-4, (Appendix
B.1.1). In B.1.1, c is a string of random bits, 64 bits longer than requested.

Then x = (c mod (q - 1)) + 1

CAAM uses the following equivalent version.

x = c mod q; if (x = 0), choose another c

In both cases, x is uniformly distributed in the range [1, q-1].

Binary (aka Characteristic 2 or F2m) Elliptic Curves inputs and outputs are in polynomial
basis and in affine (x, y) coordinates.

Assurances for the validity of all domain parameters and public keys must be obtained
before invoking any of these functions. These functions assume that all domain
parameters and public keys are valid and are associated with each other.

10.8.2 Specifying the ECC domain curves for the discrete-log
functions

When executing an ECC function, the ECC domain curve must be specified. If the PD
(Predefined Domain) bit in the function's PDB is 0, the curve parameters are supplied via
the PDB. But when PD is 1, the ECDSEL (Elliptic Curve Domain Selection) field in the
PDB is used to select one of the built-in ECC domains. In this case most of the curve
parameters are supplied by the hardware. The valid values for the ECDSEL field and
their meanings are listed in the table below.

The following variable definitions apply to the following table. Variable names (q, r, b, c)
follow the conventions of IEEE Std 1363.
Name

The names in this table are associated with, or named in, various published standards.
Neither the names nor the domains are guaranteed to be complete. Two values of the
domain parameters are provided for purposes of identification.

• Those beginning with "P-", "K-", and "B-" are in FIPS 186 from NIST, found at
www.csrc.nist.gov

• Those beginning with "ansix9" are names from ANS X9.62-2005; those beginning
with "prime" or "c2pnb" are from an earlier ANSI document

• Those beginning with "sec" are from SEC 2 from the Standards for Efficient
Cryptography group, found at www.secg.org

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 443
Confidential Proprietary

http://www.csrc.nist.gov
http://www.secg.org

• Those beginning with "wtls" are taken from Wireless Transport Layer Security /
Wireless Access Protocol, Version 06-Apr-2001, WAP-261-WTLS-20010406-a.
Not all software libraries agree with the mapping of these names to values; care
has been taken to identify the values based upon the source documentation.

• Those beginning with "ECDSA", "ECP", "EC2N", "ecp_group", and "Oakley" are
from various RFCs found at www.ietf.org

• Those beginning with "GOST" are from the Russian standard GOST R 3410-2001
• Those beginning with "brainpool" are from ECC Brainpool, found at www.ecc-

brainpool.org and republished in RFC 5639

q

This is the field-defining value for the elliptic curve. For Fp curves, it is the prime
number used as the modulus for all point arithmetic; it is named p in some other
publications. For F2m curves, it is the irreducible binary polynomial used as the
modulus for all point arithmetic. It is not, as usually defined, q = 2m, i.e. the size of the
field.

L

This is the number of bytes needed to hold q and each of its associated values:, a,b,c,
the point coordinates x and y, the result of an ECDH key agreement, etc.

r

This is the (usually prime) number which is the order of G, the generator point. It is
also usually used as the modulus for the non-ECC-related arithmetic in an ECC
primitive. This variable is named n in some other publications.

N

This is the number of bytes needed to hold r and each of its associated values: private
keys, each of the two components of an ECDSA signature, etc.

a

This variable, along with q and b, define the elliptic curve. For Fp, a is the coefficient
for the x term. For F2m, it is the coefficient for the x2 term.

b / c (b')

b is the coefficient for the x0 (ones) term in an F2m elliptic curve equation. Its
relationship with c is b = c4. c is sometimes referred to as b' in NXP documentation.

Table 10-98. ECDSEL field values for built-in ECC domains

When PD=1 in the first word of the PDB, the ECDSEL field specifies one of the built-in ECC domains. The valid
values for the ECDSEL field and the name of the ECC domain are listed in this table. The domains are ordered by

size.

Value Name(s)

ECC Fp domains

00h P-192, secp192r1, ansix9p192r1, prime192v1, ECPRGF192Random

01h P-224, secp224r1, ansix9p224r1, wtls12, ECPRGF224Random

02h P-256, secp256r1, ansix9p256r1, prime256v1, ECDSA-256, ecp_group_19, ECPRGF256Random

Table continues on the next page...

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

444 NXP Semiconductors
Confidential Proprietary

http://www.ietf.org
http://www.ecc-brainpool.org
http://www.ecc-brainpool.org

Table 10-98. ECDSEL field values for built-in ECC domains (continued)

When PD=1 in the first word of the PDB, the ECDSEL field specifies one of the built-in ECC domains. The valid
values for the ECDSEL field and the name of the ECC domain are listed in this table. The domains are ordered by

size.

Value Name(s)

ECC Fp domains

03h P-384, secp384r1, ansix9p384r1, ECDSA-384, ecp_group_20, ECPRGF384Random

04h P-521, secp521r1, ansix9p521r1, ECDSA-521, ecp_group_21, ECPRGF521Random

05h brainpoolP160r1

06h brainpoolP160t1

07h brainpoolP192r1

08h brainpoolP192t1

09h brainpoolP224r1

0Ah brainpoolP224t1

0Bh brainpoolP256r1

0Ch brainpoolP256t1

0Dh brainpoolP320r1

0Eh brainpoolP320t1

0Fh brainpoolP384r1

10h brainpoolP384t1

11h brainpoolP512r1

12h brainpoolP512t1

13h prime192v2

14h prime192v3

15h prime239v1

16h prime239v2

17h prime239v3

18h secp112r1, wtls6

19h wtls8

1Ah wtls9

1Bh secp160k1, ansix9p160k1

1Ch secp160r1, ansix9p160r1, wtls7

1Dh secp160r2, ansix9p160r2

1Eh secp192k1, ansix9p192k1

1Fh secp224k1, ansix9p224k1

20h secp256k1, ansix9p256k1

ECC F2m domains

40h B-163, ansix9t163r2, sect163r2, EC2NGF163Random

41h B-233, sect233r1, ansix9t233r1, EC2NGF233Random, wtls11

42h B-283, sect283r1, ansix9t283r1, EC2NGF283Random

43h B-409, sect409r1, ansix9t409r1, EC2NGF409Random

44h B-571, sect571r1, ansix9t571r1, EC2NGF571Random

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 445
Confidential Proprietary

Table 10-98. ECDSEL field values for built-in ECC domains (continued)

When PD=1 in the first word of the PDB, the ECDSEL field specifies one of the built-in ECC domains. The valid
values for the ECDSEL field and the name of the ECC domain are listed in this table. The domains are ordered by

size.

Value Name(s)

ECC Fp domains

45h K-163, ansix9t163k1, sect163k1, EC2NGF163Koblitz, wtls3

46h K-233, sect233k1, ansix9t233k1, EC2NGF233Koblitz, wtls10

47h K-283, sect283k1, ansix9t283k1, EC2NGF283Koblitz

48h K-409, sect409k1, ansix9t409k1, EC2NGF409Koblitz

49h K-571, sect571k1, ansix9t571k1, EC2NGF571Koblitz

4Ah wtls1

4Bh sect113r1, wtls4

4Ch c2pnb163v1, wtls5

4Dh c2pnb163v2

4Eh c2pnb163v3

4Fh sect163r1, ansix9t163r1

50h sect193r1, ansix9t193r1

51h sect193r2, ansix9t193r2

52h sect239k1, ansix9t239k1

53h Oakley 3, ec2n_group_3

54h Oakley 4, ec2n_group_4

10.8.3 Discrete-log key-pair generation

Some important characteristics and requirements of discrete-log key-pair generation are
as follows:

• DL KEY PAIR GEN is used to generate public key-pairs. There are four variations
to generate either prime field or binary field keys for either DSA or ECDSA.

• Each of the public key functions writes out the private key, followed by the public
key.

• DL KEY PAIR GEN requires the parameters listed in the following table. Note that
Gx,y and Wx,y are pointers to input buffers containing both an x and y coordinate. The
two coordinates must be the same length.

• There are two parameter lengths, size of the field (L), and size of the group or private
key modulus (N). These represent the size of the buffers, in bytes, required to hold
the input and output data, (not the bit lengths of the various parameters). Note that
the size of the buffers for Gx,y, Wx,y and a,b must be twice L, as each holds two
values of size L.

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

446 NXP Semiconductors
Confidential Proprietary

Table 10-99. Public key-generation parameters

Parameter Input/output Length Definition

q Input L Prime number or irreducible polynomial that creates the field

r Input N Order of the field of private keys or modulus for creating private keys

a,b Input 2L ECC curve parameters. For binary field curves, b' rather than b is used. (ECC
only.)

g or Gx,y Input L or 2L Generator or generator point (ECC)

s Output N Private key

w or Wx,y Output L or 2L Public key

10.8.3.1 Inputs to the discrete-log key-pair generation function
• For DSA, the domain parameters q, r, and g
• For ECDSA, the domain parameters q, a, b or b',r, and Gx,y

10.8.3.2 Assumptions of the discrete-log key-pair generation function
• The domain parameters are valid and are associated with each other (that is,

parameter validation must be done prior to using this function).
• If the ENC bit of the Protocol Command register is set, s is treated as an encrypted

key and is encrypted before being written out. When generating an encrypted key,
the buffer must be large enough to hold the black key, i.e., the encrypted version of
the key.

10.8.3.3 Outputs from the discrete-log key-pair generation function
• The signer's private key s
• For DSA, the signer's public key w
• For ECDSA, the signer's public key Wx,y

10.8.3.4 Operation of the discrete-log key-pair generation function
• Generate a private key s, in the range 1 ≤ s < r. (Generate a random number k, 64 bits

larger than r, and find s = k mod r. If s = 0, generate a new k.)
• Compute w = gs mod q, or Wx,y = sGx,y.
• Output (s, w) or (s, Wx,y) as the private and public keys.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 447
Confidential Proprietary

10.8.3.5 Notes associated with the discrete-log key-pair generation
function

For ECC binary field (F2M) functions, b' = b2m-2
mod q must be given, rather than b.

For IETF DH involving domains like MODP Groups 5, 14, 15, and 16, there is no
published r value. However, a value is necessary for this function, as it is the modulus
used to create the private key, where 1 (< private_key < mod). The value of N should be
determined based upon the desired strength of the private key; there are recommendations
in the IETF RFCs and elsewhere. Both r and the private key will be N bytes long. A
typical value for r would be a string containing N bytes of FFh.

When the PD (Predefined Domain) bit in the PDB is 0, the ECC curve parameters are
supplied via the PDB. But when PD is 0, the ECDSEL (Elliptic Curve Domain Selection)
field in the PDB is used to select one of the built-in ECC domains. In this case most of
the curve parameters are supplied by the hardware. The valid values for the ECDSEL
field and their meanings are listed in Table 10-98.

Table 10-100. Public-key generation protocol data block, PDB word 1, formats with PD=0
and PD=1

PDB
word 1

when
PD=0

SGF

(bits 31..26)

PD (=0)

(bit 25)

reserved

(bits 24..17)

L

(bits 16..7)

N

(bits 6..0)

PDB
word 1

when
PD=1

SGF

(bits 31..26)

PD (=1)

(bit 25)

reserved

(bits 24..14)

ECDSEL

(bits 13..7)

reserved

(bits 6..0)

Table 10-101. Public-key generation protocol data block, pointers in PDB words 2, 3 ...

pointers Discrete Log Diffie-Hellman (PD
is always 0)

Elliptic Curve Diffie-Hellman
(PD=0 format)

Elliptic Curve Diffie-Hellman
(PD=1 format)

PDB pointer 1 Pointer to q (SGF in bit 31) Pointer to q (SGF in bit 31) Pointer to s (SGF in bit 28)

PDB pointer 2 Pointer to r (SGF in bit 30) Pointer to r (SGF in bit 30) Pointer to Wx,y (SGF in bit 27)

PDB pointer 3 Pointer to g (SGF in bit 29) Pointer to Gx,y (SGF in bit 29)

PDB pointer 4 Pointer to s (SGF in bit 28) Pointer to s (SGF in bit 28)

PDB pointer 5 Pointer to w (SGF in bit 27) Pointer to Wx,y (SGF in bit 27)

PDB pointer 6 Pointer to a,b (SGF in bit 26)

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

448 NXP Semiconductors
Confidential Proprietary

10.8.4 Using the Diffie_Hellman function

Diffie-Hellman is used in key exchange and key agreement schemes. Because the output
of Diffie-Hellman is a secret value, it is advisable to store the output in encrypted form
and CAAM's Diffie-Hellman protocol provides this option.

Diffie-Hellman is defined for both discrete log (DH) and elliptic-curve (ECDH) forms.
CAAM provides acceleration support for both forms.

10.8.4.1 Diffie_Hellman requirements

Diffie-Hellman requires the parameters listed in this table.

Table 10-102. Required Diffie-Hellman parameters

Parameter Input/Output Length Definition

L input 10 bits Number of bytes of the the field

N input 7 bits Number of bytes of the private key

q input L Prime number or irreducible polynomial that creates the field

r input - Unused for Diffie-Hellman

a,b input 2L ECC curve parameters. For binary field curves, b' rather than b is
used. (ECC only.)

w' or W'x,y input L (DH) or 2L
(ECDH)

Other party's public key

s input N Own private key

z output L Shared secret value

NOTE: Wx,y is a pointer to an input buffer containing both an x and a y coordinate. The two coordinates must be the same
length.

There are two parameter lengths, size of the field (L), and the size of the private key (N). These represent the size of
the buffers, in bytes, required to hold the input and output data.

The size of the buffers for Gx,y, Wx,y, and a,b must be twice L, as each holds two values of size L.

10.8.4.2 Inputs to the Diffie-Hellman function
• For discrete logs, the domain parameters q, s (own private key), and w' (other's

public key).
• For elliptic curve, the domain parameters q, s (own private key), and W'x,y (other's

public key), a and b (or b').

Note that the domain parameters r and g (or Gx,y) are not used.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 449
Confidential Proprietary

10.8.4.3 Assumptions of the Diffie-Hellman function
• The domain parameters are valid and are associated with each other (that is,

parameter validation must be done prior to using this function).
• If the ENC_PRI bit of the Protocol Information register is set, s is treated as an

encrypted key and is decrypted after being read. If the ENC_PUB bit of the protocol
information is set, then z is encrypted before being written.

10.8.4.4 Outputs from the Diffie-Hellman function

The shared secret value z

10.8.4.5 Operation of the Diffie-Hellman function
• Read in the private key pointed to by s.
• For DL, compute z = ws mod q.
• For ECC, compute new_point = s * W, and output z = x coordinate of new_point
• Output z as the shared secret.

10.8.4.6 Notes associated with the Diffie-Hellman function

For ECC binary field (F2M) functions, b' = b2m-2
 mod q must be given rather than b. For a

detailed explanation, see ECC_F2M: Point math on a standard curve over a binary field
(F2m)

When the PD (Predefined Domain) bit in the PDB is 0, the ECC curve parameters are
supplied via the PDB. But when PD is 0, the the ECDSEL (Elliptic Curve Domain
Selection) field in the PDB is used to select one of the built-in ECC domains. In this case
most of the curve parameters are supplied by the hardware. The valid values for the
ECDSEL field and their meanings are listed in Table 10-98.

Table 10-103. Diffie-Hellman protocol data block, PDB word 1, formats with PD=0 and PD=1

PDB word 1

when PD=0

SGF

(bits 31..26)

PD
(=0)

(bit
25)

reserved

(bits 24..17)

L

(bits 16..7)

N

(bits 6..0)

PDB word 1

when PD=1

SGF

(bits 31..26)

PD
(=1)

(bit
25)

reserved

(bits 24..14)

ECDSEL

(bits 13..7)

reserved

(bits 6..0)

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

450 NXP Semiconductors
Confidential Proprietary

Diffie-Hellman protocol data block, pointers in PDB words 2, 3 ...

Table 10-104. Diffie-Hellman protocol data block, PDB words 2, 3, ..

pointer or
constant #

Discrete Log Diffie-Hellman (PD
is always 0)

Elliptic Curve Diffie-Hellman
(PD=0 format)

Elliptic Curve Diffie-Hellman
(PD=1 format)

1 Pointer to q (SGF in bit 31) Pointer to q (SGF in bit 31) Pointer to Wx,y (SGF in bit 29)

2 (unused) (unused) Pointer to s (SGF in bit 28)

3 Pointer to w (SGF in bit 29) Pointer to Wx,y (SGF in bit 29)

4 Pointer to s (SGF in bit 28) Pointer to s (SGF in bit 28)

5 Pointer to z (SGF in bit 27) Pointer to z (SGF in bit 27)

6 Pointer to a,b (SGF in bit 26)

10.8.5 Generating DSA and ECDSA signatures

DSA_SIGN is CAAM's hardware implementation of NIST's DSA (Digital Signature
Algorithm) and ECDSA digital signing functions. It supports DSA and ECDSA in both
prime fields and binary fields. These functions can take either a message or a message
representative as input, controlled by the MES_REP bit in the OPERATION Command
register.

There are two parameter lengths: size of the field (L), and size of the group (N). These
represent the size of the buffers, in bytes, required to hold the input and output data, (not
the bit lengths of the various parameters). Note that the size of the buffers for Gx,y and a,b
must be twice L, as each holds two values of size L.

This table lists the DSA and ECDSA sign protocol parameters.

Table 10-105. DSA and ECDSA sign parameters

Parameter Input/Output Length Definition

q input L Prime number or irreducible polynomial that creates the field

r input N Order of the field of private keys

a, b input 2L ECC curve parameters. For binary field curves, b' rather than b is given.
(ECC only.)

g or Gx,y input L (DSA),

2L (ECDSA)

Generator or generator point (ECC)

s input N Private key

f (or m) input N Message representative (typically the hash of the message) or the actual
message

c output N First part of digital signature

d output N Second part of digital signature. The buffer for d must be a multiple of 16
bytes, as it is used to store an encrypted intermediate result, which may
include padding.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 451
Confidential Proprietary

Table 10-105. DSA and ECDSA sign parameters (continued)

Parameter Input/Output Length Definition

u output N Per message random number, only in TEST mode

10.8.5.1 Inputs to the DSA and ECDSA signature generation function
• For DSA, the domain parameters q, r, and g associated with key s.
• For ECDSA, the domain parameters q, r, g, a and b associated with key s.
• The signer's private key s.
• The message representative, which is an integer f ≥ 0, or the message itself (which is

hashed to form a message representative).

10.8.5.2 Assumptions of the DSA and ECDSA signature generation
function

• The private key s is in the range 1 ≤ s < r, and the domain parameters are valid and
are associated with each other, (that is, parameter validation must be done prior to
using this function).

• The message representative, f, is generated using an approved hashing function of the
appropriate security strength.

• If the ENC bit of the Protocol Command is set, then s is treated as an encrypted key,
and is decrypted before it is used.

10.8.5.3 Outputs from the DSA and ECDSA signature generation
function

When running the full signature operation, the output is a pair of integers (c, d), where 1
≤ c < r and 1 ≤ d < r

When just the first part of the signature is generated the output is the integer c, as above,
and the encrypted version of the (inverted) temporary key used in the creation of the
signature. It is stored at d, and the memory there must have space for the ECB-encrypted
version (i.e, rounded up to the nearest 16 bytes).

When just the second part of the signature is generated the output is d, as in the output of
the complete signature operation.

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

452 NXP Semiconductors
Confidential Proprietary

10.8.5.4 Operation of the DSA and ECDSA signature generation
function

• Generate a per message private key u, in the range 1 ≤ u < r. (Generate a random
number k, 64 bits larger than r, and find u = k mod r. If u = 0, generate a new k.)

• Compute c = (gu mod q) mod r, or Vx,y = uGx,y, c = Vx mod r. If c = 0, try again with
a new u.

• Compute d = u-1(f + sc) mod r. If d = 0, try again with a new u.
• Output (c, d) as the signature.
• If the TEST bit of the Protocol Command is set, then also output u. This test mode is

not accessible in the Trusted or Secure states.

10.8.5.5 Notes associated with the DSA and ECDSA Signature
Generation function

For ECC binary field (F2M) functions, b' = b2m-2
 mod q must be given, rather than b.

The beginning of the descriptor contains a protocol data block that specifies the sizes of
arguments to the Signature Generation function and pointers to those arguments. Each
pointer occupies one word of the PDB.

When the PD (Predefined Domain) bit in the PDB is 0, the ECC curve parameters are
supplied via the PDB. But when PD is 0, the ECDSEL (Elliptic Curve Domain Selection)
field in the PDB is used to select one of the built-in ECC domains. In this case most of
the curve parameters are supplied by the hardware. The valid values for the ECDSEL
field and their meanings are listed in Table 10-98.

Table 10-106. DSA and ECDSA Signature Generation protocol data block, PDB word 1,
formats with PD=0 and PD=1

PDB
word 1

when
PD=0

SGF

(bits 31..26)

PD (=0)

(bit 25)

reserved

(bits 24..17)

L

(bits 16..7)

N

(bits 6..0)

PDB
word 1

when
PD=1

SGF

(bits 31..26)

PD (=1)

(bit 25)

reserved

(bits 24..14)

ECDSEL

(bits 13..7)

reserved

(bits 6..0)

When the PD (Predefined Domain) bit in the PDB is 1, the ECDSEL (Elliptic Curve
Domain Selection) field is used to select one of the built-in ECC domains. In this case
most of the curve parameters are supplied by the hardware. The valid values for the
ECDSEL field and their meanings are listed in Table 10-98. Note that if PD=1 for a DSA
operation, a PDB error will be generated.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 453
Confidential Proprietary

Table 10-107. DSA and ECDSA (PD=0) Signature Generation protocol data block, pointers
in PDB words 2, 3 ...

DSA (PD is always 0)or ECDSA when PD=0

There are three different commands that can be used when generating a DSA or ECDSA signature. The
"Full Sign" command performs the entire DSA or ECDSA signature operation. The "First-Half Sign"

command performs the first half of the signature operation, which does not require as input the message
that is to be signed. The "Second-Half Sign" command takes the output of the "First-Half Sign" command

and the message representative, and completes the signature operation.

pointer or
constant #

Full Sign First-Half Sign Second-Half Sign

1 Pointer to q (SGF in bit 31) Pointer to q (SGF in bit 31) Pointer to r (SGF in bit 30)

2 Pointer to r (SGF in bit 30) Pointer to r (SGF in bit 30) Pointer to s (SGF in bit 28)

3 Pointer to g (DSA) or Gx,y
(ECDSA) (SGF in bit 29)

Pointer to g (DSA) or Gx,y
(ECDSA) (SGF in bit 29)

Pointer to f (MR=0) or m (MR=1)
(SGF in bit 27)

4 Pointer to s (SGF in bit 28) Pointer to c (SGF in bit 26) Pointer to c (SGF in bit 26)

5 Pointer to f (MR=0) or m (MR=1)
(SGF in bit 27)

Pointer to d (SGF in bit 25) Pointer to d (SGF in bit 25)

6 Pointer to c (SGF in bit 26) Pointer to a,b (SGF in bit
22)included if ECDSA, else this
pointer word is omitted from the

PDB

ml (One 32-bit word, no SGF)

Included if MR=1, else this word
is omitted from PDB

7 Pointer to d (SGF in bit 25) Pointer to u (SGF in bit
22)included only if TEST=1

Pointer to u (SGF in bit
22)included only if TEST=1

8 ml (One 32-bit word, no
SGF)Included only if MR=1

9 Pointer to u (SGF in bit
22)included only if TEST=1

Table 10-108. ECDSA (PD=1) Signature Generation protocol data block, pointers in PDB
words 2, 3 ...

ECDSA when PD=1 (curve parameters are supplied by hardware, selected via the ECDSEL
field)

There are three different commands that can be used when generating an ECDSA signature. The
"Full Sign" command performs the entire ECDSA signature operation. The "First-Half Sign"

command performs the first half of the signature operation, which does not require as input the
message that is to be signed. The "Second-Half Sign" command takes the output of the "First-Half

Sign" command and the message representative, and completes the signature operation.

pointer or constant # Full Sign or Second-Half Sign First-Half Sign

1 Pointer to s (SGF in bit 28) Pointer to c (SGF in bit 26)

2 Pointer to f (MR=0) or m (MR=1) (SGF in bit 27) Pointer to d (SGF in bit 25)

3 Pointer to c (SGF in bit 26) Pointer to u (SGF in bit 22)included only if
TEST=1

4 Pointer to d (SGF in bit 25)

5 ml (One 32-bit word, no SGF)Included if MR=1,
else this word is omitted from the PDB

6 Pointer to u (SGF in bit 22)included only if
TEST=1

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

454 NXP Semiconductors
Confidential Proprietary

10.8.6 Verifying DSA and ECDSA signatures

DSA_VERIFY is the digital signature algorithm (DSA) verification function. It supports
both DSA and ECDSA, in both prime fields and binary fields. These functions can take
either a message or a message representative as input, controlled by the MES_REP bit in
the OPERATION command.

There are two parameter lengths:

• Size of the field (L)
• Size of the subgroup (N)

These are given in bytes, and denote the size of the buffer required to hold each
parameter. Note that the size of the buffers for Gx,y, Wx,y and a,b must be twice L, as each
holds two values of size L.

Table 10-109. DSA and ECDSA Verify parameters

Parameter Input/Output Length (bytes) Definition

q input L Prime number or irreducible polynomial that creates the field

r input N Order of the subgroup of private keys

a, b input 2L ECC curve parameters. For binary field curves, b' rather than b is
used. (ECDSA only.)

g or Gx,y input L (DSA),

2L (ECDSA)

Generator or generator point (ECDSA)

w or Wx,y input L (DSA),

2L (ECDSA)

Public key

f (or m) input N Message representative (typically the hash of the message) or the
actual message

c input N First part of digital signature

d input N Second part of digital signature

Temp input/output L (DSA)

2L (ECDSA)

Temporary storage for intermediate results

10.8.6.1 Inputs to the DSA and ECDSA signature verification function
• For DSA, the domain parameters q, r, and g associated with key w
• For ECDSA, the domain parameters q, r, Gx,y, a and b associated with key Wx,y
• For signature verification using the public key, the signer's public key w (DSA) or

Wx,y (ECDSA)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 455
Confidential Proprietary

• The received message representative, which, if MR=0, is the message representative,
an integer f ≥ 0, or, if MR=1, is the message itself (which is hashed to form a
message representative)

• The received signature to be verified, which is a pair of integers (c, d)

10.8.6.2 Assumptions of the DSA and ECDSA signature verification
function

• The public key (w or Wx,y) and the domain parameters are valid and are associated
with each other (that is, parameter validation must be done prior to using this
function).

• The message representative, f, is generated using an approved hashing function of the
appropriate security strength.

10.8.6.3 Outputs from the DSA and ECDSA signature verification
function

• If the signature is correct, this function terminates normally.
• If the signature is not correct, this function terminates with an error code.

10.8.6.4 Operation of the DSA and ECDSA signature verification
function

• Check that c is in the range [1, r-1]. If not, terminate with error code invalid
signature.

• Check that d is in the range [1, r-1]. If not, terminate with error code invalid
signature.

• For DSA, compute c´ = ((Gd-1f mod q)(wd-1c mod q)) mod r.
• For ECDSA, compute Px,y = d-1fGx,y + d-1cWx,y, and then if Px,y is the point at

infinity, terminate with error code invalid signature, else let c´ = Px mod r.
• If c´ ≠ c, then terminate with error code invalid signature.
• Continue as valid.

10.8.6.5 Notes associated with the DSA and ECDSA Signature
Verification function

For ECC binary field (F2M) functions, b' = b2m-2
 mod q must be given, rather than b.

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

456 NXP Semiconductors
Confidential Proprietary

The beginning of the descriptor contains a protocol data block that specifies the sizes of
arguments to the Signature Verification function and pointers to those arguments. Each
pointer occupies one word of the PDB.

Parameter information is as follows:

• L is the number of bytes in various data buffers. L the size of the prime number or
irreducible polynomial representing the cryptographic field.

• N is another length, in number of bytes in data buffers. N is the size of the number
representing the order of the subgroup of private keys within the field.

• All parameters are pointers to data buffers of size L or N, (or 2L for elliptic curve
points and a,b).

The protocol data block for DSA is shorter than for ECDSA, as the pointer to a,b is
absent.

A temporary buffer is required during the verification of the signature.

• For DSA, the temporary buffer must be at least L bytes.
• For ECDSA, the temporary buffer must be at least 2L bytes.

The ENC bit of PROTOINFO is ignored for signature verification because only public
keys are used. If the MES_REP bit of the OPERATION command is set to 1, the pointer
to f (or m) points to the message to be signed, rather than to a message representative.
The message length field of the protocol data block (only used when the MES_REP bit of
the OPERATION command is set to 1) defines the length of the message to be signed.

When the PD (Predefined Domain) bit in the PDB is 0, the ECC curve parameters are
supplied via the PDB. But when PD is 0, the ECDSEL (Elliptic Curve Domain Selection)
field in the PDB is used to select one of the built-in ECC domains. In this case most of
the curve parameters are supplied by the hardware. The valid values for the ECDSEL
field and their meanings are listed in Table 10-98.

Table 10-110. DSA and ECDSA Signature Verification protocol data block, PDB word 1,
formats with PD=0 and PD=1

PDB
word 1

when
PD=0

SGF

(bits 31..26)

PD (=0)

(bit 25)

reserved

(bits 24..19)

L

(bits 18..7)

N

(bits 6..0)

PDB
word 1

when
PD=1

SGF

(bits 31..26)

PD (=1)

(bit 25)

reserved

(bits 24..14)

ECDSEL

(bits 13..7)

reserved

(bits 6..0)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 457
Confidential Proprietary

Table 10-111. DSA or ECDSA (PD=0) Signature Verification protocol data block, pointers in
PDB words 2, 3 ...

DSA or ECDSA when PD=0

pointer or constant # There are two versions of the DSA or ECDSA Signature Verification commands. One version takes
the public key of the signer as an input. The other version takes the private key of the signer as an
input. Verifying with the private key is a faster operation, so the latter version is useful for verifying

self-signed data that may have been tampered with.

1 Pointer to q (SGF in bit 31)

2 Pointer to r (SGF in bit 30)

3 Pointer to g (DSA) or Gx,y (ECDSA) (SGF in bit 29)

4 Verification with Public Key: Pointer to w (DSA) or Wx,y (ECDSA) (SGF in bit 28)

Verification with Private Key: Pointer to s (SGF in bit 28)

5 Pointer to f (MR=0) or m (MR=1) (SGF in bit 27)

6 Pointer to c (SGF in bit 26)

7 Pointer to d (SGF in bit 25)

8 Pointer to Temp (SGF in bit 24)

9 ml (One 32-bit word, no SGF)Included only if MR=1

Table 10-112. ECDSA (PD=1) Signature Verification protocol data block, pointers in PDB
words 2, 3 ...

ECDSA when PD=1

pointer or constant # There are two versions of the ECDSA Signature Verification command. One version takes the public
key of the signer as an input. The other version takes the private key of the signer as an input.

Verifying with the private key is a faster operation, so the latter version is useful for verifying self-
signed data that may have been tampered with.

1 Verification with Public Key: Pointer to Wx,y (SGF in bit 28)

Verification with Private Key: Pointer to s (SGF in bit 28)

2 Pointer to f (MR=0) or m (MR=1) (SGF in bit 27)

3 Pointer to c (SGF in bit 26)

4 Pointer to d (SGF in bit 25)

5 Pointer to Temp (SGF in bit 24) Included if Verification with Private Key, otherwise this word is
omitted from the PDB

6 ml (One 32-bit word, no SGF)Included only if MR=1

10.8.7 Elliptic Curve Public Key Validation

The Elliptic Curve Public Key Validation protocol checks whether a public key is
properly part of an ECC Domain. This is done by first checking whether the point is valid
(that is, a solution to the curve), and then, if the "co-factor" k is not one, performing a
point multiplication of the key with r and checking that the result is proper. The result of

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

458 NXP Semiconductors
Confidential Proprietary

these checks is pass (job status OK. It will generate a 'protocol key error' if it is not. It can
also generate a 'protocol command error' or a 'protocol pdb error' should there be a
problem with Descriptor encoding.

Table 10-113. Elliptic Curve Public key-validation protocol parameters

Parameter Input/output Length Definition

q Input L Prime number or irreducible polynomial that creates the field

r Input N Order of the field of private keys or modulus for creating private keys

a,b Input 2L ECC curve parameters. For binary field curves, b' rather than b is used.

Wx,y Input 2L Public key

k Input N Co-factor of the key order to the curve-order (Fp only)

10.8.7.1 Inputs to the Elliptic Curve public key validation function
• The domain parameters q, a, b or b', Wx,y, r, and k.

10.8.7.2 Outputs from the Elliptic Curve public key validation
function

The Elliptic Curve public key validation function does not produce any outputs and
returns Job Status as follows:

• Status OK: public key is part of the ECC Domain. Also, if co-factor k > 1, then the
point multiplication rW is also part of the ECC Domain.

• Status 8A: public key or rW are not part of the ECC Domain.
• Status 81: protocol command error - invalid protocol command in descriptor.
• Status 82: protocol pdb error - non-sensical pdb in descriptor.

10.8.7.3 Operation of the Elliptic Curve public key validation function
• Verify W is part of the ECC Domain
• Verify rW is part of the ECC Domain (only if co-factor k > 1)

10.8.7.4 Notes associated with the Elliptic Curve public key
validation function

Co-factor k is 1 for common Fp curves.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 459
Confidential Proprietary

Table 10-114. Elliptic Curve public key validation protocol data block, PDB word 1, formats
with PD=0 and PD=1

PDB
word 1

when
PD=0

SGF

(bits 31..28)

PD (=0)

(bit 27)

reserved

(bits 26..17)

L

(bits 16..7)

N

(bits 6..0)

PDB
word 1

when
PD=1

SGF

(bits 31..28)

PD (=1)

(bit 27)

reserved

(bits 26..14)

ECDSEL

(bits 13..7)

reserved

(bits 6..0)

Table 10-115. Elliptic Curve public key validation protocol data block, PDB words 2, 3 ...

pointers / word Elliptic Curve Diffie-Hellman (PD=0 format) Elliptic Curve Diffie-Hellman (PD=1 format)

PDB pointer 1 Pointer to q (SGF in bit 31) Pointer to Wx,y (SGF in bit 28)

PDB pointer 2 Pointer to r (SGF in bit 30)

PDB pointer 3 Pointer to a, b (b') (SGF in bit 29)

PDB pointer 4 Pointer to Wx,y (SGF in bit 28)

PDB Co-factor word Co-factor k

10.8.8 RSA Finalize Key Generation (RFKG)

CAAM is able to complete RSA key generation given primes p and q and the public
exponent e or, to complete the creation of Form 4, given primes p and q and private
exponent d. The primes p and q must have the same byte length (#p). CAAM can be
configured to compute, or skip computation of, the remaining elements of the public and
private key.

The computations performed are:

• n = p*q
• d = 1/e mod LCM(p-1, q-1)
• dp = d mod (p-1)
• dq = d mod (q-1)
• c = 1/q mod p

it will also

• check p and q to determine whether they are 'too close' (per FIPS 186-3). This will
occur if they are long enough. It will not be effective if they are not of the same bit
length (that is, high order bits of p and q are not the same).

• Compute #d if d is being computed

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

460 NXP Semiconductors
Confidential Proprietary

• Check that #d > #p.
• Check that #n and the computed #n are the same

For Form 4, it will compute

• rrp = RnRp (see MOD_RR)
• rrq = RnRq (see MOD_RR)
• cr c in Montgomery (for modulus p)

RSA Finalize Key Generation PDB

Table 10-116. RSA Finalize Key Generation PDB when FUNCTION != 11b

Descriptor header (one or two words)

SGF

(11 bits)

Reserved

(21 bits)

Reserved

(23 bits)

#p

(9 bits)

Rsv

(6 bits)

#n

(10 bits)

Reserved

(6 bits)

#e

(10 bits)

Reference to p

Reference to q

Reference to e

Reference to n

Reference to d

Reference to #d

Reference to dp (not required if FUNCTION=10b)

Reference to dq (not required if FUNCTION=10b)

FMT4=0b Reference to c; FMT4=1b Reference to cr (not required if FUNCTION=10b)

Reference to rrp (only required if FMT4=1b)

Reference to rrq (only required if FMT4=1b)

The fields #d and #n contain right-aligned 10-bit values that indicate the size (plaintext
size, in bytes) of the d and n inputs, respectively. Note that the size of d must be at least
as large as the size of an encrypted n.

A reference is a pointer, either to the data or to a scatter-gather table. The pointer is one
or two words long, depend upon the platform. All outputs (other than n and d) will be #p,
or, if encrypting the key, as many bytes as it would take to hold the encrypted value.

The references to dp, dq, and crr may be omitted if those values are not to be generated.
The references to cr, rrp, and rrq may be omitted if those values are not to be generated.

This figure shows the format of the SGF field.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 461
Confidential Proprietary

Table 10-117. RSA Finalize Key Generation PDB - SGF field when FUNCTION != 11b

31 30 29 28 27 26 25 24 23 22 21

ref p ref q ref e ref n ref d ref #d ref dp ref dq FMT4=0b
ref c

FMT4=1b
ref cr

ref rrp ref rrq

If the SGF bit for a particular reference is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set,
the argument is referenced via a direct address pointer.

The following tables provide the PDB and s/g entries when FUNCTION=11b.

Table 10-118. RSA Finalize Key Generation PDB when FUNCTION = 11b

Descriptor header (one or two words)

SGF

(6 bits

Reserved

(26 bits)

Reserved

(23 bits)

#p

(9 bits)

Reserved

(6 bits)

#n

(10 bits)

Reserved

(16 bits)

Reference to p

Reference to q

Reference to c

Reference to cr

Reference to rrp

Reference to rrq

Table 10-119. RSA Finalize Key Generation PDB - SGF field when FUNCTION = 11b

31 30 29 28 27 26

ref p ref q ref c ref cr ref rrp ref rrq

If the SGF bit for a particular reference is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set,
the argument is referenced via a direct address pointer.

10.8.9 Implementation of the RSA encrypt operation

CAAM implements an RSA encrypt operation that can be used for various purposes,
including support for RSA-Based IKEv1 for IPsec and SSL-TLS. It is the "RSA public
key primitive" and it is commonly used to encrypt a secret or to verify a signature.

When used for signature verification, it is actually "unscrambling" the signature so that
its contents may be verified. The input must be passed "raw" to the RSA function.

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

462 NXP Semiconductors
Confidential Proprietary

CAAM implements the RSA encrypt operation in the following form:

g = RSA-Encrypt(n, e, FORMAT, #f, f, fff)

The variables have the following definitions:

• n, e represent the public key
• Before the RSA math is performed, FORMAT specifies the format to be used for

encoding f (none or PKCS #1 v1.5 encryption)
• f is the value to be RSA-encrypted (input value; will be output value if random data

('f out')is selected)
• #f is the size in bytes of f
• fff represents the type of encryption applied to f if it is output by CAAM
• g is the RSA-encrypted value of (the possibly formatted version of) f

The RSA Encrypt function is implemented with the OPERATION command. See
PROTOCOL OPERATION Commands for details on selecting this operation. See Table
10-61 and Table 10-62 for details about the PROTINFO field in the OPERATION
command.

RSA

JDKEK or TDKEK

f (as Black Key)

f (as plaintext)

OR

n, e (public key)

AES

ECB or CCM

g (RSA-encrypted value)

f_in (supplied

by user)

OR

f_out (random

data from RNG)

f is passed through
as is (no format) or embedded

in PKCSv1.5 encryption
format

Figure 10-11. RSA encrypt operation

The user may either supply a plaintext value to be RSA encrypted (f_in) or may opt to
have CAAM generate #f bytes of random data from the RNG (f_out). The latter option
allows f to be stored encrypted as a black key.

Once the value of f is known and possibly wrapped in PKCSv1.5 encoding, it is RSA-
encrypted and the result stored as g.

The PDB for the RSA encrypt operation is shown below.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 463
Confidential Proprietary

Table 10-120. RSA Encrypt PDB

SGF

(4 bits)

Rsv

(4 bits)

#e

(12 bits)

#n

(12 bits)

Reference to f

Reference to g

Reference to n

Reference to e

Reserved

(20 bits)

#f

(12 bits)

All references are either 32-bit, 36-bit or 40-bit address pointers.

The fields #e, #n and #f contain right-aligned 12-bit values that indicate the size of the e,
n and f inputs, respectively. The format of the SGF field is shown below.

Table 10-121. RSA Encrypt PDB; SGF field

31 30 29 28

ref f ref g ref n ref e

If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is referenced
via a direct address pointer.

10.8.10 Implementation of the RSA decrypt operation

CAAM implements an RSA decrypt operation that can be used for various purposes,
including support for RSA-Based IKEv1 for IPsec and SSL-TLS. This is the "RSA
private key primitive" and it is commonly used either to decrypt a secret or to create a
signature (sign a message).

When used for signing a message, it is actually "scrambling" the signature; the output
must be allowed to pass "raw" from the RSA function.

CAAM implements the RSA decrypt operation in the form:

f = RSA-Decrypt((private key), FORMAT, g, fff)

The variables have the following definitions:
• (private key) represents the private key, in one of four forms
• After the RSA math is performed on g, FORMAT specifies the format to be used for

decoding f (none or PKCS #1 v1.5 encryption).
• g is the input value
• fff represents the type of encryption applied to f when it is output by CAAM
• f is the RSA-decrypted output value.

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

464 NXP Semiconductors
Confidential Proprietary

This operation leaves #f (size of the plaintext f, in bytes) in the MATH0 register. This
may be important if using a FORMAT of PKCS #1 v1.5 encryption.

The RSA Decrypt function is implemented via the OPERATION Command. See
PROTOCOL OPERATION Commands for details on selecting this operation. See Table
10-63 and Table 10-63 for details concerning the PROTINFO field in the OPERATION
Command.

As the private key is an input and is considered sensitive, it may be supplied in Black
Key form. The components, individually, of the private key would then be decrypted
using the appropriate key encryption key and cryptographic mode prior to use. Note that
n is never encrypted. CAAM allows the private key input to be provided in any of four
different forms that enable increasing efficiency of computation:

• #1 (n, d)
• #2 (p, q, d)
• #3 (p, q, dp, dq, c)
• #4 (p, q, dp, dq, cR, RRp, and RRq) See RSA Finalize Key Generation to compute

Form 4.

The RSA Decrypt function is implemented via the OPERATION Command. See
PROTOCOL OPERATION Commands for details on selecting this operation. See Table
10-63 and Table 10-64 for details concerning the PROTINFO field in the OPERATION
Command.

The operation of RSA decrypt when using form #1, in which the private key is input as
(n, d), is illustrated below.

d (private exponent
as plaintext)

RSA

OR

JDKEK or TDKEK JDKEK or TDKEK

f (as Black Key)

f (as plaintext)

OR

d (private exponent
as Black Key)

n (public modulus
 as plaintext

 f "raw" (as is) or
extracted from

PKCS v1.5
encryption formatting g

 AES
ECB or CCM

 AES
ECB or CCM

Figure 10-12. RSA decrypt operation - private key form #1

The PDB for private key form #1 is shown below. All references are either 32-bit, 36-bit
or 40-bit address pointers.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 465
Confidential Proprietary

Table 10-122. RSA decrypt PDB - private key form #1

SGF

(4 bits)

Rsv

(4 bits)

#d

(12 bits)

#n

(12 bits)

Reference to g

Reference to f

Reference to n

Reference to d

The fields #d and #n contain right-aligned 12-bit values that indicate the size (plaintext
size, in bytes) of the d and n inputs, respectively. This figure shows the format of the SGF
field.

Table 10-123. RSA decrypt PDB - private key form #1; SGF field

31 30 29 28

ref g ref f ref n ref d

If the SGF bit for a particular reference is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set,
the argument is referenced via a direct address pointer.

The RSA decrypt operation also accepts the private key in the form (p, q, d). This form
(form #2) of the RSA decrypt operation is illustrated in this figure.

p, q, d (private key
as plaintext)

RSA

OR

AES
ECB or CCM

JDKEK or TDKEK

AES
ECB or CCM

JDKEK or TDKEK

OR

p, q, d (private key

f

g

as Black Key)

"raw" (as-is) or
extracted from

PKCS v1.5 encryption formatting

(as Black Key)

f

(as Black Key)

f

Figure 10-13. RSA decrypt operation - private key form #2

This figure shows the PDB for private key form #2. All references are either 32-bit, 36-
bit or 40-bit address pointers.

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

466 NXP Semiconductors
Confidential Proprietary

Table 10-124. RSA decrypt PDB - private key form #2

SGF

(7 bits)

Rsv

(1 bit)

#d

(12 bits)

#n

(12 bits)

Reference to g

Reference to f

Reference to d

Reference to p

Reference to q

Reference to tmpp

Reference to tmpq

Reserved

(8 bits)

#q

(12 bits)

#p

(12 bits)

The fields #d, #n, #q and #p contain right-aligned 12-bit values that indicate the size
(plaintext sizes, in bytes) of d, n, q and p, respectively. Note that even though there is no
n input, #n is still needed, as it is not just #p + #q. tmpp needs to be as long as p (either
#p, or, if p is encrypted, as big as the encrypted value of p). tmpq needs to be as long as q
(either #q, or. if q is encrypted, as big as the encrypted value of q). This figure shows the
format of the SGF field.

Table 10-125. RSA decrypt PDB - private key form #2; SGF field

31 30 29 28 27 26 25

ref g ref f ref d ref p ref q ref tmpp ref tmpq

If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is referenced
via a direct address pointer.

The RSA decrypt operation also accepts the private key in form #3, (p, q, dp, dq, c). dp,
dq, and c are

• dp = d mod p-1
• dq = d mod q-1
• c = q-1 mod p

The operation of this form of RSA decrypt is illustrated in this figure.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 467
Confidential Proprietary

p, q, dp, dq, c (private key
as plaintext)

RSA

OR

AES
ECB or CCM

JDKEK or TDKEK

AES
ECB or CCM

JDKEK or TDKEK

f
(as Black Key)

f
(as plaintext)

OR

p, q, dp, dq, c (private key
as Black Key)

f

g

Result is passed through
as is (no format) or extracted

from PKCSv1.5
encryption format

Figure 10-14. RSA Decrypt Operation - private key form #3

This figure shows the PDB for private key form #3. All references are either 32-bit, 36-
bit or 40-bit address pointers.

Table 10-126. RSA decrypt PDB - private key form #3

SGF

(9 bits)

Reserved

(11 bits)

#n

(12 bits)

Reference to g

Reference to f

Reference to c

Reference to p

Reference to q

Reference to dp

Reference to dq

Reference to tmpp

Reference to tmpq

Reserved

(8 bits)

#q

(12 bits)

#p

(12 bits)

The fields #n, #q and #p contain right-aligned, 12-bit values that indicate the size
(plaintext sizes, in bytes) of n, q and p, respectively. Note that even though there is no n
input, #n is still needed, as it is not just #p + #q. Note that #dp and #c are assumed to be
#p, and #dq is assumed to be #q. tmpp needs to be as long as p (either #p, or, if p is
encrypted, as big as the encrypted value of p). tmpq needs to be as long as q (either #q,
or, if q is encrypted, as big as the encrypted value of q).

Public Key Cryptography Operations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

468 NXP Semiconductors
Confidential Proprietary

Table 10-127. RSA Decrypt PDB - private key form #3; SGF Field

31 30 29 28 27 26 25 24 23

ref g ref f ref c ref p ref q ref dp ref dq ref tmpp ref tmpq

NOTE: If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is
referenced via a direct address pointer.

The RSA decrypt operation also accepts the private key in form #4, (p, q, dp, dq, cr, rrp,
rrq).

p, q, dp, dq, cr, rrp, rrq
(private key
as plaintext)

RSA

OR

AES
ECB or CCM

JDKEK or TDKEK

AES
ECB or CCM

JDKEK or TDKEK

f
(as Black Key)

f
(as plaintext)

OR

p, q, dp, dq, cr, rrp, rrq
(private key

as Black Key)

f

g

Result is passed through
as is (no format) or extracted

from PKCSv1.5
encryption format

Figure 10-15. RSA Decrypt Operation - private key form #4

This figure shows the PDB for private key form #4. All references are address pointers.

Table 10-128. RSA decrypt PDB - private key form #4

SGF

(10 bits)

Reserved

(5 bits)

No_tm
pq

(1 bit)

Reserved

(4 bits)

#n

(12 bits)

Reference to g

Reference to f

Reference to cr

Reference to p

Reference to q

Reference to dp

Reference to dq

Reference to rrp

Reference to rrq

Reference to tmpq (This word is omitted from the PDB if No_tmpq=1.)

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 469
Confidential Proprietary

Table 10-128. RSA decrypt PDB - private key form #4 (continued)

Reserved

(8 bits)

#q

(12 bits)

#p

(12 bits)

The fields #n, #q and #p contain right-aligned, 12-bit values that indicate the size
(plaintext sizes, in bytes) of n, q and p, respectively. Note that even though there is no n
input, #n is still needed, as it is not just #p + #q. Note that #dp, #cr, and # rrp are assumed
to be be as long as p (either #p, or, if p is encrypted, as big as the encrypted value of p),
and #dq and #rrq are assumed to be #q. tmp needs to be as long as q (either #q, or, if q is
encrypted, as big as the encrypted value of q).

NOTE
tmpq may be omitted (i.e. no_tmpq set to 1) if #p and #q are
each less than 2048. If no_tmpq = 1 and either #p or #q is
greater than 256 an error will be generated.

Table 10-129. RSA Decrypt PDB - private key form #4; SGF Field

31 30 29 28 27 26 25 24 23 22

ref g ref f ref cr ref p ref q ref dp ref dq ref rrp ref rrq ref tmpq

NOTE: If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is
referenced via a direct address pointer.

10.9 Key agreement functions
The CAAM protocol processing capabilities described in Protocol acceleration are
centered on bulk data encryption and authentication. This section focuses on key pre-
processing, which is another important part of protocol processing.

CAAM has the capability to pre-compute material derived from keys for HMAC and
RC4 S-boxes. When sharing, using the derived material offers significant performance
improvements.

10.9.1 Implementation of the derived key protocol

This protocol is available to assist with replacing a negotiated key with a derived form of
that key. In particular, this protocol can be used for these tasks:

• Compute the Derived HMAC Key
• Compute an ARC4 S-Box from a key.

Key agreement functions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

470 NXP Semiconductors
Confidential Proprietary

The use of the derived form of the key is mandatory for bulk-data protocols such as
IPsec, where the use of the derived form provides a significant speed advantage.

The Derived Key Protocol (DKP) is designed to allow a negotiated key to be replaced
with the derived form in-place in a shared descriptor. For example, an IPsec descriptor
can be written to supply an immediate HMAC key in negotiated form as a parameter to
the DKP operation command. The DKP computes the Derived HMAC Key, leaving the
derived key in the Class 2 Key register, available for the subsequent IPsec command.
Further, the DKP updates the descriptor, replacing the DKP operation command with the
appropriate KEY command, and replacing the negotiated form of the key with the
derived form of the key. It is the responsibility of the descriptor author to ensure the
resulting derived key will not overwrite any descriptor commands that need to be kept.

10.9.1.1 Using DKP with HMAC keys

When used to generate HMAC keys, DKP receives an unprotected negotiated key and
generates an unprotected Derived HMAC Key. DKP requires two block computations of
the underlying hash function to generate the Derived HMAC Key, so the use of a Derived
HMAC Key avoids those computations every time this key is used. This optimization is
discussed further in Using the MDHA Key Register with Derived HMAC Keys. If an
encrypted derived key is desired, or if an encrypted negotiated key is provided, see the
FIFO STORE command and Output Data Types 16, 17, 26, 27 in Table 10-36.

When generating Derived HMAC Keys, the four-bit I/O control subfield of the
PROTINFO field in the DKP Operation command is split in half; the upper 2 bits define
the Input Source, and the lower two bits define the Output Destination. Not all
combinations are valid.

Input Source - bits 16-17

Table 10-130. DKP input destination field

Setting Description

00 IMM - negotiated key is in words immediately following the DKP Operation Command.

This option can only be used with an Immediate Output Destination (OD=00).

01 SEQ - negotiated key is found in the input frame as defined by the SEQ IN PTR command. This must be
the choice when DKP is used in a trusted descriptor.

10 PTR - the input key is referenced by the address found immediately following the DKP Operation
Command.

11 SGF - the input key is distributed amongst different memory locations as indicated by the Scatter/Gather
Table address found immediately following the DKP Operation Command.

Output Destination - bits 18-19

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 471
Confidential Proprietary

Table 10-131. DKP output destination field

Setting Description

00 IMM - resulting Derived HMAC Key will be written back to the descriptor, immediately after the KEY
command written to the descriptor, consuming as many words as required. The contents of those words
will be overwritten and will not be preserved. The length of the resulting Derived HMAC Key is twice the
underlying hash context length. See Table 10-132

Note that IMM is not restricted when used as an Output Destination as it is when used as an Input Source.

01 SEQ - the resulting Derived HMAC Key will be written to the output frame as defined by the SEQ OUT
PTR command. Note that SEQ is a valid Output Destination only when SEQ is provided as an Input
Source. This must be the choice when DKP is used in a trusted descriptor.

10 PTR - the resulting Derived HMAC Key will be written back to the memory location specified by the
address found immediately after the DKP Operation Command. This option is not valid with Input Source
options IMM or SGF.

11 SGF - the resulting Derived HMAC Key will be written back to memory per the scatter/gather table found
at the address immediately following the DKP operation command. This option is not valid with Input
Source options IMM or PTR.

The twelve-bit length field designates the number of bytes the negotiated key takes. The
length of the Derived HMAC Key is determined by the underlying hash function chosen,
as shown.

Table 10-132. Lengths of the Derived HMAC Keys

Hashing algorithm Length of Derived HMAC Key

MD5 32 bytes / 8 words

SHA-1 40 bytes / 10 words

Note that while the utilized length of the derived HMAC SHA-1
key is 40 bytes, the key is stored in 48 bytes, with 4 bytes
padding after each functional half.

SHA-224

SHA-256

64 bytes / 16 words

SHA-384

SHA-512

128 bytes / 32 words

10.9.1.2 Using DKP with ARC4 keys

When used to generate an ARC4 S-Box, DKP receives a negotiated key that may or may
not have been encrypted, and uses AFHA to produce a derived key in the form of an S-
Box.

The S-Box is too large to be made immediate. As a result, for ARC4 the I/O control field
of the Operation Command has a different definition; some values will select encrypted
keys.

Key agreement functions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

472 NXP Semiconductors
Confidential Proprietary

Table 10-133. I/O control fields for ARC4

Bit Field Description

16

KE

Keys Encrypted. Both the negotiated key and the derived key are encrypted.

0 - Neither key encrypted

1 - both negotiated and derived key are encrypted

17

EKT

Encrypted Key Type

0 - ECB-encrypted key

1 - CCM-encrypted key

18-19

SD

Source/Destination

00 - Simple pointers for source and destination -- address immediately after the DKP operation
command is the memory location where the negotiated key is read and where the derived key is
written.

01 - SGF pointers for source and destination -- address immediately after the DKP operation
command is the memory location where a scatter/gather table resides. This scatter/gather table
directs where the negotiated key is read and where the derived key is written.

10 - SEQ sequence for source and destination -- the negotiated key is read from the input frame as
defined by the SEQ IN PTR command, and the derived key is written to the output frame as defined
by the SEQ OUT PTR command. This must be the choice when DKP is used in a trusted
descriptor.

11 - Reserved

10.9.1.3 Implementation of the Blob Protocol

The blob protocol provides a method for cryptographically protecting the confidentiality
and integrity of user data across SoC power cycles. The data to be protected is encrypted
so that it can be safely placed into non-volatile storage before the SoC is powered down.
The key used to encrypt the blob is derived from a non-volatile master secret key so the
blob can be decrypted when the SoC powers up again. More details on the Blob protocol
can be found in section Blobs

10.10 Cryptographic hardware accelerators (CHAs)
This section describes the functionality of each individual CHA used by the DECO.

Table 10-134. Summary of cryptographic hardware accelerators (CHAs)

Definition Abbreviation What it implements Cross-reference

Public-key hardware accelerator PKHA RSA, Diffie-Hellman, DSA, Elliptic-Curve
Diffie-Hellman, Elliptic-Curve DSA

Public-key
hardware
accelerator (PKHA)
functionality

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 473
Confidential Proprietary

Table 10-134. Summary of cryptographic hardware accelerators (CHAs) (continued)

Definition Abbreviation What it implements Cross-reference

ARC-four hardware accelerator AFHA The alleged RC4 encryption algorithm ARC-4 hardware
accelerator (AFHA)
CHA functionality

Data encryption standard accelerator DESA The DES and Triple-DES encryption
algorithms

Data encryption
standard
accelerator (DES)
functionality

Random number generator RNG A true hardware random number
generator and a pseudo-random number
generator

Random-number
generator (RNG)
functionality

Message-digest hardware accelerator MDHA The MD-5, SHA-1, SHA-224, SHA-256
authentication algorithms

Message digest
hardware
accelerator
(MDHA)
functionality

AES accelerator AESA The AES encryption algorithm AES accelerator
(AESA)
functionality

10.10.1 Public-key hardware accelerator (PKHA) functionality

The PKHA module is capable of performing a number of different operations used in
public-key cryptography, including modular arithmetic functions such as addition,
subtraction, multiplication, exponentiation, reduction, squaring, cubing, simultaneous
exponentiation, and inversion. All of these functions are provided in both integer and
polynomial-binary field versions, except modular subtraction, which is the same as
addition for binary polynomials. There are also elliptic-curve functions for point addition,
point doubling, point validation, and point multiplication for the standard prime and
binary curves.Most of these functions can be performed timing-equalized to thwart
timing-related side-channel attacks. PKHA also includes a Miller-Rabin primality test
function for detecting prime numbers.

The PKHA internally performs modular multiply operations using "Montgomery
multiplication". For efficiency, many of these functions have a variant which allows
either inputs or outputs in Montgomery form. Some have variants to supply the
Montgomery conversion factor. These save time over the variations without. Internally,
the PKHA operates on digits of these values. Different versions of the PKHA may have a
different digit size. This PKHA has a digit size of 32 bits. This has implications for the
inputs and outputs of certain functions. See the discussion on Montgomery arithmetic.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

474 NXP Semiconductors
Confidential Proprietary

Because the numbers used in public-key cryptography are typically quite large and often
referenced many times during a function, the inputs to PKHA are loaded into registers.
PKHA has four of these registers labeled A, B, E, and N. A and B are for operands and
results. E is for "keys", and N holds the modulus. For ECC functions, A and B are
divided up into equal-size quadrants to accommodate the greater number of inputs
required.

PKHA also has two other types of functions for manipulating the data in the registers.
These are the Clear Memory and Copy Memory functions. The Clear Memory function
allows all or any combination of the registers to be overwritten with zeros. The Copy
Memory functions can be used to copy data from any of the A, B or N registers or
register quadrant to any of the registers A, B, E or N.

PKHA requires that all data for a given function be loaded before the Mode Register is
written to invoke a function. This convention indicates to PKHA that all needed data has
been loaded, and the function can now be launched. The typical procedure for executing a
PKHA function is to use KEY and FIFO LOAD Commands to load the registers (usually
N first), followed by an PKHA OPERATION Command to write the Mode Register,
followed by one or more FIFO STORE Commands to store the result. PKHA functions
may also be cascaded, so that the output of one function stays in a PKHA memory to
become an input for the next function.

When loading or storing a value, it is important that its associated size register not change
during the operation. To help avoid this issue when loading ECC parameters, make sure
that all quadrants of a given register have the same size values by left-filling "short"
values with zero. If a size register for a FIFO LOAD command may change before it is
complete, it is necessary to cause the Descriptor to stall until safe to proceed: insert a
JUMP Command before the offending command: JUMP jsl = 1 type = 0 cond = nifp
offset = 1 (instruction 0xA1000401). In the other case, where a FIFO STORE may still be
in progress when a subsequent command will change the value in its size register, insert a
SEQ FIFO STORE Command before the offending command: SEQ FIFO STORE
length=0 (Instruction 0x68000000).

10.10.1.1 Modular math

Almost all math operations require with a modulus value in the N Memory. Math
operations involving multiplication (multiplication, exponentiation, prime test, and ECC
functions) are performed internally using Montgomery values.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 475
Confidential Proprietary

10.10.1.2 About Montgomery values

The PKHA contains a Modular Arithmetic Unit. Multiplication is always modular
multiplication:

A * B mod N.

The PKHA performs this computation with a Montgomery multiplier. A Montgomery
multiplier can be more efficient than a multiply-then-reduce calculation because the
modular reduction is done as part of the multiplication and the working product never
gets larger than the modulus. In a normal multiplication, the product, before reduction,
would be the size of the sum of the factors, so usually twice the size of the modulus. The
factors in a Montgomery multiplication each have an R factor, and, as part of the
multiplication and modular reduction, one R is removed. Thus, the computation
performed is:

(AR * BR) / R mod N.

The equivalent of "division by R" occurs even if one of the inputs does not have an R
factor.

A number of PKHA functions accept inputs in Montgomery form instead of normal
values. Some instead take R2 mod N as an input. These functions can be faster than their
normal-value alternatives if several operations are performed in a row or if these values
are known in advance. This is because, before being used, (R2 mod N needs to be
computed and) normal values need to be converted internally to Montgomery form.

The Montgomery form of a value is value*R mod N, referred to here as value. The term
R = 2SD is the Montgomery factor, where D is the digit size (of a digit in the PKHA
arithmetic unit), in bits, and S is the minimum number of digits needed to hold the value
in N. R is therefore dependent on N and D.

To use the PKHA to convert a normal value to a Montgomery value, one must first
compute (or know) R2 mod N, the Montgomery Conversion Factor. The following steps
can be used to convert a value from a normal value into its Montgomery form (A and B
inputs may be reversed):

R2 = MOD_R2(N)

A = MOD_MUL_IM_OM(A, B=R2, N)

The equivalent F2M function can be used for binary polynomial values.

Eventually, the value needs to be converted out of Montgomery form. This can be done
by performing another multiply (R2 is not needed for this).

A = MOD_MUL_IM_OM(A=A, B=1, N)

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

476 NXP Semiconductors
Confidential Proprietary

Another method is to cause the PKHA to perform a multiplication and conversion to
normal form. Internally, there are two multiplications: first the two inputs, then the
product by one.

AB mod N = MOD_MUL_IM(A=A, B=B, N)

A third method is to have just one factor (either one) in Montgomery form:

AB mod N = MOD_MUL_IM_OM(A=A, B=B, N)

The following operations can be used to convert a value from a normal value into its
Montgomery form (A and B inputs may be reversed):

The equivalent F2M functions can be used for binary polynomial values.

It is possible to add and subtract Montgomery values, if R mod N is the same. Do not mix
and match Montgomery and normal values for addition or subtraction. 5 + 3R => 5/R +
3R or 5/R + 3; neither is likely the desired result.

10.10.1.3 Non-modular Math

Although addition, subtraction, and multiplication functions require a modulus, it is
possible to perform these calculations without any reduction: the modulus must be larger
than the expected result.

For addition and subtraction, this is easily done. For multiplication, the MOD_MUL
function may be used, but it is not the most efficient, as internally first R2 mod N will be
computed, then two multiplications will be performed (first to convert one factor into
Montgomery, then to compute the product, not in Montgomery).

For non-modular multiplication, MUL_IM_OM is much more efficient, as only one
multiplication will be performed. This can be used if the factors are not in Montgomery
form, i.e., if the product to be calculated is A*B instead of A*B mod N. Since the
multiplier always "divides by R', a special modulus value in Nram is required which will
make R have the value 1. This is done by creating a modulus N = R-1 so that R mod N
will have the value one. This way, normal values are the same as Montgomery values; no
conversion is necessary and the multiplier will quietly "divide by one" to no effect.

As an example, on a PKHA with a digit size of 32 bits and a product which will be no
more than six bytes long, R = 2SD = 22*32 = 264. Therefore the modulus must be
0xFFFFFFFFFFFFFFFF.

For computation with binary polynomials, the equivalent F2M functions may be used.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 477
Confidential Proprietary

10.10.1.4 Elliptic-Curve Math

The PKHA provides point math operations on different types of elliptic curves. These
include the ability to add two points (+ operator), double a point, and multiply a point by
an integer (scalar) value (x operator).

The input points are assumed to be valid points on the curve. If non-point coordinates or
invalid curve parameters are used an input, then a non-point set of coordinates are likely
to be returned as output. The "ECC Point Check" functions may be used to verify that a
point's (x,y) values constitute a point which satisfies the equation for the curve.

The minimum modulus is 1 byte. The maximum modulus is 1024 bits, 128 in length, or
one quadrant.

If xx is the Point at Infinity, Pand Q are points on the curve, and j and k are integers, then
the following identities, as well as others easily derived by taking advantage of
associative and commutive properites, hold:

• P + Q = Q + P
• P = xx + P
• xx = 0 x P
• (j + k)P = (j x P) + (k x P)

There may be times when the negative of a point is necessary:
• When subtracting points PA - PB
• When multiplying by a negative integer: -abs(k) x PA

To subtract, one can negate the second term and perform an addition, i.e.

PC = PA - PB = PA + (-PB)

When multiplying by a negative value, one can either negate the starting point or the
ending point. The multiplication value is the absolute value of the scalar, i.e., when k is
negative

PC = k x PA = -abs(k) x PA = abs(k) x (-1PA) = -(abs(k) x PA)

10.10.1.4.1 ECC_MOD: Point math on a standard curve over a prime field
(Fp)

The ECC_MOD family of functions perform Add, Double, and scalar Multiply
operations on points on a curve defined by the short Weierstrass equation:

E: y2 = x3 + ax + b mod p

where p is the a prime integer > 3. These operations are available in Affine Coordinates
(x,y).

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

478 NXP Semiconductors
Confidential Proprietary

The modulus (value in N memory) for these operations is p, also referred to as q.

The equality for the negative of a point P, in affine coordinates, is -P = -(x,y) = (x, -y)

The operations will not provide useful outputs if the inputs are not valid points on the
curve, i.e., if they are not solutions to the curve equation E.

The point at infinity is a possible result for point math operations. The PIZ bit in
Operation Status Register can be used to determine when the result of an operation is the
point at infinity.

The representation of the point at infinity, in affine coordinates, depends upon the type of
curve and the value of the b term of the curve's equation:

• Where b is equal to 0: (0, 1)
• Where b is not equal to 0: (0, 0)

10.10.1.4.2 ECC_F2M: Point math on a standard curve over a binary field
(F2m)

The ECC_F2M family of functions perform add, double, and scalar multiply operations
on points on a curve defined by the short Weierstrass equation:

E: y2 + xy = x3 + ax2 + b

These operations are available in Affine Coordinates (x,y). All inputs and output values
of polynomial values are in polynomial basis. For example, x5+x+1 is represented as 23h

The modulus (value in N memory) for these functions is q, the field-defining irreducible
polynomial for the curve. Other documents use other symbols, including p(t), f(t), and f.

The equality for the negative of a point, in affine coordinates, is -P = -(x,y) = (x, x+y).

The operations will not provide useful outputs if the inputs are not valid points on the
curve, i.e., if they are not solutions to the curve equation E.

Because of the way the point operations are performed over a binary field, these
functions require as an input the value c rather than b. The relationship between these two
values is:

b = c4 mod q

and

c = b2m-2
 mod q, where m is the degree (the power of its highest-power term) of q.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 479
Confidential Proprietary

This c value is referred to as b' in the ECC Public-Key protocols for ECDSA sign, and so
on. The calculation of c is expensive, so it is obviously an advantage to calculate it only
once or have it precomputed. See Special values for common ECC domains for these
values for common ECC domains.

The point at infinity is a possible result for point math operations. The PIZ bit in
Operation Status Register can be used to determine when the result of an operation is the
point at infinity.

The representation of the point at infinity, in affine coordinates, is: (0, 0).

10.10.1.5 PKHA Mode Register

The formats of the PKHA Mode Register are described in detail in PKHA OPERATION
command.

The following tables list the valid PKHA_MODE values for all PKHA functions:

PKHA Clear Memory Functions: Table 10-137

PKHA Modular Arithmetic functions: Table 10-73

PKHA Elliptic Curve functions: PKHA OPERATION : Elliptic Curve Functions

PKHA Elliptic Curve functions: PKHA OPERATION : Elliptic Curve Functions

PKHA Copy Memory functions: Table 10-78

NOTE
Use of any PKHA_MODE value not listed in these tables
results in an invalid mode error.

10.10.1.6 PKHA functions

The various PKHA functions are described in the following subsections. The following
information applies to all PKHA functions.

• Mode Register bits that may be either 1's or 0's for the given function are represented
with x.

• For convenience, in all the descriptions below the output is shown as the default B,
although the actual output destination can be specified for most functions via the
Class 1 Mode Register[OutSel] field to be either the B RAM or the A RAM.

• For each PKHA function, the specified mode bits are in the Class 1 Mode
Register[PKHA_MODE_LS] field.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

480 NXP Semiconductors
Confidential Proprietary

• For all of the PKHA functions, the Class 1 Mode Register[PKHA_MODE_MS] field
is set to 8h.

• The descriptions specify the output register(s) and any other registers that might be
modified. Note that the default output register is still modified but the output is
placed into the specified destination register(s).

• Note that any parameter underlined is in Montgomery form (for example, A = AR
mod N).

• Errors reported by PKHA are written to the Job Ring Output Status Register and
termination status word (Job termination status/error codes). They are encoded in the
ERRID field.

• Three flags in the CCB Status Register may be set by PKHA: PIZ, PIO, and PRM.
These flags can be tested by the JUMP (HALT) command. is set to indicate that
PKHA generated a result equal to zero, or, in the case of ECC functions, the point at
infinity.

• PIO is set whenever a GCD routine finds that the Greatest Common Denominator of
two numbers is the number 1. For other general non-ECC functions, it means that the
result is equal to one. This may also be referred to as the GCD flag.

• PRM is set by the PRIME_TEST routine if it finds that a candidate integer is
probably prime (that is, passes the Miller-Rabin primality test).

• It is important to note that the PKHA mathematical functions work in terms of
"digits"; that is, the arithmetic unit is pipelined to work on a digit of data at a time.
For PKHA-32 a digit = 32 bits (4 bytes) of data, for PKHA-64 a digit = 64 bits (8
bytes), and for PKHA-128 a digit = 128 bits (16 bytes). Therefore, the term 'digit'
refers to 32, 64, or 128 bits of data in the input and/or output values used by the
PKHA arithmetic unit.

10.10.1.6.1 Copy memory, N-Size and Source-Size (COPY_NSZ and
COPY_SSZ)

These functions copy data from a PKHA register (or register quadrant) specified as a
source, to another PKHA register (or register quadrant) specified as a destination. COPY
NSZ copies the amount of data specified by the N Size register. COPY_SSZ copies the
amount of data specified in the source register's size register. The source and destination
are specified in the Mode Value. The source can be A, B or N. The destination can be A,
B, E or N, but not the same as the source.

In a quadrant copy, when NSZ/SSZ exceeds the length of a quadrant, the copy will carry
on into the next (higher-numbered) quadrant(s).

When the copy operation has completed, the destination register's size register will be
updated to contain the number of bytes copied.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 481
Confidential Proprietary

Table 10-135. COPY_NSZ and COPY_SSZ function
properties

Property Notes

Mode value Bits 19:17 Bits 16,11,10 Bits 9:8 Bits 7:6 Bits 5:0

Source Register Destination
Register

Source
Segment

Destination
Segment

Function Code

000 = A Register 000 = A Register 00 = Segment 0 00 = Segment 0
01_0000 =
Copy_NSZ

01_0001 = Copy_SSZ

001 = B Register 001 = B Register 01 = Segment 1 01 = Segment 1

011 = N Register 011 = N Register 10 = Segment 2 10 = Segment 2

010 = E Register 11 = Segment 3 11 = Segment 3

other values
reserved

other values
reserved

1. If the destination register is E, the source and destination seqments must be 00b.

Input None

Output None

Requirements For Copy_NSZ, the N-size Register must contain a valid value.

For Copy_SSZ, the source register's size register must contain a valid value.

Side effects The destination register's size register is updated to the number of bytes copied.

Errors reported None

Flags set None

1. If the destination register is E, the source and destination seqments must be 00b.

10.10.1.6.2 Clear Memory (CLEAR_MEMORY) function

This function clears the specified registers or quadrants of registers in the PKHA. This
includes the A, B, N and E. All registers or quadrants of registers are written with zeros.

A detailed description may be found in PKHA OPERATION : clear memory function.

Table 10-136. CLEAR_MEMORY function properties

Property Notes

Mode value ABEN_0000_00 QQ_QQ 00_0001, with the following restrictions on the combinations of ABEN and
QQQQ: At least one of ABEN must be on. If E is on, all Q must be zero. Some example encodings are
in the table below.

Input None

Output A = 0, B = 0, E = 0, N = 0, or some quadrant(s) thereof, as specified by ABEN and QQQQ. Each Q
specifies a quadrant, in order from 3 through 0.

Requirements The Mode Register specifies which registers or quadrants of registers to clear.

If no quadrants are selected, then all quadrants of the specified register(s) are cleared.

Side effects None

Errors reported Invalid Mode, if no registers are selected, or E with one or more quadrants is selected

Flags set None

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

482 NXP Semiconductors
Confidential Proprietary

Table 10-137. Example mode values for PKHA clear memory functions

Function name Register selects Quadrant selects Brief description Bits 19-0,
including

PKHA_MO
DE and

reserved
bits1 (Hex)

A B E N 3 2 1 0

CLEAR_MEMORY 1 1 1 1 0 0 0 0 Clear registers A, B, E, N F0001

1 1 1 0 0 0 0 0 Clear registers A, B, E E0001

1 1 0 1 0 0 0 0 Clear registers A, B, N D0001

1 0 1 0 0 0 0 0 Clear registers A, E A0001

1 0 0 1 0 0 0 0 Clear registers A, N 90001

0 1 0 1 0 0 0 0 Clear registers B, N 50001

0 1 0 0 0 0 0 0 Clear register B 40001

0 0 1 0 0 0 0 0 Clear register E 20001

0 0 0 1 0 0 0 0 Clear register N 10001

1 0 0 0 1 1 0 0 Clear quadrants 2 and 3 of
register A

80301

0 1 0 1 0 0 0 1 Clear quadrant 0 of registers
B, N

50041

1 1 0 0 1 0 0 0 Clear quadrant 3 of registers
A, B

C0201

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

10.10.1.6.3 Arithmetic Functions

10.10.1.6.3.1 Integer Modular Addition (MOD_ADD) function
Table 10-138. MOD_ADD function properties

Property Notes

Mode value 0000_0000_0000_0000_0010 (output placed in B)

0000_0000_0001_0000_0010 (output placed in A)

Input • N = modulus and data size, any integer
• A = first addend, any integer less than N
• B = second addend, any integer less than N

Output B (or A, if selected) = (A + B) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are each < N.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 483
Confidential Proprietary

Table 10-138. MOD_ADD function properties (continued)

Property Notes

If (A + B) >= N, N will be subtracted just once from the sum. That is, if (A + B) >= 2N, then the result will
not be mod N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.2 Integer Modular Subtraction (MOD_SUB_1) function

Modular subtraction can be described as follows. If A ≥ B or A = B = 0, then B = A - B.
Otherwise, if A < B, then B = A + N - B. The result is always positive and less than N.

Table 10-139. MOD_SUB_1 function properties

Property Notes

Mode value 0000_0000_0000_0000_0011 (output placed in B)

0000_0000_0001_0000_0011 (output placed in A)

Input • N = modulus, any integer
• A = minuend, any integer less than N
• B = subtrahend, any integer less than N

Output B (or A, if selected) = (A - B) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are less than N.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.3 Integer Modular Subtraction (MOD_SUB_2) function
Table 10-140. MOD_SUB_2 function properties

Property Notes

Mode value 0000_0000_0000_0000_0100 (output placed in B)

0000_0000_0001_0000_0100 (output placed in A)

Input • N = modulus, any integer
• B = minuend, any integer less than or equal to N
• A = subtrahend, any integer less than or equal to N

Output B (or A, if selected) = (B - A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are < N

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

484 NXP Semiconductors
Confidential Proprietary

Table 10-140. MOD_SUB_2 function properties (continued)

Property Notes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.4 Integer Modular Multiplication (MOD_MUL)

The (AB) mod N computation is provided to assist in algorithms and protocols where a
single modular multiplication is required and not as a chaining of multiplications. In the
latter case, Montgomery form multiplication routines (that is, MOD_MUL_IM or
MOD_MUL_IM_OM) are more efficient. This function first computes R2 mod N, then
multiples one factor to produce AR, then multiplies AR*B to produce AB.

Table 10-141. MOD_MUL function properties

Property Notes

Mode value 0000_0000_0000_0000_0101 (output placed in B)

0000_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, any odd integer
• A = multiplicand, any integer less than N
• B = multiplier, any integer less than N

Output B (or A, if selected) = (AxB) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are < N.

Side effects A and E are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.
• Divide-By-Zero Error is set if the most significant digit of the modulus is all zeros.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.5 Integer Modular Multiplication with Montgomery Inputs
(MOD_MUL_IM)

This function takes its inputs, integers, in Montgomery form, multiplies them modulo the
value in the N register and returns the result as a field value. To do this, it performs two
multiplications: AR*BR => ABR and ABR*1 => AB.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 485
Confidential Proprietary

Table 10-142. MOD_MUL_IM function properties

Property Notes

Mode value 1000_0000_0000_0000_0101 (output placed in B)

1000_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, any odd integer
• A = multiplicand, a value in Montgomery form
• B = multiplier, a value in Montgomery form

Output B (or A if selected) = A x B mod N, the non-Montgomery product of the inputs

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are less than modulus N

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.6 Integer Modular Multiplication with Montgomery Inputs and
Outputs (MOD_MUL_IM_OM) Function

This function performs the calculation A*B/R mod N, where R is the Montgomery factor
for N. This can be used in several ways:

• If one value is a normal value, and the other is R2 mod N, then the result is the
normal value converted to Montgomery.

• If A and B are both Montgomery values, then the result is the product of A and B as
a Montgomery value.

• If only one of (A,B) is a Montgomery value, then the result is the product as a normal
value.

• If one of (A,B) is a Montgomery value and the other is the value one, then the result
is Montgomery value converted to a normal value.

Table 10-143. MOD_MUL_IM_OM function properties

Property Notes

Mode value 1100_0000_0000_0000_0101 (output placed in B)

1100_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, any odd integer
• A = multiplicand, a value in Mongomery format 0 ≤ A < N
• B = multiplier, a value in Mongomery format 0 ≤ B < N

Output B (or A, if selected) = (AxB) mod N

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

486 NXP Semiconductors
Confidential Proprietary

Table 10-143. MOD_MUL_IM_OM function properties (continued)

Property Notes

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

10.10.1.6.3.7 Integer Modular Exponentiation (MOD_EXP and MOD_EXP_TEQ)

This function is commonly used to perform a single-step RSA operation. It computes R2

mod N and converts A to Montgomery form before beginning the exponentiation.
MOD_EXP_TEQ performs the same operation as MOD_EXP but with an added timing
equalization security feature. The exponentiation run-time of MOD_EXP_TEQ, for a
given modulus and size of exponent, is constant. In general MOD_EXP will run faster
than MOD_EXP_TEQ, but will never run slower.

Table 10-144. MOD_EXP and MOD_EXP_TEQ function properties

Property Notes

Mode value for
MOD_EXP

0000_0000_0000_0000_0110 (output placed in B)

0000_0000_0001_0000_0110 (output placed in A)

Mode value for
MOD_EXP_TEQ

0000_0000_0100_0000_0110 (output placed in B)

0000_0000_0101_0000_0110 (output placed in A)

Input • N = modulus, any odd integer
• A = an integer 0 ≤ A < N
• E = exponent, any integer

Output B (or A, if selected) = (AE) mod N, a an integer 0 ≤ A < N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• Maximum key (exponent) size = 512> bytes
• A < N

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• Key Size Error is set if size of E = 0 or size of E > 512.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 487
Confidential Proprietary

10.10.1.6.3.8 Integer Modular Exponentiation, Montgomery Input (MOD_EXP_IM
and MOD_EXP_IM_TEQ) Function

This function is commonly used to perform a single-step RSA operation. It computes A =
AR (mod N), where R is the Montgomery constant). The input data (base) to be
exponentiated must be provided in the Montgomery form. The result will be returned in
normal integer (non-Montgomery) representation. MOD_EXP_IM_TEQ performs the
same operation as MOD_EXP_IM but with an added timing equalization security feature.
The exponentiation run-time of MOD_EXP_IM_TEQ is constant for a given modulus
and size of exponent. In general MOD_EXP_IM will run faster than
MOD_EXP_IM_TEQ, but will never run slower.

Table 10-145. MOD_EXP_IM and MOD_EXP_IM_TEQ function properties

Property Notes

Mode value for
MOD_EXP_IM

1000_0000_0000_0000_0110 (output placed in B)

1000_0000_0001_0000_0110 (output placed in A)

Mode value for
MOD_EXP_IM_TE
Q

1000_0000_0100_0000_0110 (output placed in B)

1000_0000_0101_0000_0110 (output placed in A)

Input • N = modulus, any odd integer
• A = a value 0 ≤ A < N, in Montgomery form
• E = exponent, any integer (normal integer representation)

Output B (or A, if selected) = (AE) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• Maximum key (exponent) size = 512 bytes
• A < N

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• Key Size Error is set if size of E = 0 or size of E > 512.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.9 Integer Simultaneous Modular Exponentiation (MOD_SML_EXP)

MOD_SML_EXP performs two modular exponentiations and multiplies the results. This
is faster than doing them separately. It is useful for DSA Verification.

Table 10-146. MOD_SML_EXP function properties

Property Notes

Mode value 0000_0000_0000_0001_0110 (output placed in B)

0000_0000_0001_0001_0110 (output placed in A)

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

488 NXP Semiconductors
Confidential Proprietary

Table 10-146. MOD_SML_EXP function properties
(continued)

Property Notes

Input • N = modulus, any odd integer
• A0 = an integer < N, first base
• E = an integer, first exponent
• A2 = an integer < N, second base
• B = an integer, second exponent

Output B (or A if selected) = A0E * A2B mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 1/2 RAM size
• Maximum key (exponent) size and B size = 1/4 RAM size
• A0 < N
• A2 < N
• The values in A0 and A2 must be the same number of bytes, matching the A SIZE register, and

should be the same size as N

Side effects A, B, and E are modified.

Errors reported • N size error is set if N size > half RAM
• A size error is set if A size > half RAM
• B size error is set if B size > quarter-RAM.
• E size error is set if E size > quarter-RAM

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.10 Integer Modular Square (MOD_SQR and MOD_SQR_TEQ)

This function may be used to square an integer value. MOD_SQR_TEQ, the timing
equalized version, will take the same time to complete for a given modulus. In general
the MOD_SQR version will run faster than MOD_SQR_TEQ, but will never run slower.

Table 10-147. MOD_SQR and MOD_SQR_EXP function properties

Property Notes

Mode value for
MOD_SQR

0000_0000_0000_0001_1010 (output placed in B)

0000_0000_0001_0001_1010 (output placed in A)

Mode value for
MOD_SQR_TEQ

0000_0000_0100_0001_1010 (output placed in B)

0000_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, any odd integer
• A = a field element

Output B (or A, if selected) = (A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 489
Confidential Proprietary

Table 10-147. MOD_SQR and MOD_SQR_EXP function properties
(continued)

Property Notes

• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.11 Integer Modular Square, Montgomery inputs (MOD_SQR_IM and
MOD_SQR_IM_TEQ)

This function may be used to square an integer value. For a given modulus,
MOD_SQR_IM_TEQ will take the same time to complete for any value of A. In general
MOD_SQR_IM will run faster than MOD_SQR_IM_TEQ, and will never run slower.

Table 10-148. MOD_SQR_IM and MOD_SQR_IM_TEQ function properties

Property Notes

Mode value for
MOD_SQR_IM

1000_0000_0000_0001_1010 (output placed in B)

1000_0000_0001_0001_1010 (output placed in A)

Mode value for
MOD_SQR_IM_TE
Q

1000_0000_0100_0001_1010 (output placed in B)

1000_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, any odd integer
• A = an integer < N in Montgomery form

Output B (or A, if selected) = (A*A) mod N, an integer

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.12 Integer Modular Square, Montgomery inputs and outputs
(MOD_SQR_IM_OM and MOD_SQR_IM_OM_TEQ)

This function may be used to square an integer value. For a given modulus,
MOD_SQR_IM_OM_TEQ will take the same time to complete for any value of A. In
general MOD_SQR_IM_OM will run faster than MOD_SQR_IM_OM_TEQ, and will
never run slower.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

490 NXP Semiconductors
Confidential Proprietary

Table 10-149. MOD_SQR_IM_OM and MOD_SQR_IM_OM_TEQ function properties

Property Notes

Mode value for
MOD_SQR_IM_O
M

1100_0000_0000_0001_1010 (output placed in B)

1100_0000_0001_0001_1010 (output placed in A)

Mode value for
MOD_SQR_IM_O
M_TEQ

1100_0000_0100_0001_1010 (output placed in B)

1100_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, any odd integer
• A = a Montgomery value < N

Output B (or A, if selected) = (A*A) mod N, in Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = >Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.13 Integer Modular Cube (MOD_CUBE and MOD_CUBE_TEQ)

This function may be used to cube an integer value. These functions first compute the
Montgomery conversion factor, R2 mod N and then convert the value to cube. For a given
modulus, MOD_CUBE_TEQ will take the same time to complete for any value of A. In
general MOD_CUBE will run faster than MOD_CUBE_TEQ, and will never run slower.

Table 10-150. MOD_CUBE and MOD_CUBE_TEQ function properties

Property Notes

Mode value for
MOD_CUBE

0000_0000_0000_0001_1011 (output placed in B)

0000_0000_0001_0001_1011 (output placed in A)

Mode value for
MOD_CUBE_TEQ

0000_0000_0100_0001_1011 (output placed in B)

0000_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, any odd integer
• A = a value < N

Output B (or A, if selected) = (A*A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 491
Confidential Proprietary

Table 10-150. MOD_CUBE and MOD_CUBE_TEQ function properties
(continued)

Property Notes

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.14 Integer Modular Cube, Montgomery input (MOD_CUBE_IM and
MOD_CUBE_IM_TEQ)

MOD_CUBE_IM is used to cube an integer value. The timing equalized version,
MOD_CUBE_IM_TEQ, also cubes an integer value but will take the same time to
complete for a given modulus. In general MOD_CUBE_IM will run faster than
MOD_CUBE_IM_TEQ, but will never run slower.

Table 10-151. MOD_CUBE_IM and MOD_CUBE_IM_TEQ function properties

Property Notes

Mode value for
MOD_CUBE_IM

1000_0000_0000_0001_1011 (output placed in B)

1000_0000_0001_0001_1011 (output placed in A)

Mode value for
MOD_CUBE_IM_T
EQ

1000_0000_0100_0001_1011 (output placed in B)

1000_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, any odd integer
• A = a Montgomery value

Output B (or A, if selected) = (A*A*A) mod N, a normal value

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.15 Integer Modular Cube, Montgomery input and output
(MOD_CUBE_IM_OM and MOD_CUBE_IM_OM_TEQ)

MOD_CUBE_IM_OM is used to cube an integer value. The timing equalized version,
MOD_CUBE_IM_OM_TEQ, also cubes an integer value but will take the same time to
complete for a given modulus. In general MOD_CUBE_IM_OM will run faster than
MOD_CUBE_IM_OM_TEQ, but will never run slower.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

492 NXP Semiconductors
Confidential Proprietary

Table 10-152. MOD_CUBE_IM_OM and MOD_CUBE_IM_OM_TEQ function
properties

Property Notes

Mode value for
MOD_CUBE_IM_O
M

1100_0000_0000_0001_1011 (output placed in B)

1100_0000_0001_0001_1011 (output placed in A)

Mode value for
MOD_CUBE_IM_O
M_TEQ

1100_0000_0100_0001_1011 (output placed in B)

1100_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, any odd integer
• A = a Montgomery value

Output B (or A, if selected) = (A*A*A) mod N, a Montgomery value

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.16 Integer Modular Square Root (MOD_SQRT)

The modular square root function computes output result B, such that (B x B) mod N =
input A. If no such B result exists, the result will be set to zero and the PKHA "prime"
flag will be set. Otherwise, A is square, and the function will compute one of the two
roots. The second square root (B') can be found by calculating B' = N - B. If A is zero,
then there is one root, zero.

Input values N and A are limited to a maximum size of 128 bytes.

Table 10-153. MOD_SQRT function properties

Property Notes

Mode value 0000_0000_0000_0001_0111 (output placed in B)

0000_0000_0001_0001_0111 (output placed in A)

Input • N0 (N RAM, 1st quadrant) = modulus, an odd prime integer
• A0 (A RAM, 1st quadrant) = input value, for which a square root is to be calculated

Output B0 (or A0, if selected) is calculated such that (B0 x B0) mod N = A mod N. If no such B exists, then B is
set to 0.

Requirements • Minimum modulus size = 1 byte)
• Maximum modulus size = 128 bytes
• A is < N.

Side effects All of the following PKHA RAM quadrants are modified: E2, E3, N1, N2, N3, B1, B2, B3, A1, A2, A3.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 493
Confidential Proprietary

Table 10-153. MOD_SQRT function properties (continued)

Property Notes

Errors reported • Data Size Error is set if the size of N is greater than 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PRM is set if no square root solution can be found.

ZERO is set if the result is zero (i.e., input A was zero).

10.10.1.6.3.17 Integer Modulo Reduction (MOD_AMODN)

MOD_AMODN computes the remainder of A divided by N. A and N can be of any size
and it is not required that A > N, but N must be non-zero.

Table 10-154. MOD_AMODN function properties

Property Notes

Mode value 0000_0000_0000_0000_0111 (output placed in B)

0000_0000_0001_0000_0111 (output placed in A)

Input • N = modulus, any non-zero integer
• A = any integer

Output B (or A, if selected) = A mod N, A reduced modulo N

Requirements • N = non-zero value
• Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Divide By Zero Error is set if N = 0.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.18 Integer Modular Inversion (MOD_INV)

MOD_INV computes the inverse of A, if an inverse exists. If the modulus, N, is prime,
then all values of A, 1 ≤ A < N, are guaranteed to have an inverse mod N. If N is not
prime, A may or may not have an inverse. It will have one only if GCD(A, N) == 1.

Table 10-155. MOD_INV function properties

Property Notes

Mode value 0000_0000_0000_0000_1000 (output placed in B)

0000_0000_0001_0000_1000 (output placed in A)

Input • N = modulus, any non-zero integer
• A = any non-zero integer lass than N

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

494 NXP Semiconductors
Confidential Proprietary

Table 10-155. MOD_INV function properties (continued)

Property Notes

Output B (or A, if selected) = A-1 mod N, an integer, the multiplicative inverse of A

Requirements • Neither A or N can be zero.
• A must be less than N.
• Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects A and E are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• Divide-By-Zero Error is set if N or A = 0, or if the most significant digit of N = 0, or if there is no

inverse.

Flags set None

10.10.1.6.3.19 Integer Montgomery Factor Computation (MOD_R2)

This function is used to compute a constant to assist in converting operands into the
Montgomery residue system representation. The constant R2(mod N) is dependent upon
the digit size of the PKHA and the value in N.

MUL, EXP, and ECC functions that do not have "IM" (Montgomery inputs) or an R2
input will internally invoke this routine to determine the constant and do the conversions
before other operations.

If the modulus N is a protocol- or system-wide parameter that does not change
frequently, such as in ECC operations for a specific curve, save this computed constant,
because this routine takes a not-insignificant amount of time to complete.

Table 10-156. MOD_R2 function properties

Property Notes

Mode value 1000_0000_0000_0000_1100 (output placed in B)

1000_0000_0001_0000_1100 (output placed in A)

Input N = modulus, any odd integer

Output B (or A, if selected) = R2 mod N, where R = 2SD where S is size of a digit in bits and D is the number of
digits of N; in other words, D = ceiling [sizeof(N) in bits / S]

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.

Flags set None

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 495
Confidential Proprietary

10.10.1.6.3.20 Integer RERP mod P (MOD_RR)

This function is used to compute a constant to assist in converting operands into the
Montgomery residue system representation specifically for Chinese Remainder Theorem
while performing RSA with a CRT implementation where a modulus E=P x Q, and P and
Q are prime numbers. Although labeled RERP mod P, this routine (function) can also
compute RERQ mod Q.

To use this routine, the size of the prime number (either P or Q) in bytes must be written
into the Data Size Register, and the size of the modulus E = P x Q in bytes must be
written into the Key Size Register. Next, the prime modulus (either P or Q) is written into
N-memory.

Table 10-157. MOD_RR function properties

Property Notes

Mode value 0000_0000_0000_0000_1101 (output placed in B)

0000_0000_0001_0000_1101 (output placed in A)

Input • N = modulus P or Q of CRT, an odd integer
• Key size = number of bytes of E = P x Q (this size must be given, though content of E itself is not

used)

Output B (or A, if selected) = RERP mod P, where RE = 2SD(E), and RP = 2SD(P), where S is the size of a digit (in
bits). D(E), D(P) are the number of digits of E, P respectively; in other words, D(E or P) = ceiling [size of
(E or P) in bits / S]

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• Maximum key size (P-size + Q-size) = 512 bytes
• Key size > modulus size

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• Key Size Error is set if size of E = 0 or size of E > 512.

Flags set None

10.10.1.6.3.21 Integer Greatest Common Divisor (MOD_GCD)

MOD_GCD finds the greatest common divisor of two integers.

Table 10-158. MOD_GCD function properties

Property Notes

Mode value 0000_0000_0000_0000_1110 (output placed in B)

0000_0000_0001_0000_1110 (output placed in A)

Input • N = any integer. The most-significant digit of N must be non-zero.
• A = any integer less than or equal to N

Output B (or A, if selected) = GCD(A,N), an integer less than or equal to A that divides both A and N

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

496 NXP Semiconductors
Confidential Proprietary

Table 10-158. MOD_GCD function properties (continued)

Property Notes

If the output is placed in B, the MOD_INV result is available in A.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and N may not both be zero

Side effects A is modified

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• Divide-By-Zero Error is set if N or A = 0, or if the most significant digit of N = 0.

Flags set PIO is set if the result is 1.

10.10.1.6.3.22 Miller_Rabin Primality Test (PRIME_TEST)
Table 10-159. PRIME_TEST function properties

Property Notes

Mode value 0000_0000_0000_0000_1111 (output placed in B)

0000_0000_0001_0000_1111 (output placed in A)

Input • N1 = Candidate prime integer
• A = An initial random seed for the base value of exponentiation; can be any integer 2 < A < N - 2
• B = "t" parameter, which is the number of trial runs. By default, it is set at 1 or B[7:0], whichever is

greater. Only the lowest byte of the supplied value is used.

Output B (or A, if selected) = 1 if candidate is believed to be prime, otherwise 0

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and N may not both be zero

Side effects N and A are modified

Errors reported • N Size Error is set if size of N = 0 or size of N > 512.
• B Size Error is set if N size > 256. and the least-significant byte of B > 31.
• Divide-By-Zero Error is set if no seed can be found that is in the legal range of 2 < A < N-2. This

occurs if N = 1 or N = 3.

Flags set PRM is set if the candidate is believed to be prime

1. If the most significant digit of N is zero, the result is always composite, the output is the value zero, and the PRM flag is not
set, regardless of the primality of the value of N.

10.10.1.6.3.23 Right Shift A (RIGHT_SHIFT_A) function
Table 10-160. RIGHT_SHIFT_A function properties

Property Notes

Mode value 0000_0000_0000_0001_1101 (output placed in B)

0000_0000_0001_0001_1101 (output placed in A)

Input • A = first addend, any integer less than N

Output B (or A, if selected) = (A + B) mod N

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 497
Confidential Proprietary

Table 10-160. RIGHT_SHIFT_A function properties (continued)

Property Notes

Requirements • Minimum A size = 1 byte
• Maximum A size = 512 bytes

Side effects None

Errors reported • A Size Error is set if the size of A is greater than max size.

If (A + B) >= N, N will be subtracted just once from the sum. That is, if (A + B) >= 2N, then the result will
not be mod N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.24 Compare A B (COMPARE) function
Table 10-161. COMPARE function properties

Property Notes

Mode value 0000_0000_0000_0001_1110

Input • A = Value to be compared
• B = Value to be compared
• A Size = the number of least-significant bits that will be compared

Output None (other than flags)

Requirements A Size must be >= B Size.

Side effects none

Errors reported If B Size > A Size a "B Size" error will be generated.

Flags set • PKHA_GCD_ONE is set if B > A
• PKHA_ZERO is set if B == A
• no flag is set if B < A

10.10.1.6.3.25 Evaluate A (EVALUATE) function
Table 10-162. EVALUATE function properties

Property Notes

Mode value SB00_0000_0000_0001_1111 (output placed in B)

SB00_0000_0001_0001_1111 (do not modify B)

• If the S bit is set, PKHA will push to the output FIFO a single DWord with the value
000_000_000_0sss, where sss is the updated A Size.

• If the B bit is set, PKHA will push to the output FIFO a single DWord with the value
000_000_000_bbbb, where bbbb is the updated number of bits in A.

• If the S bit is set and the B bit is set, the A-Size DWord will be pushed before the number-of-bits-
in-A Dword.

Input • A = Value to be evaluated

Output • A Size is updated with the number of least-significant non-zero bytes, i.e. the position of the most-
significant non-zero byte (least-significant byte is byte-position 0). This evaluation considers only
the bytes specified by the incoming value of A Size. This allows the incoming value of A Size to be

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

498 NXP Semiconductors
Confidential Proprietary

Table 10-162. EVALUATE function properties (continued)

Property Notes

set so that A0 will be evaluated, ignoring the values in A1, A2 and A3, or the incoming value could
be set so that (A1,A0) will be evaluated, ignoring A2 and A3, or (A2,A1,A0) could be evaluated,
ignoring A3.

• If the mode value specifies that the output is to be placed in B, the updated value of A Size will be
copied into the least-significant two bytes of B and B Size will be set to 2. If the "do not modify B"
option is selected, the updated value of A Size will not be copied into B.

Requirements none

Side effects • A Size will be modified.
• B Size may be modified.
• One or two DWords mmay be pushed to the output FIFO.

Errors reported none

Flags set • PKHA_GCD_ONE is set if A == 1
• PKHA_ZERO is set if A == 0. A Size (and number of bits in A) will be set to 0. Note that this could

cause an A Size error in a subsequent PKHA operation.

10.10.1.6.3.26 Binary Polynomial (F2m) Addition (F2M_ADD) function

This function performs binary polynomial modular addition without any modulo
reduction, as the value in the N register is ignored. Only its size is used, to determine the
size of the result.

This type of addition is the equivalent of a bitwise XOR and this function may be used
for that purpose.

This function could as easily be labeled F2M_SUB, as it is mathematically equivalent.

Table 10-163. F2M_ADD function properties

Property Notes

Mode value 0000_0000_0000_0000_0010 (output placed in B)

0000_0000_0001_0000_0010 (output placed in A)

Input • Size of N (modulus size)
• A = first addend, a binary polynomial
• B = second addend, a binary polynomial

Output B (or A, if selected) = A xor B, a binary polynomial

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• The N need not be written, because its contents are ignored, but the size of N must be written.

This size is needed because inputs A and B are considered binary polynomials modulo some
irreducible polynomial N.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 499
Confidential Proprietary

10.10.1.6.3.27 Binary Polynomial (F2m) Modular Multiplication (F2M_MUL)

The (AB) mod N computation is provided to assist in algorithms and protocols where a
single modular multiplication is required and not as a chaining of multiplications. In the
latter case, Montgomery form multiplication routines (that is, F2M_MUL_IM or
F2M_MUL_IM_OM) are more efficient. This function first computes R2 mod N, then
multiples A*R2 to produce AR, then multiplies AR*B to produce AB.

Table 10-164. F2M_MUL function properties

Property Notes

Mode value 0010_0000_0000_0000_0101 (output placed in B)

0010_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, an irreducible polynomial
• A = multiplicand, a field element
• B = multiplier, a field element

Output B (or A, if selected) = (AB) mod N, a field element

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are field elements modulo N.

Side effects A and E are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.28 Binary Polynomial (F2m) Modular Multiplication with Montgomery
Inputs (F2M_MUL_IM) Function

This function takes its inputs, binary polynomials, in Montgomery form, multiplies them
modulo the value in the N register, used as a reduction polynomial, and returns the result
as a field value. To do this, it performs two multiplications: AR*BR => ABR and ABR*1
=> AB.

Table 10-165. F2M_MUL_IM function properties

Property Notes

Mode value 1010_0000_0000_0000_0101 (output placed in B)

1010_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = multiplicand, a binary polynomial < 2m, in Montgomery form
• B = multiplicand, a binary polynomial < 2m, in Montgomery form

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

500 NXP Semiconductors
Confidential Proprietary

Table 10-165. F2M_MUL_IM function properties (continued)

Property Notes

Output B (or A, if selected) = (AxB) mod N, a a binary polynomial < 2m, non-Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are field elements in Montgomery form and must be modulo reduced by irreducible

polynomial N.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.29 Binary Polynomial (F2m) Modular Multiplication with Montgomery
Inputs and Outputs (F2M_MUL_IM_OM) Function

This function performs the calculation A*B/R mod N, where R is the Montgomery factor
for N. This can be used in several ways:

• If one value is a normal value, and the other is R2 mod N, then the result is the
normal value converted to Montgomery.

• If A and B are both Montgomery values, then the result is the product of A and B as
a Montgomery value.

• If only one of (A,B) is a Montgomery value, then the result is the product as a normal
value.

• If one of (A,B) is a Montgomery value and the other is the value one, then the result
is Montgomery value converted to a normal value.

Table 10-166. F2M_MUL_IM_OM function properties

Property Notes

Mode value 1110_0000_0000_0000_0101 (output placed in B)

1110_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial 0 < 2m, in Montgomery form.
• B = a binary polynomial 0 < 2m, in Montgomery form.

Output B (or A, if selected) = (AxB) mod N, in Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are field elements in Montgomery form.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 501
Confidential Proprietary

Table 10-166. F2M_MUL_IM_OM function properties (continued)

Property Notes

• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.30 Binary Polynomial (F2m) Modular Exponentiation (F2M_EXP and
F2M_EXP_TEQ)

This function is similar to MOD_EXP but works on binary polynomials. It is provided
mainly to assist in the computation of elliptic curve parameter "c", where c = b2m-2

 mod n)
given an elliptic curve parameter "b" and the field-defining polynomial in N. It computes
R2 mod N and converts A to Montgomery form before beginning the exponentiation.
F2M_EXP_TEQ performs the same operation as F2M_EXP but with an added timing
equalization security feature. Its exponentiation run-time, for a given modulus and size of
exponent, is constant. In general F2M_EXP will run faster than F2M_EXP_TEQ, but will
never run slower.

Table 10-167. F2M_EXP function properties

Property Notes

Mode value for
F2M_EXP

0010_0000_0000_0000_0110 (output placed in B)

0010_0000_0001_0000_0110 (output placed in A)

Mode value for
F2M_EXP_TEQ

0010_0000_0100_0000_0110 (output placed in B)

0010_0000_0101_0000_0110 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial < 2m

• E = exponent, any integer

Output B (or A, if selected) = (AE) mod N, a binary polynomial

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• Maximum key (exponent) size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• Key Size Error is set if size of E = 0 or size of E > 512.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

502 NXP Semiconductors
Confidential Proprietary

10.10.1.6.3.31 Binary Polynomial (F2m) Simultaneous Modular Exponentiation
(F2M_SML_EXP)

F2M_SML_EXP performs two modular exponentiations on binary polynomials, and
multiplies the results. This is faster than doing them separately. It is useful for DSA
Verification.

Table 10-168. F2M_SML_EXP function properties

Property Notes

Mode value 0000_0000_0000_0001_0110 (output placed in B)

0000_0000_0001_0001_0110 (output placed in A)

Input • N = modulus, any odd integer
• A0 = a field element, first base
• E = an integer, first exponent
• A2 = a field element, second base
• B = an integer, second exponent

Output B (or A if selected) = A0E * A2B mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 1/2 RAM
• Maximum key (exponent) size and B size = 1/4 RAM size
• A0 < N
• A2 < N
• The values in A0 and A2 must be the same number of bytes, matching the A SIZE register, and

should be the same size as N

Side effects A, B, and E are modified.

Errors reported • N size error is set if N size > half RAM
• A size error is set if A size > half RAM
• B size error is set if B size > quarter-RAM
• E size error is set if E size > quarter-RAM

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.32 Binary Polynomial (F2m) Modular Square (F2M_SQR and
F2M_SQR_TEQ)

F2M_SQR may be used to square an binary polynomial value. The timing equalized
version, F2M_SQR_TEQ, will also square a binary polynomial value but for a given
modulus will always take the same time to complete. F2M_SQR will usually run faster
than F2M_SQR_TEQ, but will never run slower

Table 10-169. F2M_SQR and F2M_SQR_TEQ function properties

Property Notes

Mode value for
F2M_SQR

0010_0000_0000_0001_1010 (output placed in B)

0010_0000_0001_0001_1010 (output placed in A)

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 503
Confidential Proprietary

Table 10-169. F2M_SQR and F2M_SQR_TEQ function properties
(continued)

Property Notes

Mode value for
F2M_SQR_TEQ

0010_0000_0100_0001_1010 (output placed in B)

0010_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m

Output B (or A, if selected) = (A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.33 Binary Polynomial (F2m) Modular Square, Montgomery Input
(F2M_SQR_IM and F2M_SQR_IM_TEQ)

F2M_SQR_IM may be used to square a binary polynomial in Montgomery form.
F2M_SQR_IM_TEQ, the timing equalized version, will take the same time to complete
for a given modulus. F2M_SQR_IM will generally run faster than F2M_SQR_IM_TEQ,
but will never run slower.

Table 10-170. F2M_SQR_IM and F2M_SQR_IM_TEQ function properties

Property Notes

Mode value for
F2M_SQR_IM

1010_0000_0000_0001_1010 (output placed in B)

1010_0000_0001_0001_1010 (output placed in A)

Mode value for
F2M_SQR_IM_TE
Q

1010_0000_0100_0001_1010 (output placed in B)

1010_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m in Montgomery form

Output B (or A, if selected) = (A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

504 NXP Semiconductors
Confidential Proprietary

Table 10-170. F2M_SQR_IM and F2M_SQR_IM_TEQ function properties

Property Notes

GCD is set if the result is one.

10.10.1.6.3.34 Binary Polynomial (F2m) Modular Square, Montgomery Input and
Output (F2M_SQR_IM_OM and F2M_SQR_IM_OM_TEQ)

F2M_SQR_IM_OM may be used to square a binary polynomial in Montgomery form,
and will output the result in Montgomery form. F2M_SQR_IM_OM_TEQ, the timing
equalized version, will take the same time to complete for a given modulus.
F2M_SQR_IM_OM will generally run faster than F2M_SQR_IM_OM_TEQ, but will
never run slower.

Table 10-171. F2M_SQR_IM_OM and F2M_SQR_IM_OM_TEQ function properties

Property Notes

Mode value for
F2M_SQR_IM_OM

1110_0000_0000_0001_1010 (output placed in B)

1110_0000_0001_0001_1010 (output placed in A)

Mode value for
F2M_SQR_IM_OM
_TEQ

1110_0000_0100_0001_1010 (output placed in B)

1110_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m, possibly in Montgomery form

Output B (or A, if selected) = (A*A) mod N, in Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.35 Binary Polynomial (F2m) Modular Cube (F2M_CUBE and
F2M_CUBE_TEQ)

F2M_CUBE may be used to cube a binary polynomial value. The function will first
compute the Montgomery conversion factor, R2 mod N and convert the value to cube.
F2M_CUBE_TEQ, the timing equalized version, performs the same function but will
take the same time to complete for a given modulus. F2M_CUBE will generally run
faster than F2M_CUBE_TEQ, but will never run slower.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 505
Confidential Proprietary

Table 10-172. F2M_CUBE and F2M_CUBE_TEQ function properties

Property Notes

Mode value for
F2M_CUBE

0010_0000_0000_0001_1011 (output placed in B)

0010_0000_0001_0001_1011 (output placed in A)

Mode value for
F2M_CUBE_TEQ

0010_0000_0100_0001_1011 (output placed in B)

0010_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order <m

Output B (or A, if selected) = (A*A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.36 Binary Polynomial (F2m) Modular Cube, Montgomery Input
(F2M_CUBE_IM and F2M_CUBE_IM_TEQ)

F2M_CUBE_IM may be used to cube a binary polynomial value that is in Montgomery
form. F2M_CUBE_IM_TEQ, the timing equalized version, performs the same function
but will take the same time to complete for a given modulus. F2M_CUBE_IM will
generally run faster than F2M_CUBE_IM_TEQ, but will never run slower.

Table 10-173. F2M_CUBE_IM and F2M_CUBE_IM_TEQ function properties

Property Notes

Mode value for
F2M_CUBE_IM

1010_0000_0000_0001_1011 (output placed in B)

1010_0000_0001_0001_1011 (output placed in A)

Mode value for
F2M_CUBE_IM_TE
Q

1010_0000_0100_0001_1011 (output placed in B)

1010_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m in Montgomery form

Output B (or A, if selected) = (A*A*A) mod N, a binary polynomial

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

506 NXP Semiconductors
Confidential Proprietary

Table 10-173. F2M_CUBE_IM and F2M_CUBE_IM_TEQ function properties
(continued)

Property Notes

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.37 Binary Polynomial (F2m) Modular Cube, Montgomery Input and
Output (F2M_CUBE_IM_OM and F2M_CUBE_IM_OM_TEQ)

F2M_CUBE_IM_OM may be used to cube a binary polynomial value that is in
Montgomery form, and output the result in Montgomery form.
F2M_CUBE_IM_OM_TEQ, the timing equalized version, performs the same function
but will take the same time to complete for a given modulus. F2M_CUBE_IM_OM will
generally run faster than F2M_CUBE_IM_OM_TEQ, but will never run slower.

Table 10-174. F2M_CUBE_IM_OM and F2M_CUBE_IM_OM_EXP function
properties

Property Notes

Mode value for
F2M_CUBE_IM_O
M

1110_0000_0000_0001_1011 (output placed in B)

1110_0000_0001_0001_1011 (output placed in A)

Mode value for
F2M_CUBE_IM_O
M_TEQ

1110_0000_0100_0001_1011 (output placed in B)

1110_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m, possibly in Montgomery form

Output B (or A, if selected) = (A*A*A) mod N, in Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

10.10.1.6.3.38 Binary Polynomial (F2m) Modulo Reduction (F2M_AMODN)

F2M_AMODN computes the remainder of A divided by N. This is the equivalent of the
MOD_AMODN function applied to a binary polynomial. A and N can be of any size and
it is not required that A > N, but N must be non-zero.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 507
Confidential Proprietary

Table 10-175. F2M_AMODN function properties

Property Notes

Mode value 0010_0000_0000_0000_0111 (output placed in B)

0010_0000_0001_0000_0111 (output placed in A)

Input • N = modulus, any non-zero polynomial
• A = any polynomial

Output B (or A, if selected) = A mod N, a polynomial, binary element modulo N

Requirements • N = non-zero value
• Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Divide By Zero Error is set if N = 0.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

10.10.1.6.3.39 Binary Polynomial (F2m) Modular Inversion (F2M_INV)

F2M_INV computes the multiplicative inverse of a binary polynomial.

Table 10-176. F2M_INV function properties

Property Notes

Mode value 0010_0000_0000_0000_1000 (output placed in B)

0010_0000_0001_0000_1000 (output placed in A)

Input • N = modulus, an irreducible polynomial
• A = a field element

Output B (or A, if selected) = A-1 mod N, a field element, the multiplicative inverse of A

Requirements • A is an element of the binary polynomial field.
• Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects A and E are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• Divide-By-Zero Error is set if N or A = 0, or if the most significant digit of N = 0.

Flags set None

10.10.1.6.3.40 Binary Polynomial (F2m) R2 Mod N (F2M_R2) Function

This function is used to compute the Montgomery Conversion Factor, which is used to
convert operands into the Montgomery residue system representation. The constant
R2(mod N) is dependent upon the digit size of the PKHA and the value of N. If this value
is not available, then this routine (function) is called to determine the constant before

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

508 NXP Semiconductors
Confidential Proprietary

other operations. If N contains a protocol- or system-wide parameter that does not change
frequently, such as in ECC operations for a specific curve, save this computed constant,
because this routine takes a considerable amount of time to complete.

Table 10-177. F2M_R2 function properties

Property Notes

Mode value 0010_0000_0000_0000_1100 (output placed in B)

0010_0000_0001_0000_1100 (output placed in A)

Input N = modulus, an irreducible polynomial

Output B (or A, if selected) = R2 mod N, where R = 2SD where S is size of a digit in bits and D is the number of
digits of an irreducible polynomial, in other words D = ceiling [sizeof(N) in bits / S]

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.

Flags set None

10.10.1.6.3.41 Binary Polynomial (F2m) Greatest Common Divisor (F2M_GCD)
Function

MOD_GCD finds the greatest common divisor of two binary polynomials.

Table 10-178. F2M_GCD function properties

Property Notes

Mode value 0010_0000_0000_0000_1110 (output placed in B)

0010_0000_0001_0000_1110 (output placed in A)

Input • N = any polynomial. The most-significant digit of N must be non-zero.
• A = any polynomial with degree less than or equal to N

Output B (or A, if selected) = BINARY_GCD(A,N), a polynomial with degree less than or equal to polynomial A
that divides both A and N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and N may not both be zero

Side effects A is modified

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• Divide-By-Zero Error is set if N or A = 0, or if the most significant digit of N = 0.

Flags set PIO is set if the result is 1.

10.10.1.6.4 Elliptic Curve Functions

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 509
Confidential Proprietary

10.10.1.6.4.1 ECC Fp Point Add, Affine Coordinates (ECC_MOD_ADD) Function

ECC_MOD_ADD performs an addition of two points on an elliptic curve. The inputs and
output are in affine coordinates.

Table 10-179. ECC_MOD_ADD function properties

Property Notes

Mode value 0000_0000_0000_0000_1001 (output placed in B)

0000_0000_0001_0000_1001 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero The most
significant digit of N must be non-zero

• [A0, A1] = first addend in affine coordinates
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = second addend in affine coordinates
• B3 = ignored

Output [B1, B2] (or [A0, A1], if A output selected) = [A0, A1] + [B1, B2], where "+" represents an elliptic curve
point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

prime field and therefore are less than the modulus N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide-By-Zero Error is set if the most-significant digit of N = 0.

Flags set None

10.10.1.6.4.2 ECC Fp Point Add, Affine Coordinates, R2 Mod N Input
(ECC_MOD_ADD_R2) Function

ECC_MOD_ADD_R2 performs an addition of two points on an elliptic curve. The
addends are input and the sum is output in affine coordinates. Since
ECC_MOD_ADD_R2 has R2 mod N as an additional input, this function is more
efficient than ECC_MOD_ADD, which first must compute R2 mod N before performing
the addition.

Table 10-180. ECC_MOD_ADD_R2 function properties

Property Notes

Mode value 0001_0000_0000_0000_1001 (output placed in B)

0001_0000_0001_0000_1001 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero The most
significant digit of N must be non-zero

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

510 NXP Semiconductors
Confidential Proprietary

Table 10-180. ECC_MOD_ADD_R2 function properties (continued)

Property Notes

• [A0, A1] = first addend point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = second addend point in affine coordinates (x,y)
• B3 = R2 (R2 mod N) input

Output [B1, B2] (or [A0, A1], if A output selected) = [A0, A1] + [B1, B2], where "+" represents an elliptic curve
point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

prime field formed by N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide-By-Zero Error is set if the most-significant digit of N = 0.

Flags set None

10.10.1.6.4.3 ECC Fp Point Double, Affine Coordinates (ECC_MOD_DBL)
Function

ECC_MOD_DBL computes the double (B + B) of a point B on an elliptic curve. The
input and output are in affine coordinates.

Table 10-181. ECC_MOD_DBL function properties

Property Notes

Mode value 0000_0000_0000_0000_1010 (output placed in B)

0000_0000_0001_0000_1010 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1, A2] = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = input point in affine coordinates
• B3 = ignored

Output [B1, B2] (or [A0, A1], if A output selected) = [B1, B2] + [B1, B2], where "+" represents an elliptic-curve
point addition. Output is in affine coordinates (x, y).

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates B1 and B2, and elliptic curve parameters A3 and B0 are elements of the prime

field formed by N.

Side effects A0, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 511
Confidential Proprietary

Table 10-181. ECC_MOD_DBL function properties (continued)

Property Notes

• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

10.10.1.6.4.4 ECC Fp Point Multiply, Affine Coordinates (ECC_MOD_MUL and
ECC_MOD_MUL_TEQ) Function

ECC_MOD_MUL computes the scalar multiplication of a point on an elliptic curve. The
input and output are in affine coordinates. ECC_MOD_MUL_TEQ computes the same
function, but with an added timing equalization security feature. Its computation run-time
is, for a given curve (N, A3, B0), constant for a given size of E. ECC_MOD_MUL in
general will run faster than ECC_MOD_MUL_TEQ, but will never run slower.

Table 10-182. ECC_MOD_MUL and ECC_MOD_MUL_TEQ function properties

Property Notes

Mode value for
ECC_MOD_MUL

0000_0000_0000_0000_1011 (output placed in B)

0000_0000_0001_0000_1011 (output placed in A)

Mode value for
ECC_MOD_MUL_T
EQ

0000_0000_0100_0000_1011 (output placed in B)

0000_0000_0101_0000_1011 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero
• E = scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• The point (A0, A1) must be on the elliptic curve formed by (N, A3, B0).

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

512 NXP Semiconductors
Confidential Proprietary

The following special cases should be noted:

• For k = 0, this function returns a point at infinity; that is (0,0) if curve parameter "b"
is nonzero and (0,1) otherwise.

• For k < 0, (that is, a negative scalar multiplication is required), its absolute value
should be provided to the PKHA; that is, k = abs(-k). After the computation is
complete, the formula -P= (x,-y) can be used to compute the "y" coordinate of the
effective final result, and other coordinates are the same.

10.10.1.6.4.5 ECC Fp Point Multiply, R2 Mod N Input, Affine Coordinates
(ECC_MOD_MUL_R2 and ECC_MOD_MUL_R2_TEQ) Function

ECC_MOD_MUL_R2 computes a scalar multiplication of a point on an elliptic curve.
The input point and the output point are in affine coordinates. Since
ECC_MOD_MUL_R2 has R2 mod N as an additional input, this function is more
efficient than ECC_MOD_MUL, which first must compute R2 mod N before performing
the multiplication. ECC_MOD_MUL_R2_TEQ computes the same function, but with an
added timing equalization security feature. Its computation run-time is, for a given curve
(N, A3, B0), constant for a given size of E. ECC_MOD_MUL_R2 in general will run
faster than ECC_MOD_MUL_R2_TEQ, but will never run slower.

Table 10-183. ECC_MOD_MUL_R2 and ECC_MOD_MUL_R2_TEQ function properties

Property Notes

Mode value for
ECC_MOD_MUL_
R2

0001_0000_0000_0000_1011 (output placed in B)

0001_0000_0001_0000_1011 (output placed in A)

Mode value for
ECC_MOD_MUL_
R2_TEQ

0001_0000_0100_0000_1011 (output placed in B)

0001_0000_0101_0000_1011 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• E = key, scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = R2 mod N, pre-computed as described in MOD_R2
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0 and A1 and elliptic curve parameters A3 and B0 are elements of the prime

field formed by the modulus N.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 513
Confidential Proprietary

Table 10-183. ECC_MOD_MUL_R2 and ECC_MOD_MUL_R2_TEQ function properties
(continued)

Property Notes

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For k = 0, this function returns a point at infinity; that is, (0,0) if curve parameter "b"
is nonzero and (0,1) otherwise.

• For k < 0, (that is, a negative scalar multiplication is required), its absolute value
should be provided to the PKHA; that is, k = abs(- k). After the computation is
complete, the formula -P = (x,-y) can be used to compute the "y" coordinate of the
effective final result, and other coordinate is the same.

10.10.1.6.4.6 ECC Fp Check Point (ECC_MOD_CHECK_POINT) Function

ECC_MOD_CHECK_POINT determines whether the point (x,y) is on the elliptic curve,
i.e. whether x and y satisfy the equation y2 = x3 + ax + b.

ECC_MOD_CHECK_POINT_R2 has R2 mod N as an additional input, so it is more
efficient than this function, which first must compute R2 mod N before performing the
operation.

Table 10-184. ECC_MOD_CHECK_POINT function properties

Property Notes

Mode value 0000_0000_0000_0001_1100

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B1 = R2 mod N, as described in MOD_R2MODN (Note that if the input point is invalid B1 may not
be generated. Software should check the range and validity of x and y for the curve's equation
before running this function.)

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

514 NXP Semiconductors
Confidential Proprietary

Table 10-184. ECC_MOD_CHECK_POINT function properties
(continued)

Property Notes

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the input is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

ECC_MOD_CHECK_POINT checks whether x and y are < N. If not, the routine exits
with no flags set. If the input is O, the point at infinity, then PIZ is set and the routine
exits. It then computes y2 = x3 + ax + b mod N. If the equation is true, then the (x,y)
coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set, meaning
that (x,y) are not part of the curve, so the point is invalid. All inputs remain unchanged.

10.10.1.6.4.7 ECC Fp Check Point, R2 Mod N Input, Affine Coordinates
(ECC_MOD_CHECK_POINT_R2) Function

ECC_MOD_CHECK_POINT_R2 determines whether the point (x,y) is on the elliptic
curve, i.e. whether x and y satisfy the equation y2 = x3 + ax + b.
ECC_MOD_CHECK_POINT_R2 checks whether x and y are < N. If not, the routine
exits with no flags set. If the input is O, the point at infinity, then PIZ is set and the
routine exits. It then computes y2 mod N and x3 + ax + b mod N. If they are equal, then
the (x,y) coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set
meaning that (x,y) are not part of the curve, so the point is invalid. All inputs remain
unchanged. Since this function takes R2 mod N as an additional input,
ECC_MOD_CHECK_POINT_R2 is more efficient than ECC_MOD_CHECK_POINT,
which first must compute R2 mod N before performing the point check.

Table 10-185. ECC_MOD_CHECK_POINT_R2 function properties

Property Notes

Mode value 0001_0000_0000_0001_1100

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = R2 mod N, pre-computed as described in MOD_R2MODN (0Eh)
• B2 = ignored

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 515
Confidential Proprietary

Table 10-185. ECC_MOD_CHECK_POINT_R2 function properties
(continued)

Property Notes

• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128. (Note that if the input point is invalid this
function may fail to detect "out of range" values that will still satisfy the curve equation. Software
should check the range and validity of x and y for the curve's equation before running this
function.)

• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the input is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

ECC_MOD_CHECK_POINT_R2 checks whether x and y are < N. If not, the routine
exits with no flags set. If the input is O, the point at infinity, then PIZ is set and the
routine exits. It then computes y2 = x3 + ax + b mod N. If the equation is true, then the
(x,y) coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set,
meaning that (x,y) are not part of the curve, so the point is invalid. All inputs remain
unchanged.

10.10.1.6.4.8 ECC F2m Point Add, Affine Coordinates (ECC_F2M_ADD) Function

ECC_F2M_ADD performs an addition of two points on an elliptic curve. The inputs and
output are in affine coordinates.

Table 10-186. ECC_F2M_ADD function properties

Property Notes

Mode value 0010_0000_0000_0000_1001 (output placed in B)

0010_0000_0001_0000_1001 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• [A0, A1] = first addend in affine coordinates
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter, where c = b2m-2

 mod n
• B1, B2] = second addend in affine coordinates
• B3 = ignored

Output P[B1, B2] (or P[A0, A1], if A output selected) = P[A0, A1] + P[B1, B2], where "+" represents an elliptic
curve point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

516 NXP Semiconductors
Confidential Proprietary

Table 10-186. ECC_F2M_ADD function properties (continued)

Property Notes

• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1, and B2 and elliptic curve parameters A3 and B0 are elements of the

binary polynomial field N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide By Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set None

10.10.1.6.4.9 ECC F2m Point Add, Affine Coordinates, R2 Mod N Input
(ECC_F2M_ADD_R2) Function

ECC_F2M_ADD_R2 performs an addition of two points on an elliptic curve. The inputs
and output are in affine coordinates. Since this function takes R2 mod N as an additional
input, ECC_F2M_ADD_R2 is more efficient than ECC_F2M_ADD, which first must
compute R2 mod N before performing the addition.

Table 10-187. ECC_F2M_ADD_R2 function properties

Property Notes

Mode value 0011_0000_0000_0000_1001 (output placed in B)

0011_0000_0001_0000_1001 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• [A0, A1] = first addend in affine coordinates
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter, where c = b2m-2

 mod n. Must not be zero.
• [B1, B2] = second addend in affine coordinates
• B3 = R2 input

Output P[B1, B2] (or P[A0, A1], if A output selected) = P[A0, A1] + P[B1, B2], where "+" represents an elliptic
curve point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

binary polynomial field.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide By Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set None

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 517
Confidential Proprietary

10.10.1.6.4.10 ECC F2m Point Double - Affine Coordinates (ECC_F2M_DBL)
Function

ECC_F2M_DBL computes the double (B + B) of a point B on an elliptic curve. The
input and output are in affine coordinates.

Table 10-188. ECC_F2M_DBL function properties

Property Notes

Mode value 0010_0000_0000_0000_1010 (output placed in B)

0010_0000_0001_0000_1010 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• A0, A1, A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter where c = b2m-2

 mod n
• [B1, B2] = input point in affine coordinates
• B3 = ignored

Output P[B1, B2] (or P[A0, A1], if A output selected) = P[B1, B2] + P[B1, B2], where "+" represents an elliptic-
curve point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates B1 and B2, and elliptic curve parameters A3 and B0 are elements of the binary

polynomial field formed by N.

Side effects A0, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set PIZ is set if the result is the point at infinity.

10.10.1.6.4.11 ECC F2m Point Multiply, Affine Coordinates (ECC_F2M_MUL and
ECC_F2M_MUL_TEQ) Function

ECC_F2M_MUL computes the scalar multiplication of a point on an elliptic curve. The
input and output are in affine coordinates. ECC_F2M_MUL_TEQ performs the same
operation as ECC_F2M_MUL but with an added timing equalization security feature. Its
computation run-time is, for a given curve (N, A3, B0), constant for a given size of E. In
general ECC_F2M_MUL will run faster than ECC_F2M_MUL_TEQ, but will never run
slower.

Table 10-189. ECC_F2M_MUL and ECC_F2M_MUL_TEQ function properties

Property Notes

Mode value for
ECC_F2M_MUL

0010_0000_0000_0000_1011 (output placed in B)

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

518 NXP Semiconductors
Confidential Proprietary

Table 10-189. ECC_F2M_MUL and ECC_F2M_MUL_TEQ function properties
(continued)

Property Notes

0010_0000_0001_0000_1011 (output placed in A)

Mode value for
ECC_F2M_MUL_T
EQ

0010_0000_0110_0000_1011 (output placed in B)

0010_0000_0111_0000_1011 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• E = key, scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter where c = b2m-2

 mod n
• B1 = ignored
• B2 = ignored
• B3 = ignored

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes (irreducible polynomial of maximum degree 1023
• Point coordinates A0 and A1 and elliptic curve parameters A3 and B0 must be elements of the

binary polynomial field.

Side effects A0, A1 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For E = 0, this function returns a point at infinity (0,0).
• For E < 0, (that is, a negative scalar multiplication is required), its absolute value

should be provided to the PKHA; that is, k = -E). After the multiplication is
complete, the formula -P= (x, x+y) can be used to compute the y coordinate of the
effective final result; the x coordinate stays the same.

10.10.1.6.4.12 ECC F2m Point Multiply, R2 Mod N Input, Affine Coordinates
(ECC_F2M_MUL_R2 and ECC_F2M_MUL_R2_TEQ) Function

ECC_F2M_MUL_R2 computes the scalar multiplication of a point on an elliptic curve.
The input and output are in affine coordinates. Since this function takes R2 mod N as an
additional input, ECC_F2M_MUL_R2 is more efficient than ECC_F2M_MUL, which

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 519
Confidential Proprietary

first must compute R2 mod N before performing the multiplication.
ECC_F2M_MUL_R2_TEQ performs the same operation as ECC_F2M_MUL_R2 but
with an added timing equalization security feature. Its computation run-time is, for a
given curve (N, A3, B0), constant for a given size of E. In general ECC_F2M_MUL_R2
will run faster than ECC_F2M_MUL_R2_TEQ, but will never run slower.

Table 10-190. ECC_F2M_MUL_R2 and ECC_F2M_MUL_R2_TEQ function properties

Property Notes

Mode value for
ECC_F2M_MUL_R
2

0011_0000_0000_0000_1011 (output placed in B)

0011_0000_0001_0000_1011 (output placed in A)

Mode value for
ECC_F2M_MUL_R
2_TEQ

0011_0000_0100_0000_1011 (output placed in B)

0011_0000_0101_0000_1011 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• E = key, scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter where c = b2m-2

 mod n and m = degree of polynomial M
• B1 = (f2m) R2 mod N, pre-computed as described in F2M_R2MODN (0Eh)
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equally size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes (irreducible polynomial of maximum degree 1023
• Point coordinates A0 and A1 and elliptic curve parameters A3 and B0 must be elements of the

binary polynomial field.

Side effects A0, A1, A2, and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For k = 0, this function returns a point at infinity (0,0).
• For k < 0, (that is, a negative scalar multiplication is required), its absolute value

should be provided to the PKHA; that is, k = abs(- k). After the computation is
complete, the formula -P = (x, x+y) can be used to compute the "y" coordinate of the
effective final result, and other coordinate is the same.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

520 NXP Semiconductors
Confidential Proprietary

10.10.1.6.4.13 ECC F2m Check Point (ECC_F2M_CHECK_POINT) Function

This function determines whether the point (x,y) is on the elliptic curve, i.e. satisfies the
equation y2 + xy = x3 + ax2 + b.

ECC_F2M_CHECK_POINT_R2 has R2 mod N as an additional input, so it is more
efficient than this function, which first must compute R2 mod N before performing the
operation.

Table 10-191. ECC_F2M_CHECK_POINT function properties

Property Notes

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B1 = R2 mod N, as described in F2M_R2MODN (0Eh) (Note that if the input point is invalid B1 and
B2 may not be generated. Software should check the range and validity of x and y for the curve's
equation before running this function.)

• B2 = curve "b" parameter = c4 mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the input is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

This function checks whether x and y are < N. If not, the routine exits with no flags set. If
the input is O, the point at infinity, then PIZ set and the routine exits. It then computes y2

+ xy = x3 + ax2 + b mod N. If the equation is true, then the (x,y) coordinates are on the
curve and the GCD flag is set. Otherwise, no flags are set, meanning that (x,y) are not
part of the curve, so the point is invalid. All inputs remain unchanged. The outputs will
not be present if PIZ is set.

10.10.1.6.4.14 ECC F2m Check Point, R2 (ECC_F2M_CHECK_POINT_R2)
Function

This function determines whether the point (x,y) is on the elliptic curve, i.e. satisfies the
equation y2 + xy = x3 + ax2 + b.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 521
Confidential Proprietary

Since this function has R2 mod N as an additional input, it is more efficient than
ECC_F2M_CHECK_POINT, which first must compute R2 mod N before performing the
operation.

Table 10-192. ECC_F2M_CHECK_POINT_R2 function properties

Property Notes

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter
• B1 = R2 mod N, pre-computed as described in F2M_R2MODN (0Eh)
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B2 = curve "b" parameter = c4 mod N (Note that if the input point is invalid B2 may not be
generated. Software should check the range and validity of x and y for the curve's equation before
running this function.)

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the input is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

This function checks whether x and y are < N. If not, the routine exits with no flags set. If
the input is O, the point at infinity, then PIZ set and the routine exits. It then computes y2

+ xy = x3 + ax2 + b mod N. If the equation is true, then the (x,y) coordinates are on the
curve and the GCD flag is set. Otherwise, no flags are set, meanning that (x,y) are not
part of the curve, so the point is invalid. All inputs remain unchanged. The output will not
be present if PIZ is set.

10.10.1.6.4.15 ECM Modular Multiplication (ECM_MOD_MUL_X and
ECM_MOD_MUL_X_TEQ) Function

ECM_MOD_MUL_X computes the scalar multiplication of a point on an elliptic curve in
Montgomery form. The input and output are just the x coordinates of the points.
ECM_MOD_MUL_X_TEQ computes the same function, but with an added timing
equalization security feature. Its computation run-time is, for a given curve (N, A3),
constant for a given size of E. ECM_MOD_MUL_X in general will run faster than
ECM_MOD_MUL_X_TEQ, but will never run slower.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

522 NXP Semiconductors
Confidential Proprietary

This function computes a point multiplication on a Montgomery curve, using
Montgomery values, by means of a Montgomery ladder. At the end of the ladder, P2 = P3
+ P1, where P1 is the input and P3 is the result. Though this computes just the x
coordinate, there is enough information, with P1(y), to compute P3(y).

Table 10-193. ECM_MOD_MUL_X and ECM_MOD_MUL_X_TEQ function properties

Property Notes

Mode value for
ECM_MOD_MUL_
X

0000_1000_0000_0100_1011 (output placed in B)

0000_1000_0000_0100_1011 (output placed in A)

Mode value for
ECM_MOD_MUL_
X_TEQ

0000_1000_0100_0100_1011 (output placed in B)

0000_1000_0101_0100_1011 (output placed in A)

Input • N = modulus, a prime number.
• E = scalar multiplier (k), any integer
• [A0] = multiplicand, an input point's affine x coordinate
• A2 = ignored
• A3 = elliptic curve a24 parameter, that is, (A+2)/4
• B0 = ignored
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1] (or P[A0], if A output selected) = E x P[A0], where "x" denotes elliptic curve scalar point
multiplication. Output is the resulting point's affine x coordinate.

• N1 = R2
• A1 = X2R, the X the (X,Z) scalar multiplication, with the Montgomery factor. P2x = X2R/Z2R
• A2 = Z2R, the Z of the (X,Z) scalar multiplication, with the Montgomery factor
• A3 = a24R, the a24 input, with the Montgomery factor
• B0 = X3R, the X result of the (X,Z) scalar multiplication, with the Montgomery factor. P3x =

X3R/Z3R
• B2 = Z3R, the Z result of the (X,Z) scalar multiplication, with the Montgomery factor
• B3 = X1R, the x input, with the Montgomery factor

Requirements • Maximum modulus size = 128 bytes
• The x in (A0) should be on the elliptic curve formed by (N, A3 and "B").

Side effects All quadrants of A, B, and N are modified except N0.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.

Flags set PIZ is set if the result is the point at infinity.

10.10.1.6.4.16 ECM Fp Point Multiply, R2 Mod N Input, Affine Coordinates
(ECM_MOD_MUL_X_R2 and ECM_MOD_MUL_X_R2_TEQ)
Function

ECM_MOD_MUL_X_R2 computes a scalar multiplication of a point on an elliptic curve
in Montgomery form. The input and output are just the x coordinates of the points. Since
ECM_MOD_MUL_X_R2 has R2 mod N as an additional input, this function is more

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 523
Confidential Proprietary

efficient than ECM_MOD_MUL_X, which first must compute R2 mod N before
performing the multiplication. ECM_MOD_MUL_X_R2_TEQ computes the same
function, but with an added timing equalization security feature. Its computation run-time
is, for a given curve (N, A3), constant for a given size of E. ECM_MOD_MUL_X_R2 in
general will run faster than ECM_MOD_MUL_X_R2_TEQ, but will never run slower.

This function computes a point multiplication on a Montgomery curve, using
Montgomery values, by means of a Montgomery ladder. At the end of the ladder, P2 = P3
+ P1, where P1 is the input and P3 is the result. Though this computes just the x
coordinate, there is enough information, with P1(y), to compute P3(y).

Table 10-194. ECM_MOD_MUL_X_R2 and ECM_MOD_MUL_X_R2_TEQ function properties

Property Notes

Mode value for
ECM_MOD_MUL_
X_R2

0001_1000_0000_1000_1011 (output placed in B)

0001_1000_0001_1000_1011 (output placed in A)

Mode value for
ECM_MOD_MUL_
X_R2_TEQ

0001_1000_0100_1000_1011 (output placed in B)

0001_1000_0101_1000_1011 (output placed in A)

Input • N = modulus, a prime number.
• E = scalar multiplier (k), any integer
• [A0] = multiplicand, an input point's affine x coordinate
• A2 = ignored
• A3 = elliptic curve a24 parameter, that is, (A+2)/4
• B0 = ignored
• B1 = R2 mod N, pre-computed as described in MOD_R2
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1] (or P[A0], if A output selected) = E x P[A0], where "x" denotes elliptic curve scalar point
multiplication. Output is the resulting point's affine x coordinate.

• N1 = R2
• A1 = X2R, the X the (X,Z) scalar multiplication, with the Montgomery factor. P2x = X2R/Z2R
• A2 = Z2R, the Z of the (X,Z) scalar multiplication, with the Montgomery factor
• A3 = a24R, the a24 input, with the Montgomery factor
• B0 = X3R, the X result of the (X,Z) scalar multiplication, with the Montgomery factor. P3x =

X3R/Z3R
• B2 = Z3R, the Z result of the (X,Z) scalar multiplication, with the Montgomery factor
• B3 = X1R, the x input, with the Montgomery factor

Requirements • Maximum modulus size = 128 bytes
• The x in (A0) should be on the elliptic curve formed by (N, A3 and "B").

Side effects All quadrants of A, B, and N are modified except N0.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.

Flags set PIZ is set if the result is the point at infinity.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

524 NXP Semiconductors
Confidential Proprietary

10.10.1.6.4.17 ECT Modular Multiplication (ECT_MOD_MUL and
ECT_MOD_MUL_TEQ) Function

ECT_MOD_MUL computes the scalar multiplication of a point on an elliptic curve. The
input and output are in affine coordinates. ECT_MOD_MUL_TEQ computes the same
function, but with an added timing equalization security feature. Its computation run-time
is, for a given curve (N, A3, B0), constant for a given size of E. ECT_MOD_MUL in
general will run faster than ECT_MOD_MUL_TEQ, but will never run slower.

Table 10-195. ECT_MOD_MUL and ECT_MOD_MUL_TEQ function properties

Property Notes

Mode value for
ECT_MOD_MUL

0000_0000_0000>_1000_1011 (output placed in B)

0000_0000_0000_1000_1011 (output placed in A)

Mode value for
ECT_MOD_MUL_T
EQ

0000_0000_0100_1000_1011 (output placed in B)

0000_0000_0101_1000_1011 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero
• E = scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" (or should this be "d") parameter
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• The point (A0, A1) must be on the elliptic curve formed by (N, A3, B0).

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For k = 0, this function returns a point at infinity; that is (0,0) if curve parameter "b"
is nonzero and (0,1) otherwise.

• For k < 0, (that is, a negative scalar multiplication is required), its absolute value
should be provided to the PKHA; that is, k = abs(-k). After the computation is

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 525
Confidential Proprietary

complete, the formula -P= (x,-y) can be used to compute the "y" coordinate of the
effective final result, and other coordinates are the same.

10.10.1.6.4.18 ECT Fp Point Multiply, R2 Mod N Input, Affine Coordinates
(ECT_MOD_MUL_R2 and ECT_MOD_MUL_R2_TEQ) Function

ECT_MOD_MUL_R2 computes a scalar multiplication of a point on an elliptic curve.
The input point and the output point are in affine coordinates. Since
ECT_MOD_MUL_R2 has R2 mod N as an additional input, this function is more
efficient than ECT_MOD_MUL, which first must compute R2 mod N before performing
the multiplication. ECT_MOD_MUL_R2_TEQ computes the same function, but with an
added timing equalization security feature. Its computation run-time is, for a given curve
(N, A3, B0), constant for a given size of E. ECT_MOD_MUL_R2 in general will run
faster than ECT_MOD_MUL_R2_TEQ, but will never run slower.

Table 10-196. ECT_MOD_MUL_R2 and ECT_MOD_MUL_R2_TEQ function properties

Property Notes

Mode value for
ECT_MOD_MUL_
R2

0001_0000_0000_1000_1011 (output placed in B)

0001_0000_0001_1000_1011 (output placed in A)

Mode value for
ECT_MOD_MUL_
R2_TEQ

0001_0000_0100_1000_1011 (output placed in B)

0001_0000_0101_1000_1011 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• E = key, scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = R2 mod N, pre-computed as described in MOD_R2
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0 and A1 and elliptic curve parameters A3 and B0 are elements of the prime

field formed by the modulus N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

526 NXP Semiconductors
Confidential Proprietary

The following special cases should be noted:

• For k = 0, this function returns a point at infinity; that is, (0,0) if curve parameter "b"
is nonzero and (0,1) otherwise.

• For k < 0, (that is, a negative scalar multiplication is required), its absolute value
should be provided to the PKHA; that is, k = abs(- k). After the computation is
complete, the formula -P = (x,-y) can be used to compute the "y" coordinate of the
effective final result, and other coordinate is the same.

10.10.1.6.4.19 ECT Fp Point Add, Affine Coordinates (ECT_MOD_ADD) Function

ECT_MOD_ADD performs an addition of two points on an elliptic curve. The inputs and
output are in affine coordinates.

Table 10-197. ECT_MOD_ADD function properties

Property Notes

Mode value 0000_0000_0000_1000_1001 (output placed in B)

0000_0000_0001_1000_1001 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero The most
significant digit of N must be non-zero

• [A0, A1] = first addend in affine coordinates
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = second addend in affine coordinates
• B3 = ignored

Output [B1, B2] (or [A0, A1], if A output selected) = [A0, A1] + [B1, B2], where "+" represents an elliptic curve
point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

prime field and therefore are less than the modulus N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide-By-Zero Error is set if the most-significant digit of N = 0.

Flags set None

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 527
Confidential Proprietary

10.10.1.6.4.20 ECT Fp Point Add, Affine Coordinates, R2 Mod N Input
(ECT_MOD_ADD_R2) Function

ECT_MOD_ADD_R2 performs an addition of two points on an elliptic curve. The
addends are input and the sum is output in affine coordinates. Since
ECT_MOD_ADD_R2 has R2 mod N as an additional input, this function is more
efficient than ECT_MOD_ADD, which first must compute R2 mod N before performing
the addition.

Table 10-198. ECT_MOD_ADD_R2 function properties

Property Notes

Mode value 0001_0000_0000_1000_1001 (output placed in B)

0001_0000_0001_1000_1001 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero The most
significant digit of N must be non-zero

• [A0, A1] = first addend point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = second addend point in affine coordinates (x,y)
• B3 = R2 (R2 mod N) input

Output [B1, B2] (or [A0, A1], if A output selected) = [A0, A1] + [B1, B2], where "+" represents an elliptic curve
point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

prime field formed by N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide-By-Zero Error is set if the most-significant digit of N = 0.

Flags set None

10.10.1.6.4.21 ECT Fp Check Point (ECT_MOD_CHECK_POINT) Function

ECT_MOD_CHECK_POINT determines whether the point (x,y) is on the elliptic curve,
i.e. whether x and y satisfy the equation ax2 + y2 = 1 + dx2y2.

ECT_MOD_CHECK_POINT_R2 has R2 mod N as an additional input, so it is more
efficient than this function, which first must compute R2 mod N before performing the
operation.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

528 NXP Semiconductors
Confidential Proprietary

Table 10-199. ECT_MOD_CHECK_POINT function properties

Property Notes

Mode value 0000_0000_0000_1001_1100

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "d" parameter
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B1 = R2 mod N, as described in MOD_R2MODN (0Eh)

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the input is the "neutral point" (0, 1).

GCD is set if the point is on the curve (but not the neutral point).

ECT_MOD_CHECK_POINT checks whether x and y are < N. If not, the routine exits
with no flags set. If the input is O, the point at infinity, then PIZ is set and the routine
exits. It then computes ax2 + y2 = 1 + dx2y2 mod N. If the equation is true, then the (x,y)
coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set, meaning
that (x,y) are not part of the curve, so the point is invalid. All inputs remain unchanged.

10.10.1.6.4.22 ECT Fp Check Point, R2 (ECT_MOD_CHECK_POINT_R2) Function

ECT_MOD_CHECK_POINT_R2 determines whether the point (x,y) is on the elliptic
curve, i.e. x and y satisfy the equation ax2 + y2 = 1 + dx2y2.

Table 10-200. ECT_MOD_CHECK_POINT_R2 function properties

Property Notes

Mode value 0001_0000_0000_1001_1100

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "d" parameter
• B1 = ignored
• B2 = R2 mod N, pre-computed as described in MOD_R2MODN (0Eh)
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 529
Confidential Proprietary

Table 10-200. ECT_MOD_CHECK_POINT_R2 function properties (continued)

Property Notes

Output • B2 = R2 mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the input is the "neutral point" (0, 1)..

GCD is set if the point is on the curve (but not the neutral point).

ECT_MOD_CHECK_POINT_R2 checks whether x and y are < N. If not, the routine
exits with no flags set. If the input is O, the point at infinity, then PIZ is set and the
routine exits. It then computes ax2 + y2 = 1 + dx2y2 mod N. If the equation is true, then
the (x,y) coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set,
meaning that (x,y) are not part of the curve, so the point is invalid. All inputs remain
unchanged. Since ECT_MOD_CHECK_POINT_R2 has R2 mod N as an additional input,
this function is more efficient than ECT_MOD_CHECK_POINT, which first must
compute R2 mod N before performing the operation.

10.10.1.6.4.23 Copy memory, N-Size and Source-Size (COPY_NSZ and
COPY_SSZ)

These functions copy data from a PKHA register (or register quadrant) specified as a
source, to another PKHA register (or register quadrant) specified as a destination. COPY
NSZ copies the amount of data specified by the N Size register. COPY_SSZ copies the
amount of data specified in the source register's size register. The source and destination
are specified in the Mode Value. The source can be A, B or N. The destination can be A,
B, E or N, but not the same as the source.

In a quadrant copy, when NSZ/SSZ exceeds the length of a quadrant, the copy will carry
on into the next (higher-numbered) quadrant(s).

When the copy operation has completed, the destination register's size register will be
updated to contain the number of bytes copied.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

530 NXP Semiconductors
Confidential Proprietary

Table 10-201. COPY_NSZ and COPY_SSZ function
properties

Property Notes

Mode value Bits 19:17 Bits 16,11,10 Bits 9:8 Bits 7:6 Bits 5:0

Source Register Destination
Register

Source
Segment

Destination
Segment

Function Code

000 = A Register 000 = A Register 00 = Segment 0 00 = Segment 0
01_0000 =
Copy_NSZ

01_0001 = Copy_SSZ

001 = B Register 001 = B Register 01 = Segment 1 01 = Segment 1

011 = N Register 011 = N Register 10 = Segment 2 10 = Segment 2

010 = E Register 11 = Segment 3 11 = Segment 3

other values
reserved

other values
reserved

1. If the destination register is E, the source and destination seqments must be 00b.

Input None

Output None

Requirements For Copy_NSZ, the N-size Register must contain a valid value.

For Copy_SSZ, the source register's size register must contain a valid value.

Side effects The destination register's size register is updated to the number of bytes copied.

Errors reported None

Flags set None

1. If the destination register is E, the source and destination seqments must be 00b.

10.10.1.6.4.24 Right Shift A (R_SHIFT) function
Table 10-202. R_SHIFT function properties

Property Notes

Mode value 0000_0000_0000_0001_1101 (output placed in B)

0000_0000_0001_0001_1101 (output placed in A)

Input • A = Input value to be shifted. Bytes above A Size will be assumed to be zero, regardless of the
contents of the PKHA A RAM.

• B = Number of bit positions that the A RAM will be shifted (Only the least-significant two bytes are
used. The upper bytes are ignored.)

Output B (or A, if selected) = the contents of PKHA A RAM (with zeros substituted for bytes above A Size),
right-shifted by the number of bit positions specified in the least-significant two bytes of PKHA B RAM,
and zero-filled on the left.

Requirements none

Side effects B (or A) is modified.

Errors reported none

Flags set none

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 531
Confidential Proprietary

10.10.1.6.4.25 Compare A B (COMPARE) function
Table 10-203. COMPARE function properties

Property Notes

Mode value 0000_0000_0000_0001_1110

Input • A = Value to be compared
• B = Value to be compared
• A Size = the number of least-significant bits that will be compared

Output None (other than flags)

Requirements A Size must be >= B Size.

Side effects none

Errors reported If B Size > A Size a "B Size" error will be generated.

Flags set • PKHA_GCD_ONE is set if B > A
• PKHA_ZERO is set if B == A
• no flag is set if B < A

10.10.1.6.4.26 Evaluate A (EVALUATE) function
Table 10-204. EVALUATE function properties

Property Notes

Mode value SB00_0000_0000_0001_1111 (output placed in B)

SB00_0000_0001_0001_1111 (do not modify B)

• If the S bit is set, PKHA will push to the output FIFO a single DWord with the value
000_000_000_0sss, where sss is the updated A Size.

• If the B bit is set, PKHA will push to the output FIFO a single DWord with the value
000_000_000_bbbb, where bbbb is the updated number of bits in A.

• If the S bit is set and the B bit is set, the A-Size DWord will be pushed before the number-of-bits-
in-A Dword.

Input • A = Value to be evaluated

Output • A Size is updated with the number of least-significant non-zero bytes, i.e. the position of the most-
significant non-zero byte (least-significant byte is byte-position 0). This evaluation considers only
the bytes specified by the incoming value of A Size. This allows the incoming value of A Size to be
set so that A0 will be evaluated, ignoring the values in A1, A2 and A3, or the incoming value could
be set so that (A1,A0) will be evaluated, ignoring A2 and A3, or (A2,A1,A0) could be evaluated,
ignoring A3.

• If the mode value specifies that the output is to be placed in B, the updated value of A Size will be
copied into the least-significant two bytes of B and B Size will be set to 2. If the "do not modify B"
option is selected, the updated value of A Size will not be copied into B.

Requirements none

Side effects • A Size will be modified.
• B Size may be modified.
• One or two DWords mmay be pushed to the output FIFO.

Errors reported none

Flags set • PKHA_GCD_ONE is set if A == 1
• PKHA_ZERO is set if A == 0. A Size (and number of bits in A) will be set to 0. Note that this could

cause an A Size error in a subsequent PKHA operation.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

532 NXP Semiconductors
Confidential Proprietary

10.10.1.6.5 Special values for common ECC domains

Software can sometimes use the PKHA more effectively if the Montgomery Conversion
Factor (R2 mod N) is either provided or previously used to convert other inputs into
Montgomery form. For convenience, the conversion factors for common ECC domains
have been computed and published here. Some of the other domain values are provided
to aid in definite identification of the domain, in the case that the name is not found or is
not an exact match.

The following tables give these values for the q and r modulus values found in ECC
domains. These associated Montgomery values are dependent upon the PKHA digit size
(16, 32, 64, 128). These tables are for a PKHA with a 32-bit digit.

ECC F2m requires a c (also called b') parameter for the elliptic curve in place of the b
value. Table 10-206 provides these values in addition to the Montgomery values. The b'
values are universal and do not change with PKHA digit size.

The following variable definitions apply to both tables. Variable names (q, r, b, c) follow
the conventions of IEEE Std 1363.
Name

The names in this table are associated with, or named in, various published standards.
Neither the names nor the domains are guaranteed to be complete. Two values of the
domain parameters are provided for purposes of identification.

• Those beginning with "P-", "K-", and "B-" are in FIPS 186 from NIST, found at
www.csrc.nist.gov

• Those beginning with "ansix9" are names from ANS X9.62-2005; those beginning
with "prime" or "c2pnb" are from an earlier ANSI document

• Those beginning with "sec" are from SEC 2 from the Standards for Efficient
Cryptography group, found at www.secg.org

• Those beginning with "wtls" are taken from Wireless Transport Layer Security /
Wireless Access Protocol, Version 06-Apr-2001, WAP-261-WTLS-20010406-a.
Not all software libraries agree with the mapping of these names to values; care
has been taken to identify the values based upon the source documentation.

• Those beginning with "ECDSA", "ECP", "EC2N", "ecp_group", and "Oakley" are
from various RFCs found at www.ietf.org

• Those beginning with "GOST" are from the Russian standard GOST R 3410-2001
• Those beginning with "brainpool" are from ECC Brainpool, found at www.ecc-

brainpool.org and republished in RFC 5639

R

R is the Montgomery factor. Its value is 2SD, where D is the PKHA digit size in bits,
and S is the minimum number of digits needed to hold the modulus. As an example,
for a modulus of nine bytes (72 bits), R would be

• 280 for a PKHA with digit size of 16 bits

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 533
Confidential Proprietary

http://www.csrc.nist.gov
http://www.secg.org
http://www.ietf.org
http://www.ecc-brainpool.org
http://www.ecc-brainpool.org

• 296 for a PKHA with digit size of 32 bits
• 2128 for a PKHA with digit size of 64 or 128 bits

q

This is the field-defining value for the elliptic curve. For Fp curves, it is the prime
number used as the modulus for all point arithmetic; it is named p in some other
publications. For F2m curves, it is the irreducible binary polynomial used as the
modulus for all point arithmetic. It is not, as usually defined, q = 2m, i.e. the size of the
field.

L

This is the number of bytes needed to hold q and each of its associated values:
R2modq, a,b,c, the point coordinates x and y, the result of an ECDH key agreement,
etc.

R2modq

This is R2 mod q, the Montgomery Conversion Factor when q is the modulus.
r

This is the (usually prime) number which is the order of G, the generator point. It is
also usually used as the modulus for the non-ECC-related arithmetic in an ECC
primitive. This variable is named n in some other publications.

N

This is the number of bytes needed to hold r and each of its associated values:
R2modr, private keys, each of the two components of an ECDSA signature, etc.

R2modr

This is R2 mod r, the Montgomery Conversion Factor when r is the modulus.
b / c (b')

b is the coefficient for the x0 (ones) term in an F2m elliptic curve equation. Its
relationship with c is b = c4. c is sometimes referred to as b' in NXP documentation.

A / a24

a24 is the special value derived from the A coefficient for the y2term in a
Montgomery-form elliptic curve equation. Its relationship with A is a24 = (A+2)/4.

The domains in the table are ordered by size.

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits

Name L N

var Value (hex, decimal, sums of powers)

secp112r1

wtls6

14 14

q 0xDB7C2ABF62E35E668076BEAD208B

4451685225093714772084598273548427

R2modq 0x0000000000000000000000000009

r 0xDB7C2ABF62E35E7628DFAC6561C5

4451685225093714776491891542548933

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

534 NXP Semiconductors
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

R2modr 0xDA4A43AD7F34245D42B9C948C559

secp112r2 14 14

q 0xDB7C2ABF62E35E668076BEAD208B

4451685225093714772084598273548427

R2modq 0x0000000000000000000000000009

r 0x36DF0AAFD8B8D7597CA10520D04B

1112921306273428674967732714786891

R2modr 0x2049C67E5F79E8C06B7825955374

wtls8 14 15

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFDE7

5192296858534827628530496329219559

2112 - 29 - 24 - 23 - 1

R2modq 0x0000000000000004667100000000

r 0x0100000000000001ECEA551AD837E9

5192296858534827767273836114360297

R2modr 0x00E074FD104C86569DB6C204A52932

secp128r1 16 16

q 0xFFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF

340282366762482138434845932244680310783

2128 - 297 - 1

R2modq 0x00000024000000040000000800000011

r 0xFFFFFFFE0000000075A30D1B9038A115

340282366762482138443322565580356624661

R2modr 0x71875047CDD8151626BC6448FADE9BED

secp128r2 16 16

q 0xFFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF

340282366762482138434845932244680310783

2128 - 297 - 1

R2modq 0x00000024000000040000000800000011

r 0x3FFFFFFF7FFFFFFFBE0024720613B5A3

85070591690620534603955721926813660579

R2modr 0x0EFCA409C09D126A99CD2E9404A3B434

secp160k1

ansix9p160k1

20 21

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73

1461501637330902918203684832716283019651637554291

2160 - 232 - 214 - 212 - 29 - 28 - 27 - 23 - 22 - 1

R2modq 0x0000000000000000000000010000A71A1B44BBA9

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 535
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

r 0x0100000000000000000001B8FA16DFAB9ACA16B6B3

1461501637330902918203686915170869725397159163571

R2modr 0x00CDCF2BABDFE35D2F4D8A8AAD0F8494330E687AAF

secp160r1

ansix9p160r1

wtls7

20 21

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF

1461501637330902918203684832716283019653785059327

2160 - 231 - 1

R2modq 0x0000000000000000000000004000000100000001

r 0x0100000000000000000001F4C8F927AED3CA752257

1461501637330902918203687197606826779884643492439

R2modr 0x00A0E626837A981E4B3CDC3854085E335F6744F8A4

secp160r2

ansix9p160r2

20 21

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73

1461501637330902918203684832716283019651637554291

2160 - 232 - 214 - 212 - 29 - 28 - 27 - 23 - 22 - 1

R2modq 0x0000000000000000000000010000A71A1B44BBA9

r 0x0100000000000000000000351EE786A818F3A1A16B

1461501637330902918203685083571792140653176136043

R2modr 0x0076E5A1814769EF9E8DD4D69E29AEB02AD8C126C7

wtls9 20 21

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC808F

1461501637330902918203684832716283019655932313743

2160 - 217 - 216 - 214 - 213 - 212 - 211 - 210 - 29 - 28 - 26 - 25 - 24 - 1

R2modq 0x0000000000000000000000000000000C3C174FE1

r 0x0100000000000000000001CDC98AE0E2DE574ABF33

1461501637330902918203687013445034429194588307251

R2modr 0x00CC3AB9A731EBB2AA87D1BED0AEF6B4CF5840D789

brainpoolP160r1 20 20

q 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F

1332297598440044874827085558802491743757193798159

R2modq 0x6CF12F81C0CA7EF8FED717E0B333F8D625BC14FF

r 0xE95E4A5F737059DC60DF5991D45029409E60FC09

1332297598440044874827085038830181364212942568457

R2modr 0x2BC73851FC9BE6F69E31FE16FC61D4351FDF90EA

brainpoolP160t1 20 20

q 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F

1332297598440044874827085558802491743757193798159

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

536 NXP Semiconductors
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

R2modq 0x6CF12F81C0CA7EF8FED717E0B333F8D625BC14FF

r 0xE95E4A5F737059DC60DF5991D45029409E60FC09

1332297598440044874827085038830181364212942568457

R2modr 0x2BC73851FC9BE6F69E31FE16FC61D4351FDF90EA

P-192

secp192r1

ansix9p192r1

prime192v1

ECPRGF192Random

24 24

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF

6277101735386680763835789423207666416083908700390324961279

2192 - 264 - 1

R2modq 0x000000000000000100000000000000020000000000000001

r 0xFFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831

6277101735386680763835789423176059013767194773182842284081

R2modr 0x28BE5677EA0581A24696EA5BBB3A6BEECE66BACCDEB35961

secp192k1

ansix9p192k1

24 24

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37

6277101735386680763835789423207666416102355444459739541047

2192 - 232 - 212 - 28 - 27 - 26 - 23 - 1

R2modq 0x0000000000000000000000000000000100002392013C4FD1

r 0xFFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D

6277101735386680763835789423061264271957123915200845512077

R2modr 0x6A21191C2EC4B2B1F0F4F172195E97E2461C1989250F0702

prime192v2 24 24

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF

6277101735386680763835789423207666416083908700390324961279

2192 - 264 - 1

R2modq 0x000000000000000100000000000000020000000000000001

r 0xFFFFFFFFFFFFFFFFFFFFFFFE5FB1A724DC80418648D8DD31

6277101735386680763835789423078825936192100537584385056049

R2modr 0xA4FEB8C277C030E139DA8CFB4E35E1F62814A261001BE8FF

prime192v3 24 24

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF

6277101735386680763835789423207666416083908700390324961279

2192 - 264 - 1

R2modq 0x000000000000000100000000000000020000000000000001

r 0xFFFFFFFFFFFFFFFFFFFFFFFF7A62D031C83F4294F640EC13

6277101735386680763835789423166314882687165660350679936019

R2modr 0x45BCB42FF1CC05D0194D076B366D09BF0305982367330969

brainpoolP192r1 24 24

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 537
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

q 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297

4781668983906166242955001894344923773259119655253013193367

R2modq 0xB6225126EED34F1033BF484602C3FE69E2474C6972C7B21A

r 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1

4781668983906166242955001894269038308119863659119834868929

R2modr 0x98769B9CE772102BBF4AFD5DBF53AFF0B4727C80E407E8F8

brainpoolP192t1 24 24

q 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297

4781668983906166242955001894344923773259119655253013193367

R2modq 0xB6225126EED34F1033BF484602C3FE69E2474C6972C7B21A

r 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1

4781668983906166242955001894269038308119863659119834868929

R2modr 0x98769B9CE772102BBF4AFD5DBF53AFF0B4727C80E407E8F8

P-224

secp224r1

ansix9p224r1

wtls12

ECPRGF224Random

28 28

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001

26959946667150639794667015087019630673557916260026308143510066298881

R2modq 0x00000000FFFFFFFFFFFFFFFFFFFFFFFE000000000000000000000001

r 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D

26959946667150639794667015087019625940457807714424391721682722368061

R2modr 0xD4BAA4CF1822BC47B1E979616AD09D9197A545526BDAAE6C3AD01289

secp224k1

ansix9p224k1

28 29

q 0xFFFEFFFFE56D

26959946667150639794667015087019630673637144422540572481099315275117

2224 - 232 - 212 - 211 - 29 - 27 - 24 - 21 - 1

R2modq 0x00000000000000000000000000000000000000010000352602C23069

r 0x010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7

26959946667150639794667015087019640346510327083120074548994958668279

R2modr 0x00993FF72BB882BD88BBFF32E48BE0320816F60AF534CE24FBEC9FEAA0

brainpoolP224r1 28 28

q 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

22721622932454352787552537995910928073340732145944992304435472941311

R2modq 0x0578FD592E6A6CE43FE8A2AA96AF774C43C20E727867CA8064DCD04F

r 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F

22721622932454352787552537995910923612567546342330757191396560966559

R2modr 0x4A73A6563211A5611E9CAE249F24919B9399652CADDAF8AA486CA401

brainpoolP224t1 28 28

q 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

538 NXP Semiconductors
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

22721622932454352787552537995910928073340732145944992304435472941311

R2modq 0x0578FD592E6A6CE43FE8A2AA96AF774C43C20E727867CA8064DCD04F

r 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F

22721622932454352787552537995910923612567546342330757191396560966559

R2modr 0x4A73A6563211A5611E9CAE249F24919B9399652CADDAF8AA486CA401

prime239v1 30 30

q 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF

883423532389192164791648750360308885314476597252960362792450860609699
839

R2modq 0x0000000000000005000000000005FFFFFFFFFFFC00000000000800000000

r 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF9E5E9A9F5D9071FBD1522688909D0B

883423532389192164791648750360308884807550341691627752275345424702807
307

R2modr 0x2BE4B1BE15BDEB5DF3096A7BE4944FA0CB87DC9852A129052EC789ED615B

prime239v2 30 30

q 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF

883423532389192164791648750360308885314476597252960362792450860609699
839

R2modq 0x0000000000000005000000000005FFFFFFFFFFFC00000000000800000000

r 0x7FFFFFFFFFFFFFFFFFFFFFFF800000CFA7E8594377D414C03821BC582063

883423532389192164791648750360308886392687657546993855147765732451295
331

R2modr 0x76CF025EBF73DDE8A5D15F0C7C29FF23EED0AE5C096A0D32ABCB4B16B765

prime239v3 30 30

q 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF

883423532389192164791648750360308885314476597252960362792450860609699
839

R2modq 0x0000000000000005000000000005FFFFFFFFFFFC00000000000800000000

r 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF975DEB41B3A6057C3C432146526551

883423532389192164791648750360308884771190369765922550517967171058034
001

R2modr 0x11500EB94E46F16737BEB7A266592D93C18845A5EB3F814C07B00EA6ACF5

P-256

secp256r1

ansix9p256r1

prime256v1

ECDSA-256

ecp_group_19

ECPRGF256Random

32 32

q 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF

115792089210356248762697446949407573530086143415290314195533631308867
097853951

R2modq 0x00000004FFFFFFFDFFFFFFFFFFFFFFFEFFFFFFFBFFFFFFFF000000000000000
3

r 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632
551

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 539
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

115792089210356248762697446949407573529996955224135760342422259061068
512044369

R2modr 0x66E12D94F3D956202845B2392B6BEC594699799C49BD6FA683244C95BE79EEA
2

secp256k1

ansix9p256k1

32 32

q 0xFFFEFFFFF
C2F

115792089237316195423570985008687907853269984665640564039457584007908
834671663

2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1

R2modq 0x0001000007A2000E90A1

r 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD036
4141

115792089237316195423570985008687907852837564279074904382605163141518
161494337

R2modr 0x9D671CD581C69BC5E697F5E45BCD07C6741496C20E7CF878896CF21467D7D1
40

brainpoolP256r1 32 32

q 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E537
7

768849563970453442208097466290016490930379502009430552037356014450315
16197751

R2modq 0x4717AA21E5957FA8A1ECDACD6B1AC8075CCE4C26614D4F4D8CFEDF7BA6465
B6C

r 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856
A7

768849563970453442208097466290016490927375317844145295387555190630635
36359079

R2modr 0x0B25F1B9C32367629B7F25E76C815CB0F35D176A1134E4A0E1D8D8DE3312FC
A6

brainpoolP256t1 32 32

q 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E537
7

768849563970453442208097466290016490930379502009430552037356014450315
16197751

R2modq 0x4717AA21E5957FA8A1ECDACD6B1AC8075CCE4C26614D4F4D8CFEDF7BA6465
B6C

r 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856
A7

768849563970453442208097466290016490927375317844145295387555190630635
36359079

R2modr 0x0B25F1B9C32367629B7F25E76C815CB0F35D176A1134E4A0E1D8D8DE3312FC
A6

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

540 NXP Semiconductors
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

GOSTR3410-
CryptoPro-A

32 32

q 0xFFF
D97

115792089237316195423570985008687907853269984665640564039457584007913
129639319

2256 - 29 - 26 - 25 - 23 - 1

R2modq 0x0005CF11

r 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6C611070995AD10045841B09B761B89
3

115792089237316195423570985008687907853073762908499243225378155805079
068850323

R2modr 0x551FE9CB451179DBF74885D08A3714C6FB07F8222E76DD529AC2D7858E79A46
9

GOSTR3410-
CryptoPro-B

32 32

q 0x800C99

578960446186580977117854925043439539266349923328202820197287920039565
64823193

R2modq 0x00027ACDC4

r 0x800000000000000000000000000000015F700CFFF1A624E5E497161BCC8A198F

578960446186580977117854925043439539271021331602558268200688444960877
32066703

R2modr 0x09D1D2C4E50824664A2E7E2F6882CF102A3104A7EA43E85529B721F4E6CD782
3

GOSTR3410-
CryptoPro-C

32 32

q 0x9B9F605F5A858107AB1EC85E6B41C8AACF846E86789051D37998F7B9022D759
B

703900853520833051995477180190184378410795166300451804712843468437056
33502619

R2modq 0x807A394EDE097652186304212849C07B1017BB39C2D346C5409973B4C427FCE
A

r 0x9B9F605F5A858107AB1EC85E6B41C8AA582CA3511EDDFB74F02F3A6598980B
B9

703900853520833051995477180190184378409208826471640810353226014583522
98396601

R2modr 0x7AA61B49A49D4759C67E5D0EE96E8ED304FDA8694AFDA24BE94FAAB66ABA1
80E

brainpoolP320r1 40 40

q 0xD35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC
28FCD412B1F1B32E27

176359332223916635416190984244601952088951277271951519277296041528864
0868802149818095501499903527

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 541
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

R2modq 0xA259BA4A6C2D92525455A964E614D6D21F4C881F30C5B676C2478A8D906978E
F994EE88A743B52F9

r 0xD35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658
E98691555B44C59311

176359332223916635416190984244601952088951277271768606376068612401678
4784845843468355685258203921

R2modr 0x31EC87C73200B14FE30D35244E6390FE86B330BCAF86C40991C3001BE0E1680
5679D29DF2513E4CD

brainpoolP320t1 40 40

q 0xD35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC
28FCD412B1F1B32E27

176359332223916635416190984244601952088951277271951519277296041528864
0868802149818095501499903527

R2modq 0xA259BA4A6C2D92525455A964E614D6D21F4C881F30C5B676C2478A8D906978E
F994EE88A743B52F9

r 0xD35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658
E98691555B44C59311

176359332223916635416190984244601952088951277271768606376068612401678
4784845843468355685258203921

R2modr 0x31EC87C73200B14FE30D35244E6390FE86B330BCAF86C40991C3001BE0E1680
5679D29DF2513E4CD

P-384

secp384r1

ansix9p384r1

ECDSA-384

ecp_group_20

ECPRGF384Random

48 48

q 0xFFF
FFEFFFFFFFF0000000000000000FFFFFFFF

394020061963944792122790401001436138050797392704654466679482934042457
21771496870329047266088258938001861606973112319

R2modq 0x000000000000000000000000000000010000000200000000FFFFFFFE0000000000
00000200000000FFFFFFFE00000001

r 0xFFC7634D81F4372
DDF581A0DB248B0A77AECEC196ACCC52973

394020061963944792122790401001436138050797392704654466679469052796276
59399113263569398956308152294913554433653942643

R2modr 0x0C84EE012B39BF213FB05B7A28266895D40D49174AAB1CC5BC3E483AFCB829
47FF3D81E5DF1AA4192D319B2419B409A9

brainpoolP384r1 48 48

q 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB7112
3ACD3A729901D1A71874700133107EC53

216592707701193161730692368423326049797961163870176486000816185038210
89934025961822236561982844534088440708417973331

R2modq 0x36BF6883178DF842D5C6EF3BA57E052C621401919918D5AF8E28F99CC994089
9535283343D7FD965087CEFFF40B64BDE

r 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A
7CF3AB6AF6B7FC3103B883202E9046565

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

542 NXP Semiconductors
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

216592707701193161730692368423326049797961163870176486000756452748216
11501358515537962695117368903252229601718723941

R2modr 0x0CE8941A614E97C28F886DC965165FDB574A74CB52D748FF2A927E3B9802688
A37264E202F2B6B6EAC4ED3A2DE771C8E

brainpoolP384t1 48 48

q 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB7112
3ACD3A729901D1A71874700133107EC53

216592707701193161730692368423326049797961163870176486000816185038210
89934025961822236561982844534088440708417973331

R2modq 0x36BF6883178DF842D5C6EF3BA57E052C621401919918D5AF8E28F99CC994089
9535283343D7FD965087CEFFF40B64BDE

r 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A
7CF3AB6AF6B7FC3103B883202E9046565

216592707701193161730692368423326049797961163870176486000756452748216
11501358515537962695117368903252229601718723941

R2modr 0x0CE8941A614E97C28F886DC965165FDB574A74CB52D748FF2A927E3B9802688
A37264E202F2B6B6EAC4ED3A2DE771C8E

brainpoolP512r1 64 64

q 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA7033
08717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A
48F3

894896220765023255165660281515915342216260964409835451134459718720005
701041355243991793430419195694276544653038642734593796389430992392853
6070534607816947

R2modq 0x3C4C9D05A9FF6450202E19402056EECCA16DAA5FD42BFF8319486FD8D58980
57E0C19A7783514A2553B7F9BC905AFFD3793FB1302715790549AD144A6158F205

r 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA7033
0870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90
069

894896220765023255165660281515915342216260964409835451134459718720005
701041341852837898173064352495985745139837002928058309421561388204397
3354392115544169

R2modr 0xA794586A718407B095DF1B4C194B2E56723C37A22F16BBDFD7F9CC263B790D
E3A6F230C72F0207E83EC64BD033B7627F0886B75895283DDDD2A3681ECDA816
71

brainpoolP512t1 64 64

q 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA7033
08717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A
48F3

894896220765023255165660281515915342216260964409835451134459718720005
701041355243991793430419195694276544653038642734593796389430992392853
6070534607816947

R2modq 0x3C4C9D05A9FF6450202E19402056EECCA16DAA5FD42BFF8319486FD8D58980
57E0C19A7783514A2553B7F9BC905AFFD3793FB1302715790549AD144A6158F205

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 543
Confidential Proprietary

Table 10-205. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

r 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA7033
0870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90
069

894896220765023255165660281515915342216260964409835451134459718720005
701041341852837898173064352495985745139837002928058309421561388204397
3354392115544169

R2modr 0xA794586A718407B095DF1B4C194B2E56723C37A22F16BBDFD7F9CC263B790D
E3A6F230C72F0207E83EC64BD033B7627F0886B75895283DDDD2A3681ECDA816
71

P-521

secp521r1

ansix9p521r1

ECDSA-521

ecp_group_21

ECPRGF521Random

66 66

q 0x01FFF
FFF
FFFFFFFF

686479766013060971498190079908139321726943530014330540939446345918554
318339765605212255964066145455497729631139148085803712198799971664381
2574028291115057151

2521 - 1

R2modq 0x000
000400000000000

r 0x01FFF
FFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E9
1386409

686479766013060971498190079908139321726943530014330540939446345918554
318339765539424505774633321719753296399637136332111386476861244038034
0372808892707005449

R2modr 0x019A5B5A3AFE8C44383D2D8E03D1492D0D455BCC6D61A8E567BCCFF3D142B
7756E3A4FB35B72D34027055D4DD6D30791D9DC18354A564374A6421163115A61
C64CA7

Table 10-206. Special Values for common ECC F2m domains when PKHA digit size is 32
bits

Name L N

var Value (hex, decimal, sums of powers)

sect113r1

wtls4

15 15

q 0x020000000000000000000000000201

x113 + x9 + 1

R2modq 0x000000000000000001000040000000

b

c

0xE8BEE4D3E2260744188BE0E9C723

0x0173E834AF28EC76CB83BD8DFEB2D5

r 0x0100000000000000D9CCEC8A39E56F

5192296858534827689835882578830703

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

544 NXP Semiconductors
Confidential Proprietary

Table 10-206. Special Values for common ECC F2m domains when PKHA digit size is 32
bits (continued)

Name L N

var Value (hex, decimal, sums of powers)

R2modr 0x002D02609ABE76F866BDCE5B3F9BCC

sect113r2 15 15

q 0x020000000000000000000000000201

x113 + x9 + 1

R2modq 0x000000000000000001000040000000

b

c

0x95E9A9EC9B297BD4BF36E059184F

0x0054D9F03957174A32329167D7FE71

r 0x010000000000000108789B2496AF93

5192296858534827702972497909952403

R2modr 0x00471CB662E29CB41ABC888E16FF49

wtls1 15 14

q 0x020000000000000000000000000201

x113 + x9 + 1

R2modq 0x000000000000000001000040000000

b

c

0x01

0x000000000000000000000000000001

r 0xFFFFFFFFFFFFFFFDBF91AF6DEA73

5192296858534827627896703833467507

R2modr 0x9A1AB7E0A60C212FBD48A8239130

sect131r1 17 17

q 0x080000000000000000000000000000010D

x131 + x8 + x3 + x2 + 1

R2modq 0x0000000000000004014400000000000000

b

c

0x0217C05610884B63B9C6C7291678F9D341

0x03DB89B405E491160E3B2F07B0CE20B37E

r 0x0400000000000000023123953A9464B54D

1361129467683753853893932755685365560653

R2modr 0x00739BBCD15B208AC45847F42ED438E023

sect131r2 17 17

q 0x080000000000000000000000000000010D

x131 + x8 + x3 + x2 + 1

R2modq 0x0000000000000004014400000000000000

b

c

0x04B8266A46C55657AC734CE38F018F2192

0x07CBB9920D71A48E099C38D71DA6490EB1

r 0x0400000000000000016954A233049BA98F

1361129467683753853879535043412812867983

R2modr 0x01BB89631FCB716E50598B58B5058E0389

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 545
Confidential Proprietary

Table 10-206. Special Values for common ECC F2m domains when PKHA digit size is 32
bits (continued)

Name L N

var Value (hex, decimal, sums of powers)

Oakley 3 20 -

q 0x0800000000000000000000004000000000000001

x155 + x62 + 1

R2modq 0x0000004000000000000000000000000000000400

b

c

0x07338F

0x00311000000223A000C4474000088E8000111D1D

B-163

ansix9t163r2

sect163r2

EC2NGF163Random

21 21

q 0x0800000000000000000000000000000000000000C9

x163 + x7 + x6 + x3 + 1

R2modq 0x000000000000000000000001410400000000000000

b

c

0x020A601907B8C953CA1481EB10512F78744A3205FD

0x072C4E1EF7CB2F3A035D33104294159609138BB404

r 0x040000000000000000000292FE77E70C12A4234C33

5846006549323611672814742442876390689256843201587

R2modr 0x003488BE6C9C552CFE775F73CFB60B416A9AA88652

K-163

ansix9t163k1

sect163k1

EC2NGF163Koblitz

wtls3

21 21

q 0x0800000000000000000000000000000000000000C9

x163 + x7 + x6 + x3 + 1

R2modq 0x000000000000000000000001410400000000000000

b

c

0x01

0x0001

r 0x04000000000000000000020108A2E0CC0D99F8A5EF

5846006549323611672814741753598448348329118574063

R2modr 0x01719E20D16A34F5053B1368AE089C83FBAA63410E

sect163r1

ansix9t163r1

21 21

q 0x0800000000000000000000000000000000000000C9

x163 + x7 + x6 + x3 + 1

R2modq 0x000000000000000000000001410400000000000000

b

c

0x0713612DCDDCB40AAB946BDA29CA91F73AF958AFD9

0x05ED403ED58EB45B1CCECA0F4F61655549861BE052

r 0x03FFFFFFFFFFFFFFFFFFFF48AAB689C29CA710279B

5846006549323611672814738465098798981304420411291

R2modr 0x03F45AD7608E554A90299358F3719D4236333FE8B2

wtls5 21 21

q 0x080000000000000000000000000000000000000107

x163 + x8 + x2 + x1 + 1

R2modq 0x000000000000000000000004005400000000000000

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

546 NXP Semiconductors
Confidential Proprietary

Table 10-206. Special Values for common ECC F2m domains when PKHA digit size is 32
bits (continued)

Name L N

var Value (hex, decimal, sums of powers)

b

c

0xC9517D06D5240D3CFF38C74B20B6CD4D6F9DD4D9

0x0453E1E4B7291F5C2D53CE18483F007081E7EA26EC

r 0x0400000000000000000001E60FC8821CC74DAEAFC1

5846006549323611672814741626226392056573832638401

R2modr 0x02704CFBABEA28A831BAD35BCAA440A89884D1FA9B

Oakley 4 24 -

q 0x020000000000000000000000000000200000000000000001

x185 + x69 + 1

R2modq 0x000000000100000000000000000000000000000000004000

b

c

0x1EE9

0x000000000000300000018000C00C000000638030001C0009

sect193r1

ansix9t193r1

25 25

q 0x02008001

x193 + x15 + 1

R2modq 0x00000000000000000000000000100000004000000000000000

b

c

0xFDFB49BFE6C3A89FACADAA7A1E5BBC7CC1C2E5D831478814

0x0167B35EB4313F263D0F7A3D5036F0A0A3C980D40E5A053ED2

r 0x01000000000000000000000000C7F34A778F443ACC920EBA49

6277101735386680763835789423269548053691575186051040197193

R2modr 0x009F0A6812CD5A0961578029E866525B193ED6F556637F68CD

sect193r2

ansix9t193r2

25 25

q 0x02008001

x193 + x15 + 1

R2modq 0x00000000000000000000000000100000004000000000000000

b

c

0xC9BB9E8927D4D64C377E2AB2856A5B16E3EFB7F61D4316AE

0x006989FE6BFE30EDDC3244269F3AAD18D66CF3DB3E3302FAA8

r 0x010000000000000000000000015AAB561B005413CCD4EE99D5

6277101735386680763835789423314955362437298222279840143829

R2modr 0x00B24356750478EA3C6D96955F00208DD023F898087B1BF123

B-233

sect233r1

ansix9t233r1

EC2NGF233Random

wtls11

30 30

q 0x020000000000000000000000000000000000000004000000000000000001

x233 + x74 + 1

R2modq 0x000000000004000000000000000000000000000000000000400000000000

b

c

0x66647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D8F90AD

0x0007D5EF4389DFF11ECDBA39C30970D3CE35CEBBA58473F64B4DC0F2686C

r 0x01000000000000000000000000000013E974E72F8A6922031D2603CFE0D7

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 547
Confidential Proprietary

Table 10-206. Special Values for common ECC F2m domains when PKHA digit size is 32
bits (continued)

Name L N

var Value (hex, decimal, sums of powers)

690174634679056378743475586227702555583981273734501355537938363448546
3

R2modr 0x006AB044AA57CDD6D0CC9138B004578CD5EFE7E89545CDAA1BA1C26DD4D1

K-233

sect233k1

ansix9t233k1

EC2NGF233Koblitz

wtls10

30 29

q 0x020000000000000000000000000000000000000004000000000000000001

x233 + x74 + 1

R2modq 0x000000000004000000000000000000000000000000000000400000000000

b

c

0x01

0x0001

r 0x8000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF

345087317339528189371737793113851276057094098886225212632808702474134
3

R2modr 0x59BEBED80293C813EEB5B58A0AF7E3EB91DB9A5B861710AC1009468BB6

sect239k1

ansix9t239k1

30 30

q 0x800000000000000000004000000000000000000000000000000000000001

x239 + x158 + 1

R2modq 0x000000000000100000000000000000008000000000000000000440000000

b

c

0x01

0x0001

r 0x2000000000000000000000000000005A79FEC67CB6E91F1C1DA800E478A5

220855883097298041197912187592864814948216561321709848887480219215362
213

R2modr 0x183E8C975E5EA68E203395FBEC1187B0F40DFFCA2CE64F17F77925590A73

B-283

sect283r1

ansix9t283r1

EC2NGF283Random

36 36

q 0x08000
010A1

x283 + x12 + x7 + x5 + 1

R2modq 0x0004011
00400

b

c

0x027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E3
13B79A2F5

0x03D8C93D3B0EA81D9294034D7EE3135D0AC5FC8D9CB0276F7211F880F0D81C
A4C6E87B38

r 0x03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7
CEFADB307

777067556890291628367784762729407562656962592437690488910919652677004
4277787378692871

R2modr 0x0299ADD3FE013DB2E23755FAA9545A49222D8461643773D41D288BCA1EBB695
767D7CA78

K-283 36 36

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

548 NXP Semiconductors
Confidential Proprietary

Table 10-206. Special Values for common ECC F2m domains when PKHA digit size is 32
bits (continued)

Name L N

var Value (hex, decimal, sums of powers)

sect283k1

ansix9t283k1

EC2NGF283Koblitz

q 0x08000
010A1

x283 + x12 + x7 + x5 + 1

R2modq 0x0004011
00400

b

c

0x01

0x000
00001

r 0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E
061E163C61

388533778445145814183892381364703781328481173379306132429587499752981
5829704422603873

R2modr 0x00868DB4F6424B4B297831F5EBA11AE2B1AC177F33C6C133859892757E41B7C
AE8927BDB

B-409

sect409r1

ansix9t409r1

EC2NGF409Random

52 52

q 0x02000
0000000000000008000000000000000000001

x409 + x87 + 1

R2modq 0x0010000000000
0000000000000000000000000000000004000

b

c

0x21A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD674761FA99D6AC27C
8A9A197B272822F6CD57A55AA4F50AE317B13545F

0x0149B8B7BEBD9B63653EF1CD8C6A5DD105A2AAAC36FE2EAE43CF28CE1CB7
C830C1ECDBFA413AB07FE35A57811AE4F88D30AC63FB

r 0x010001E2AAD6A612F3
3307BE5FA47C3C9E052F838164CD37D9A21173

661055968790248598951915308032771039828404682964281219284648798304157
774827374805208143723762179110965979867288366567526771

R2modr 0x0007C24B27E70A941D4738F415F186A66A9FF8783C798E99D4A152BF0CE0C0C
C273CDA3D70AA82C43A336EFBE1479034DB8EF936

K-409

sect409k1

ansix9t409k1

EC2NGF409Koblitz

52 51

q 0x02000
0000000000000008000000000000000000001

x409 + x87 + 1

R2modq 0x0010000000000
0000000000000000000000000000000004000

b

c

0x01

0x000
0000000000000000000000000000000000001

r 0x7FFE5F83B2D4E
A20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 549
Confidential Proprietary

Table 10-206. Special Values for common ECC F2m domains when PKHA digit size is 32
bits (continued)

Name L N

var Value (hex, decimal, sums of powers)

330527984395124299475957654016385519914202341482140609642324395022880
711289249191050673258457777458014096366590617731358671

R2modr 0x50DC9B805D4BEBA0701EDA0D529DAD74A3ED9914801EFC3F5D0760180600F3
725B714A1C6E7B3C68A06DF3709E9354226F8D6C

B-571

sect571r1

ansix9t571r1

EC2NGF571Random

72 72

q 0x08000
000
00000425

x571 + x10 + x5 + x2 + 1

R2modq 0x000
000
40104400

b

c

0x02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18
AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA520E4DE739BAC
A0C7FFEFF7F2955727A

0x06395DB22AB594B1868CED952578B6539FABA69406D9B2986123A185C85832E
25FD5B63833D51442ABF1A9C05FF0ECBD88D7F77997F4DC9156AAF1CE0816468
6DDFF75116FBC9A7A

r 0x03FFF
FFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D
66E8382E9BB2FE84E47

386453752301725834469535189093198734429892732970643499865723525145151
914228956042453614399938941577308313388112192694448624687246281681307
0234528288303332411393191105285703

R2modr 0x00780C1005944C99C498CDB275BF7CCC389C0853C856C10F3786A7DCF3AA9A
E196A3FB16F1DE5AF21B1318667E55C15B9A8ABF1B469BD13D57BB95B60B677D
BCAA35B843B87069F9

K-571

sect571k1

ansix9t571k1

EC2NGF571Koblitz

72 72

q 0x08000
000
00000425

x571 + x10 + x5 + x2 + 1

R2modq 0x000
000
40104400

b

c

0x01

0x000
000
00000001

r 0x02000
00000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE
778F637C1001

193226876150862917234767594546599367214946366485321749932861762572575
957114478021226813397852270671183470671280082535146127367497406661731
1929682421617092503555733685276673

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

550 NXP Semiconductors
Confidential Proprietary

Table 10-206. Special Values for common ECC F2m domains when PKHA digit size is 32
bits (continued)

Name L N

var Value (hex, decimal, sums of powers)

R2modr 0x019433720D8C7057F7F3F824CCB3E09071584DD65C1437B2406C8210EEF4949
565D35EE4FE01AAEE96D0DC137749D25AA49C07F63F829BF85960C535AA90F11
DDEC4B62B18F2E26D

For these Montgomery domains, some functions require a24 instead of A. The PKHA
requires that a24 be (A+2)/4.

Table 10-207. Special Values for common ECM MOD (Montgomery curves) domains when
PKHA digit size is 32 bits

Name L N

var Value (hex, decimal, sums of powers)

Curve25519 32 32

q 0x7FF
FED

2255-19

R2modq 0x0005A4

A

A24

0x076D06

486662

0x01DB42

121666

r 0x1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED

723700557733226221397318656304299424085711635937990760600195093828545
4250989

R2modr 0x0399411B7C309A3DCEEC73D217F5BE65D00E1BA768859347A40611E3449C0F0
1

Table 10-208. Special Values for common ECT MOD (Edwards curves) domains when
PKHA digit size is 32 bits

Name L N

var Value (hex, decimal, sums of powers)

edwards25519 32 32

q 0x7FF
FED

2255-19

R2modq 0x0005A4

r 0x1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 551
Confidential Proprietary

Table 10-208. Special Values for common ECT MOD (Edwards curves) domains when
PKHA digit size is 32 bits (continued)

Name L N

var Value (hex, decimal, sums of powers)

723700557733226221397318656304299424085711635937990760600195093828545
4250989

R2modr 0x0399411B7C309A3DCEEC73D217F5BE65D00E1BA768859347A40611E3449C0F0
1

10.10.2 ARC-4 hardware accelerator (AFHA) CHA functionality

The AFHA CHA implements the standard ARC-4 cryptography algorithm. It is
controlled via the class 1 CHA registers.

10.10.2.1 AFHA use of the Mode Register

The AFHA uses the Mode Register as follows:

• The AFHA does not use the ICV or AAI fields of the Mode Register. They should be
set to 0 at all times during AFHA operations.

• The Encrypt/Decrypt field of the Mode Register is not used by AFHA. In ARC-4,
there is no difference between encrypt and decrypt.

• The Algorithm (ALG) field of the Mode Register must be set to "ARC4" to activate
the AFHA.

• The Algorithm State (AS) field of the Mode Register is used to select between the
operations described in this table.

Table 10-209. Mode Register[AS] operation selections in ARC4

Operation Description

INIT The AFHA starts with an Initialization and Permutation of the Sbox before beginning message processing.
When the Data Size Register is written, the AFHA begins message processing. At the end of the message
processing, the Sbox and context pointers (I and J) may be saved for use in continuing processing.

INIT/FINALIZE The AFHA starts with an Initialization and Permutation of the Sbox before beginning message processing.
When the Data Size Register is written, the AFHA begins message processing. At the end of the message
processing, no save of the Sbox nor context pointers can be performed.

FINALIZE The AFHA starts with the Sbox and context pointers loaded with saved values, for continuation of a
message processing. When the Data Size Register is written, the AFHA begins message processing. At the
end of the message processing, no save of the Sbox nor context pointers can be performed. In this mode,
the Key Register and Key Size registers are ignored.

UPDATE The AFHA starts with the Sbox and context pointers loaded with saved values, for continuation of a
message processing. When the Data Size Register is written, the AFHA begins message processing. At the
end of the message processing, the Sbox and context pointers (I and J) may be saved for use in continuing
processing. In this mode, the Key Register and Key Size registers are ignored.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

552 NXP Semiconductors
Confidential Proprietary

10.10.2.2 AFHA use of the Context Register

The AFHA uses the Context Register as follows:

• The Context Register is used for loading/saving the I and J pointers only; it is not
used as the actual I and J pointers during message processing.

• During loading of the context pointers (in FINALIZE or UPDATE mode),
context[0:7] is written to the I pointer, and context[8:15] is written to the J pointer.

• During a save of the context pointers (in INIT or UPDATE mode), the I pointer is
written back to context[0:7] and the J pointer is written back to context[8:15].

• No other bits of the Context Register are used by AFHA.

10.10.2.3 AFHA use of the Key Register

The AFHA uses the Key Register as follows:

• The Key Register contains the 1-to-32 byte key that is used during permutation in
INIT or INIT/FINALIZE modes (the first key byte is from Key Register bits [0:7],
the second key byte is from key[8:15], and so on).

• The Key Size Register must be programmed to tell AFHA how many bytes of the
Key Register are to be used during permutation.

• Key sizes less than 5 bytes are considered to be a security risk, but the AFHA does
allow them.

• Setting the key size to zero, or to a value greater than 32, produces an AFHA key-
size error.

• The Key Register and key size registers are ignored in UPDATE or FINALIZE
modes.

10.10.2.4 AFHA use of the Data Size Register

The AFHA uses the Data Size Register as follows:

• The Data Size Register is used to indicate the total size (in bytes) of the message
being processed.

• If the Data Size Register is programmed to a value of zero, then the AFHA performs
only initialization/permutation, or context save or context restore actions as selected
by the Mode Register.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 553
Confidential Proprietary

10.10.2.5 Save and restore operations in AFHA S-box and AFHA
context data

The AFHA S-box is a 256-byte array used during encryption or decryption, the contents
of which changes with each byte of message being processed. The context pointers I and
J are each a single byte of data that also changes with each byte of message being
processed. If a descriptor is used to ARC4-encrypt or decrypt only a part of a message,
and then a subsequent descriptor is used to process another part of the same message, the
S-box and context pointers within AFHA must be saved by the first descriptor and
restored by the subsequent descriptor.

At the end of an INIT or UPDATE mode operation, the S-box can be saved to memory
(automatically encrypted using the JDKEK or TDKEK), with the data from S-box being
read out in order, first byte to last. If the S-box is saved, the I and J pointers are also
saved from the Context Register at the same time, as described in the AFHA Context
Register section, above.

At the start of UPDATE or FINALIZE mode operations, the S-box is loaded from
memory (automatically decrypted using the JDKEK or TDKEK) in the same order in
which it was saved. The I and J pointers are loaded into the Context Register at the same
time.

10.10.2.5.1 Sbox and context data operations

At the end of an INIT or UPDATE mode operation, the Sbox can be saved to memory
(automatically encrypted using the JDKEK or TDKEK), with the data from Sbox being
read out in order, first byte to last. If the Sbox is saved, the I and J pointers are saved to
the Context Register at the same time, as described in the Context Register section,
above.

At the start of UPDATE or FINALIZE mode operations, the Sbox is loaded from
memory (automatically decrypted using the JDKEK or TDKEK) in the same order in
which it was saved. The I and J pointers are loaded from the Context Register at the same
time, as described in the Context Register section, above.

10.10.2.6 ARC-4 operation considerations

Consider the following regarding operation of the ARC-4 hardware accelerator:

• After a FINALIZE or INIT/FINALIZE operation completes and the mode register is
cleared, the mode may be re-written to INIT or INIT/FINALIZE and a new operation

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

554 NXP Semiconductors
Confidential Proprietary

runs, assuming a proper key and data is provided. However, re-writing the mode to
UPDATE or FINALIZE generates a mode error.

• If the ARC-4 accelerator receives SBox data from the input-data FIFO when it is not
expecting it, it generates a data-sequence error. It does not expect SBox data if it has
completed a FINALIZE or INIT/FINALIZE operation (with no reset afterwards, and
the Mode Register having been cleared), or if the current mode is INIT or INIT/
FINALIZE.

• If loading SBox data into the ARC-4 processor in UPDATE or FINALIZE mode,
258 bytes must be loaded. Attempting to load more or less than 258 bytes generates a
data-sequence error.

• The SBox may be loaded before a mode is programmed. However, after loading the
SBox, if the mode is programmed to INIT or INIT/FINALIZE, a mode error is
generated.

• If UPDATE or FINALIZE mode is written, the SBox must be loaded prior to the
mode write. This may have occurred either as a new SBox load, or from having been
generated from a previous operation of type INIT or UPDATE.

• The ARC-4 accelerator generates a data-sequence error if any data type other than
message data or SBox data is received while it is operating.

• The Sbox data can be stored from ARC-4 only after an UPDATE or INIT operation
has completed. Attempting to store the Sbox any other time generates a mode error.

• The ARC-4 accelerator can be used with a data size of 0. If the data size is zero (and
the "LAST" bit is set in the iNformation FIFO entry), this allows the ARC-4 to
generate the SBox and then indicate DONE.

10.10.3 Data encryption standard accelerator (DES) functionality

DES performs encryption and decryption on 64-bit values using the algorithm found in
FIPS46-3. The DES module in CAAM supports both single- and triple-DES functionality
and ECB, CBC, CFB8, and OFB modes as well as key parity checking in compliance
with the DES specification. DES is controlled from the class 1 CHA registers.

10.10.3.1 DESA use of the Mode Register

The DESA uses the Mode Register as follows:

• The encryption field (ENC) controls whether DESA is encrypting or decrypting data.
• The Algorithm State (AS) field is not used to affect DESA functionality and should

be set to zero at all times.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 555
Confidential Proprietary

• The Additional Algorithm Information field (AAI) specifies the mode DESA runs.
The supported modes are electronic code book (ECB), cipher block chaining (CBC),
8-bit cipher feedback (CFB8), and output feedback (OFB), described as follows:

• ECB (0x20h) mode is a confidentiality mode that features, for a given key, the
assignment of a fixed ciphertext block to each plaintext block (analogous to the
assignment of code words in a codebook).

• CBC (0x10h) mode is a confidentiality mode whose encryption process features
the combining ("chaining") of the plaintext blocks with the previous ciphertext
blocks. CBC mode requires an IV to combine with the first plaintext block. The
IV does not need to be secret, but it must be unpredictable.

• CFB8 (0x30h) mode is a confidentiality mode that features the feedback of
successive 8-bit ciphertext segments into the input blocks of the forward cipher
to generate output blocks that are exclusive-ORed with the plaintext to produce
the ciphertext, and vice versa. The CFB8 mode requires an IV as the initial
input-block.

• OFB (0x40h) mode is a confidentiality mode that features the iteration of the
forward cipher on an IV to generate a sequence of output blocks that are
exclusive-ORed with the plaintext to produce the ciphertext, and vice versa. The
OFB mode requires that the IV be unique for each execution of the mode under
the given key.

• Key parity checking for DESA that checks for odd parity within each byte of the key
is enabled with a value of (0x80h) in the AAI field.

• The algorithm field (ALG) must be programmed to DES (0x20h) or 3DES (0x21h).

10.10.3.2 DESA use of the Key Register

The DESA uses the Key Register as follows:

• The Key Register contains the 8-, 16-, or 24-byte key that is used during permutation
in all DES modes.

• The DES specification defines the key as having odd parity in each byte.
• Key parity can be verified using the correct mode setting.

10.10.3.3 DESA use of the Key Size Register

DESA uses the Key Size Register as follows:

• Key size can be either 8, 16, or 24 bytes.
• A key size of 8 is valid only in single-DES mode.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

556 NXP Semiconductors
Confidential Proprietary

• Values of 16 and 24 bytes can be used only in triple-DES mode.
• An illegal key size error is generated when in single-DES mode with a key size other

than 8 or when in triple-DES mode with a key size other than 16 or 24.

10.10.3.4 DESA use of the Data Size Register

The DESA uses the Data Size Register as follows:

• The Data Size Register is written with the number of bytes of data to be processed.
• All DES modes except OFB expect to process data that is a multiple of 8 bytes and

generates an error if the data size written is not an 8-byte multiple.
• This register must be written to start data processing.
• Because writing to the Data Size Register causes the written value to be added to the

previous value in the register, the register may be written multiple times while data is
being processed in order to increase the amount of input data that will be processed.

10.10.3.5 DESA Context Register

The DESA uses the Context Register as follows:

• For CBC, OFB, and CFB8 modes, the initialization vector is written to and read from
the DESA Context Register.

• The value of this register changes as a result of the encryption process and reflects
the context of DESA.

• DESA uses the first eight bytes of the Context Register to hold the beginning and
final IV value for the CBC, OFB, and CFB8 modes. The bits are assigned as follows:
Context DWord0: IV = desa_context[63:0]

10.10.3.6 Save and store operations in DESA context data

DESA is able to process data in chunks by saving the intermediate IV from the Context
Register after each chunk of data and restoring the IV and key to the correct registers
before processing any subsequent chunks of data.

10.10.4 Random-number generator (RNG) functionality

The RNG generates cryptographically-strong, random data. CAAM's RNG utilizes a true
random-number generator (TRNG) as well as a deterministic random-bit generator
(DRBG) to achieve both true randomness and cryptographic strength.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 557
Confidential Proprietary

The random numbers generated by the RNG are intended for direct use as secret keys,
per-message secrets, random challenges, and other similar quantities used in
cryptographic algorithms. Note that before data can be obtained from the RNG, it must be
instantiated in a particular mode by executing the appropriate descriptor. Also, a
descriptor must be executed to load the JDKEK, TDKEK and TDSK registers with data
from the RNG.

10.10.4.1 RNG features summary

The RNG module includes these distinctive features:

• Complete implementation of DRBG_Hash (SP800-90A) using SHA-256.
• Support for two state handles.
• Built-in entropy source conforming to SP800-90B and BSI AIS/31.
• Integrated entropy source for instantiating and re-seeding the DRBG.
• The RNG may be accessed through a register interface for test purposes.
• Interface to supply CAAM with random data as required for descriptors, and to

initialize key encryption key and Trusted Descriptor Signing Key Registers.
• Random-number stream obtainable using job descriptor.
• Random numbers automatically supplied as padding when needed by protocols.

10.10.4.2 RNG functional description

While the RNG consists of several, functional sub-modules, its overall functionality can
be easily described from the top level in terms of a few functional operations. These
operations are seed generation and random number generation. Each of these operations
require coordination of the RNG's true random-number generator (TRNG) and
deterministic random-bit generator (DRBG). TRNG creates real entropy (seed
generation) and DRBG generates cryptographically strong data using this entropy
(random-number generation).

10.10.4.2.1 RNG state handles

The RNG in CAAM implements 2 state handles. Each state handle:

• is a completely independent virtual RNG.
• may be independently instantiated in deterministic or nondeterministic mode, and

with or without prediction resistance
• is independently seeded (or reseeded) with independent entropy

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

558 NXP Semiconductors
Confidential Proprietary

Thereafter, each state handle maintains an independent context for the RNG's
deterministic random bit generator (DRBG).

Note that the JDKEK, TDKEK, TDSK and ZMK (if the ZMK is set for hardware
programming) are initialized by data drawn from State Handle 0, and that any random
padding required by CAAM's built-in protocols is also drawn from State Handle 0.
Because this data may be confidential, there are special security features to ensure that
State Handle 0 is not inadvertently or maliciously instantiated in deterministic mode
when it should have been instantiated in nondeterministic mode. See the discussion of the
RNGSH0 and RANDDPAR fields in the Security Configuration Register.

10.10.4.2.2 RNG NIST certification

CAAM's RNG is designed to be NIST-certifiable. One of the requirements of that
certification is the ability to test the RNG prior to normal operation. This requires
instantiating the RNG in test (deterministic) mode rather than normal (nondeterministic)
operational mode, and then having software run various tests on the RNG. To allow an
opportunity for this testing, CAAM does not automatically instantiate the RNG in
operational mode or automatically load the JDKEK, TDKEK and TDSK registers. After
the tests have completed, or if the tests are going to be skipped, the RNG must be
instantiated in operational mode and the JDKEK, TDKEK and TDSK registers must be
loaded. These steps are accomplished by executing descriptors as described in this table.
The execution of these descriptors must be initiated by software, typically via the Job
Ring interface.

Table 10-210. Examples of Descriptors to initialize, instantiate and uninstantiate the RNG
and to initialize the JDKEK, TDKEK and TDSK

Descriptor Value Execution

Descriptor to instantiate
RNG State Handle 0 in
deterministic (test) mode

NOTE: This descriptor
would be
executed prior to
running tests on
the RNG.

B080 0004h HEADER command indicating a descriptor with a length of four 32-bit words

1281 0004h LOAD Command with 4 bytes of immediate data; destination is Class 1 Key
Size register

0000 0000h 4 bytes of immediate data (entropy input is null)

8250 0005h OPERATION command, Class 1, RNG, Instantiate, Test Mode

Descriptor to uninstantiate
RNG State Handle 0

NOTE: This descriptor
would be
executed after
running tests on
the RNG.

B080 0002h HEADER command, indicating a descriptor with a length of two 32-bit words

8250 000Dh OPERATION command, Class 1, RNG, Uninstantiate, Test Mode

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 559
Confidential Proprietary

Table 10-210. Examples of Descriptors to initialize, instantiate and uninstantiate the RNG
and to initialize the JDKEK, TDKEK and TDSK (continued)

Descriptor Value Execution

Descriptor to instantiate
RNG State Handle 0 in
non-deterministic (normal)
mode with a
personalization string and
then load the JDKEK,
TDKEK, and TDSK
registers

NOTE: This descriptor
would be
executed to start
normal operation
of the RNG and
also initialize
JDKEK, TDKEK
and TDSK.

B080 0008h HEADER command, indicating a descriptor with a length of eight 32-bit words

12A0 0004h LOAD Command with 4 bytes of immediate data; destination is Class 1 Context
register

nnnn nnnnh 4 bytes of immediate data (Personalization String) Different values (e.g. chip
ID) should be used to ensure that the RNG on each chip is initialized differently.

8250 4004h OPERATION command, Class 1, RNG, Instantiate with Personalization String,
Non-Test Mode

A200 0001h JUMP command, wait until Class 1 (RNG) done then local jump to next
command

1088 0004h LOAD command, 4 bytes of Immediate data, destination Clear Written Register

0000 0001h 4 bytes of immediate data (clear the Class 1 Mode Register. This resets the
done interrrupt and returns the RNG to idle.)

8250 1000h OPERATION command, Class 1, RNG, Secure Key (e.g. load JDKEK, TDKEK
and TDSK registers), Generate

The Generate command for secure keys allows for an optional "additional_input" of up to 256 bits that would be loaded into
the Class 1 Context register prior to executing the OPERATION Generate command.

Descriptor to instantiate
RNG State Handle 0 non-
deterministic (normal)
mode with a
personalization string

NOTE: This descriptor
would be
executed to start
normal operation
of the RNG, but
without initializing
JDKEK, TDKEK
and TDSK.

B080 0004h HEADER command, indicating a descriptor with a length of four 32-bit words

12A0 0004h LOAD Command with 4 bytes of immediate data; destination is Class 1 Context
register

nnnn nnnnh 4 bytes of immediate data (Personalization String) Different values (e.g. chip
ID) should be used to ensure that the RNG on each chip is initialized differently.

8250 4004h OPERATION command, Class 1, RNG, Instantiate with Personalization String,
Non-Test Mode

10.10.4.3 RNG operations

RNG operations are performed by appropriately setting the Algorithm State (AS) field of
the OPERATION command.

Table 10-211. RNG Operations

Value of
AS

Name Function

00 State-handle
generate operation

Causes the RNG to generate random data from the selected state handle and push that
data to the output FIFO. The amount of data generated is based on the value in the
Class 1 Data Size register. The descriptor can also provide 256 bits of additional input
via the Class 2 Key Register, which is used as additional entropy when generating the

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

560 NXP Semiconductors
Confidential Proprietary

Table 10-211. RNG Operations (continued)

Value of
AS

Name Function

requested data. The TST bit value must match the deterministic/nondeterministic mode
of the selected state handle, else a test error is generated.1 A test error is also
generated if a Generate command is issued to a state handle that is not instantiated.

01 State-handle
instantiation
operation

Causes the RNG to set up the initial context for the specified state handle. The state
handle remains instantiated in the specified mode (deterministic or nondeterministic)
until it is uninstantiated or CAAM is reset. A test error is generated if an attempt is made
to instantiate a state handle that is already instantiated.

• TST bit = 0. Nondeterministic instantiation. When instantiating a state handle in
nondeterministic (normal) mode, the state handle is seeded with 512 bits of high-
grade random entropy from the TRNG and an optional 256-bit personalization
string supplied by the descriptor via the Class 1 Context Register.

• TST bit = 1. Deterministic instantiation. When instantiating a state handle in
deterministic (test) mode, the state handle is seeded with 256 bits of user-
specified entropy supplied via the Class 1 Key register and an additional 256 bits
of nonce supplied via the Class 2 Key register. Seeding the state handle with
known entropy and nonce values allows for deterministic testing. Note that once
the RNGSH0 bit in the Security Configuration register has been set to 1, State
Handle 0 can no longer be instantiated in deterministic mode. State Handle 0
produces the random numbers used for nonces and padding within the built-in
protocols, so this special protection can be used to prevent accidentally or
maliciously substituting a test instantiation in place of a nondeterministic
instantiation.

10 State-handle reseed
operation

Causes the RNG to reseed an already instantiated state handle; that is, the current state
associated with the selected state handle is replaced with new state information. A test
error is generated if an attempt is made to reseed a state handle that is not instantiated.

• For a state handle in nondeterministic mode, the DRNG is seeded with 512 bits of
entropy from the TRNG and an optional 256-bit additional input from the descriptor
via the Class 1 Context Register.

• For a state handle in deterministic mode, 256 bits of user-specified entropy is
taken from the Class 1 Key Register. Nonce is not used for reseeding.

11 State-handle
uninstantiate
operation

Causes the RNG to uninstantiate the specified state handle, which prevents the state
handle from being used to generate data. The state handle can later be instantiated
again. A test error is generated if an attempt is made to uninstantiate a state handle that
is not instantiated.

1. There is one exception to this rule. A test error is not generated if State Handle 0 is in Test mode but a generate operation
requests nondeterministic data from State Handle 0. This permits deterministic testing of the built-in protocols prior to
setting the RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed during the
boot process after testing is complete.

10.10.4.4 RNG use of the Key Registers

RNG uses the key registers as follows:

• RNG uses the Class 1 Key Register only when instantiating or reseeding a state
handle in deterministic (test) mode.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 561
Confidential Proprietary

• RNG uses the Class 2 Key Register only when instantiating a state handle in
deterministic (test) mode. In these cases, the descriptor has the TST bit set during the
OPERATION command and has loaded known values into the following registers:

• 256-bit entropy input in the Class 1 Key Register (for instantiate and reseed
operations)

• 256-bit nonce in the Class 2 Key register (only for instantiate operations)
• When instantiating or reseeding a state handle in nondeterministic mode, the key

registers are ignored and entropy is instead obtained from the TRNG.

10.10.4.5 RNG use of the Context Register

The Class 1 Context Register is used to supply an optional 256-bit personalization string
when instantiating a state handle, or to supply an optional 256 bits of additional input
when reseeding a state handle or generating random data.

10.10.4.6 RNG use of the Data Size Register

The RNG uses the Data Size Register as follows:

• When an RNG generate command is executed, the value in the Data Size Register
specifies the number of bytes of random data that should be generated and pushed
onto the Output FIFO.

• When an RNG instantiate command is executed, the value in the Data Size Register
specifies a reseed interval, measured in number of generate requests.

• The RNG uses a default reseed value of 10,000,000 requests. This means that
10,000,000 generate requests are processed before an automatic reseed operation
occurs. For a system with the clock speed between 133MHz - 400MHz, the reseed
happens between 3-20 seconds if RNG operations are being processed at the
maximum rate.

• The Data Size Register holds 32 bits so the user can specify a larger or smaller value.
If the user does not specify a reseed interval, the default value is used.

10.10.5 Message digest hardware accelerator (MDHA)
functionality

The MDHA performs hashing and authentication operations using the hashing algorithms
defined in FIPS 180-3 (SHA-1, SHA-224, SHA-256) and MD5. MDHA is controlled by
the Class 2 registers.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

562 NXP Semiconductors
Confidential Proprietary

10.10.5.1 MDHA use of the Mode Register

The MDHA uses the Mode Register as follows:

• The Encryption field (ENC) and the Authenticate/Protect (AP) field are not used by
the MDHA.

• The Algorithm field (ALG) must be programmed to MD5, SHA-1, SHA-224, or
SHA-256.

• The ICV field enables ICV checking for MDHA. Starting at the MSB, MDHA
verifies the number of bytes in the digest that are defined in the Class 2 ICV Size
Register.

• The Algorithm State (AS) field is defined as follows:

Table 10-212. Mode Register[AS] operation selections in
MDHA

Operation Description

INIT The hashing algorithm is initialized with the chaining variables and then hashing begins.
Input data must be a non-zero multiple of 64-byte blocks for MD5, SHA-1, SHA-224,
SHA-256.

INIT/FINALIZE The hashing algorithm is initialized with the chaining variables, and padding is
automatically put on the final block of data. Any size of data is supported.

UPDATE The hashing algorithm begins hashing with an intermediate context and running
message length. Input data must be a multiple of 64-byte blocks for MD5, SHA-1,
SHA-224, SHA-256.

FINALIZE The hashing algorithms begin hashing with an intermediate context and running
message length. Padding is performed on the final block of data. Any size of data is
supported.

• The Additional Algorithm Information field (AAI) field is defined as follows:
• The Additional Algorithm Information field (AAI) specifies whether

Authentication is performed on the data with the specified algorithm. The
optional authentication modes are HMAC, SMAC, and HMAC with Derived
HMAC Key.

• The HMAC mode is defined by FIPS 198-1. This can be performed with any of
the hashing algorithms.

• The SMAC mode is defined by the SSL 3.0 specification. This can be performed
with MD5 or SHA-1 hashing algorithm only.

• The HMAC with Derived HMAC Key performs the parts of the HMAC
algorithm that are not part of generating the Derived HMAC Key. This
optimization saves two block computations of the underlying hash function. See

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 563
Confidential Proprietary

Using the MDHA Key Register with Derived HMAC Keys for more
information.

NOTE
For HMAC and SMAC, the MD5 Key cannot be shared
between DECOs until the donor MDHA is done. As a result, if
using an MD5 key in a shared descriptor, sharing must be set to
NEVER, WAIT or SERIAL, and sharing cannot be permitted to
proceed until MDHA is done. For more information on sharing,
please refer to Table 10-8.

10.10.5.2 MDHA use of the Key Register

The MDHA uses the Key Register as follows:

• The Key Register set is only used when a non-0 value in the Mode Register AAI
field is specified.

• These registers either hold the HMAC key or the Derived HMAC Key.
• The two components of the Derived HMAC Key are each the size of the digest that is

defined by the specified algorithm, except for SHA-224, which is 32 bytes.

10.10.5.2.1 Using the MDHA Key Register with normal keys

When loading the Key Register with the Key Command (See KEY commands), a
KDEST value of 0h results in the key source being loaded, with offset zero, into the Key
Register. If the ENC bit = 1 in the Key Command, then the key is decrypted into this
register.

10.10.5.2.2 Using the MDHA Key Register with Derived HMAC Keys

The HMAC function uses an HMAC key per the following equation:

HMAC(Key,Message) = Hash[(Key ⊕ OPAD) || HASH((Key ⊕ IPAD) || Message)],

where "IPAD" is the constant byte 36h repeated 64 times for MD5, SHA-1, SHA-224 and
SHA-256, and "OPAD" is the constant byte 5Ch repeated similarly. "Key" is the HMAC
Key, and "HASH" is the chosen hashing function (for example, SHA-256).

10.10.5.2.2.1 Definition and function of Derived HMAC Keys

To improve performance, CAAM permits the use of Derived HMAC Keys. Computing
the values Hash(Key ⊕ IPAD) and Hash(Key ⊕ OPAD) each require MDHA to perform
one block of the underlying hash computation. By performing these computations once,

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

564 NXP Semiconductors
Confidential Proprietary

subsequent HMAC computations can save two blocks of hash computation. As a result,
the Key Command has an option to signal MDHA that the key being loaded is a derived
key.

10.10.5.2.2.2 Process flow when using the Key Register with Derived HMAC
Keys

When MDHA runs, it turns a key into a Derived HMAC Key. MDHA writes this derived
key form back to the Class 2 Key Register. Because the derived key is required every
time, it saves time to create it once and then reuse it rather than starting with the key
again. However, the derived key does not appear in the Key Register contiguously. To
make the hardware much simpler, the half of the derived key generated with IPAD
appears at the start of the Key Register and the half of the derived key generated with
OPAD starts at the midpoint. So, for MD5, between these two 16-byte portions of the key
there can be 16 bytes of null data. Using the Derived HMAC KEY avoids the need to
load or store the null data.

10.10.5.2.2.3 Using padding with the Derived HMAC Key to align with storage

When doing a FIFO STORE of a Derived HMAC Key, the user provides a length
equivalent to the sum of the bytes in the Derived HMAC Key itself. That is, in the
example above, a total length of 32 bytes. DECO knows to get 16 bytes from the start and
another 16 bytes from the midpoint. This saves in encryption time and bandwidth. When
loading 20-byte Derived HMAC Key (size would be 40), there must be "padding" of 4
bytes following each portion of the derived key. That is: {20 bytes of the IPAD half of
the derived key, 4 bytes of pad, 20 bytes of the OPAD half of the derived key, 4 bytes of
pad}. The padding can be anything, because CAAM discards it. The reason for this is to
make it align with how the encrypted derived key is stored, where the extra padding is
used to pad each portion to an 8-byte boundary so that they can be handled separately.

10.10.5.2.2.4 Length of a Derived HMAC Key

Because the Derived HMAC Key key consists of two blocks of material processed by the
selected hash algorithm, the length of a Derived HMAC Key is twice the length of the
hash algorithm's running digest (note exception below). Storage of the Derived HMAC
Key in the Class 2 Key Register, however, is such that the IPAD half of the derived key
is at offset zero, and the OPAD half of the derived key is at offset 32.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 565
Confidential Proprietary

10.10.5.2.2.5 Loading/storing a Derived HMAC Key with a KEY command

A Derived HMAC Key may be loaded either in encrypted or in unencrypted form. The
DECO command to load a Derived HMAC Key is the KEY command with the KDEST
field set to 3h. A Derived HMAC Key loaded in this way must be stored contiguously in
external memory, and is twice the length of the hash algorithm's running digest. For
example, the running digest for SHA-224 is 32 bytes, so the length of a SHA-224
Derived HMAC Key in external memory is 64 bytes. In addition, the length for a KEY
command associated with a SHA-224 Derived HMAC Key must be 64. A Derived
HMAC Key that CAAM has generated has also been encrypted, and for SHA-1, has been
padded with 8 additional bytes.

10.10.5.2.2.6 Loading/storing a Derived HMAC Key with a FIFO STORE
command

The DECO command to store a Derived HMAC Key is the FIFO STORE command, with
output-data type set to 16 or 26 (17 or 27 to encrypt using the TDKEK). Generating a
Derived HMAC Key in this fashion results in the key being encrypted with the JDKEK
or TDKEK. Note that the length of an encrypted Derived HMAC Key is longer if the
FIFO STORE command output-data type selects AES-CCM (16 or 17) for the encrypted
key type. Even if AES-ECB is selected (26 or 27), a SHA-1 encrypted Derived HMAC
Key is always longer, because CAAM must add 8 bytes of padding before the pre-
encrypted 40 bytes of actual Derived HMAC Key can be encrypted.

10.10.5.2.2.7 Sizes of Derived HMAC Keys

This table describes the different sizes of derived HMAC keys depending on how they
were generated.

Table 10-213. Sizes of derived HMAC keys

Hash algorithm Final digest
size

Running
digest size

Software-generated
derived key size

AES-ECB encrypted
derived key size

AES-CCM encrypted
derived key size

MD5 16 bytes 16 bytes 32 bytes 32 bytes 44 bytes

SHA-1 20 bytes 20 bytes 40 bytes 48 bytes 52 bytes

SHA-224 28 bytes 32 bytes 64 bytes 64 bytes 76 bytes

SHA-256 32 bytes 32 bytes 64 bytes 64 bytes 76 bytes

10.10.5.2.2.8 Storing an HMAC-SHA-1 Derived Key in Memory

This figure is an example of how software would store a derived key for HMAC-SHA-1
in memory, given the derived HMAC key.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

566 NXP Semiconductors
Confidential Proprietary

Software-generated derived key in memory
Kipad refers to SHA-1 (Key ^ IPAD)
Kopad refers to SHA-1 (Key ^ OPAD)

Derived key after loading into Class 2 Key Register

Derived key in memory after executing FIFO STORE command Encrypted derived key (48B)

FIFO STORE:
Out Type=16.

Len=48

Kipad (20B) reserved(44B) Kopad (20B) reserved (44B)

KEY Command:
KDEST = 3h.

ENC = 0.
Len = 48

Kipad (20B) Kopad (20B)

Figure 10-16. Derived keys in memory and in the Class 2 Key Register

Use the KEY Command to load it into the Class 2 Key Register, and then use the FIFO
STORE Command to write it back out in encrypted form.

10.10.5.2.3 MDHA use of the Key Size Register

The Key Size Register is defined to be the number of bytes of key that is loaded into the
Key Registers. Key Size ranges are defined as followed:

• MD5: 0 → 64 bytes
• SHA-1: 0 → 64 bytes
• SHA-224: 0 → 64 bytes
• SHA-256: 0 → 64 bytes

10.10.5.3 MDHA use of the Data Size Register

The MDHA uses the Data size Register as follows:

• The Data Size Register is written with the number of bytes of data to be processed.
• This register must be written to start data processing.
• This register may be written multiple times while data processing is in progress in

order to add the amount written to the register to the previous value in the register.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 567
Confidential Proprietary

10.10.5.4 MDHA use of the Context Register

The Context Register stores the current digest and running message length. The running
message length will be 8 bytes immediately following the active digest. The digest size is
defined as follows:

• MD5: 16 bytes
• SHA-1: 20 bytes
• SHA-224: 28 bytes final digest; 32 bytes running digest
• SHA-256: 32 bytes

10.10.5.5 Save and restore operations in MDHA context data

MDHA is able to process data in chunks by saving the intermediate context and running
message length from the Context Register after each chunk of data and restoring the
context and running message length to the Context Registers before processing any
subsequent chunks of data.

10.10.6 AES accelerator (AESA) functionality

The Advanced Encryption Standard Accelerator (AESA) module is a hardware co-
processor capable of accelerating the advanced encryption standard (AES) cryptographic
algorithm. Note that the AESA implements GCM mode. AESA is invoked by setting
ALG=10h in the ALGORITHM OPERATION command.

10.10.6.1 Differences between the AES encrypt and decrypt keys

AES is a block cipher that processes data in 128-bit blocks. It is a symmetric key
algorithm, that is, the "same" key is used for both encryption and decryption. (Although
the key appears in a different form for decryption than it does for encryption, the two
forms are considered the same key because one can be derived from the other.) The
decrypt form of the key is different from the encrypt form of the same key because AES
successively modifies the cryptographic key during the steps of the cryptographic
operation. The decryption operation yields the correct result only if the modified form of
the key (the decrypt key) is used at the beginning of the decryption operation. If CAAM
is told to do a decrypt operation but the key register currently contains the encrypt form
of the key, CAAM first goes through the steps required to derive the decrypt key from the
encrypt key, and then performs the decryption operation. To increase the performance of

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

568 NXP Semiconductors
Confidential Proprietary

decryption operations, the AESA CHA can be told to start with the decrypt form of the
key. If the OPERATION command specifies the DK (Decrypt Key) bit as 1, the AESA
CHA will assume that the key register already contains the decrypt form of the key, and
will skip the steps to derive the decrypt key from the encrypt key. But if DK = 0 when a
decryption command is executed, the AESA CHA will perform the steps needed to derive
the decrypt form of the key.

If an AES encryption operation is performed and then within the same job the AES key is
stored as a black key, the black key will be the encrypt form of the AES key. But if the
AES key is stored as a black key after an AES decryption operation is performed, the
encrypted key will be the decrypt form of the AES key. Software must keep track of
whether the black key is the encrypt form or the decrypt form of the AES key. Failure to
use the correct key form in a decryption operation will yield incorrect results. If a decrypt
form key was loaded in the key register but DK = 0, the key would be modified as if it
were an encrypt key, and consequently, the wrong key value would be used in the
decryption operation. If an encrypt form key was loaded in the key register but DK = 1,
CAAM would use the encrypt key assuming that it was a decrypt key, and again the
wrong key value would be used in the decryption operation.

The difference between the encrypt key and the decrypt key must be taken into account
when sharing an AES key between jobs. When an AES key is shared from an encryption
job it is the encrypt form of the key that is shared. But when a subsequent AES
decryption job shares the key from a previous decryption job, the key that is shared is a
decryptkey. If the key that is shared is a decrypt key the DK bit should be set to 1, which
tells CAAM to skip the decrypt key derivation steps. Note that a subsequent Shared
Descriptor will receive a decrypt key in the key register if sharing occurred (i.e. the
shared-to job started while the shared-from job was still in a DECO), but may receive an
encrypt key in the key register if sharing did not occur and the key had to be reloaded
from memory. A JUMP command with TEST CONDITION set to SHRD (see Table
10-88) can be used to determine whether the OPERATION command should be executed
with DK = 0 or DK = 1.

10.10.6.2 AESA modes of operation

The following modes are supported by AESA:

• Electronic codebook (ECB)
• Cipher block chaining (CBC)
• CBC mode with cipher text stealing (CBC-CS2)
• Output feedback (OFB)
• 128-bit cipher feedback (CFB128)
• Counter (CTR)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 569
Confidential Proprietary

• Extended cipher block chaining message authentication code (XCBC-MAC)
• Cipher-based MAC (CMAC)
• CTR and CBC-MAC (CCM)
• Galois/Counter mode (GCM)

AES modes can be classified into these categories:

• Confidentiality (ECB, CBC, CBC-CS2, CTR, OFB, CFB128)
• Authenticated Confidentiality (CCM, GCM)
• Authentication (XCBC-MAC, CMAC)

CBC mode can also be viewed as an authentication mode when used to encrypt data,
because it provides CBC-MAC in the context registers.

10.10.6.3 AESA use of registers

Note the following regarding the AESA's use of registers:

• AESA is controlled by the Class 1 registers.
• For all modes, if AESA is selected and the mode code written to the Mode Register

does not correspond to any of the implemented AES modes, the illegal-mode error is
generated.

• KEY SIZE, MODE and DATA SIZE can be written in any order. The operation will
begin after all of these have been written.Also, for all AES modes, the bit offset in
the Data Size Register must be zero. Failure to comply with these requirements will
generate an error in the CCB Status Register.

• If ICV-only jobs are created (no data or no additional data to be processed, only ICV
to be checked) in modes that support ICV check, the ICV_TEST mode bit should be
set, and the AS mode field should be programmed to Update.

• The default register updates performed by the DECO/CCB complex when an AES
CHA is utilized via the register-based service interface are described in chapter
DECO/CCB behavior for jobs started via the register service interface. Similarly, the
updates performed for jobs originating from other service interfaces or when sharing
occurs are described in chapter DECO/CCB default actions for one-off jobs and
DECO/CCB actions when sharing descriptors, respectively.

10.10.6.4 AESA use of the parity bit

AESA incorporates fault-detection logic based on parity. The parity bit is computed for
every byte of input data and key. These parity bits are then fed to the fault detection logic
that computes expected parity of every byte for both key and data based on the AES

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

570 NXP Semiconductors
Confidential Proprietary

transformations implemented in the main data-path. The expected parity is compared
with the parity of the actual key and data bytes and the hardware error is generated if
there is a mismatch.

10.10.6.5 AES ECB mode

The electronic codebook (ECB) mode is a confidentiality mode that features, for a given
key, the assignment of a fixed, ciphertext block to each plaintext block, analogous to the
assignment of code words in a codebook. In ECB encryption, the forward cipher function
is applied directly and independently to each block of the plaintext. The resulting
sequence of output blocks is the ciphertext. In ECB decryption, the inverse cipher
function is applied directly and independently to each block of the ciphertext. The
resulting sequence of output blocks is the plaintext.

10.10.6.5.1 AES ECB mode use of the Mode Register

AES ECB mode uses the Mode Register as follows:

• The Encrypt (ENC) field should be 1 for ECB encryption and 0 for ECB decryption.
• The ICV/TEST bit is used in ECB mode to activate the fault detection test logic. This

logic verifies that the fault detection logic is operational by injecting bit-level errors
into input data and key bytes. Because ECB mode does not normally use the Context
Registers, the first 128 bits of the context are used in the ECB TEST mode to define
which byte of the input data and the key has a bit error injected.

• The Algorithm State (AS) field is not used in ECB mode.
• The Additional Algorithm Information (AAI) field must be set with value 20h that

activates ECB mode. Setting the MSB in the AAI field (interpreted as the Decrypt
Key or DK bit for AES operations) specifies that the key loaded to the Class 1 Key
Register is the decryption form of the key, rather than the encryption form of the key.
If DK = 0, when a decryption operation is requested CAAM processes the content of
the Class 1 Key Register to yield the decryption form of the key. If DK = 1, CAAM
skips this processing. The illegal-mode error is generated if DK = 1 and ENC=1.

• The Algorithm (ALG) field is used to activate AES by setting it to 10h .

10.10.6.5.2 AES ECB mode use of the Context Register

The AES ECB mode does not use the Context Registers except when the fault-detection
test is activated. In this case, the first 128 bits of the context are reserved for the error
code. The error code:

• Defines which byte of the input data and the key will have a bit error injected.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 571
Confidential Proprietary

• Can have 32, 40, or 48 active bits depending on the key size (16, 24 or 32 bytes in
ECB mode).

• Is right justified within first 128 bits of the context such that bit 0 of Context DWord
1 injects error into the MSB of the input data, while bit 16 of Context DWord 1
injects error into the MSB of the key.

If all bits of the error code are 0, no error is injected and fault detection logic does not
activate the hardware error. If the ICV/TEST bit of the Class 1 Mode Register is 0 in the
ECB mode, the Context Registers have no effect on ECB processing.

Table 10-214. Context usage in ECB mode

Context DWord Definition

ECB ECB with ICV/TEST = 1

0 - ERROR CODE

1 -

10.10.6.5.3 AES ECB Mode use of the Data Size Register

The length of the message to be processed in bytes must be written to the Data Size
register. If this value is not divisible by 16, the Data Size error is generated.

10.10.6.5.4 AES ECB Mode use of the Key Register

ECB keys must be written to the Class 1 Key Register and can have 16, 24, or 32 bytes.

10.10.6.5.5 AES ECB Mode use of the Key Size Register

The number of bytes in the ECB key must be written to the Key Size register. The KEY
SIZE, MODE and DATA SIZE can be written in any order. Processing starts after all of
them have been written. Any value other than 16, 24, or 32 causes the key-size error to be
generated.

10.10.6.6 AES CBC, CBC-CS2, OFB, CFB128 modes

The CBC, CBC-CS2, OFB, CFB128 modes are considered together because of their
similarities and are described in this table.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

572 NXP Semiconductors
Confidential Proprietary

Table 10-215. AES CBC, CBC-CS2, OFB, CFB128 modes

Name Abbreviation Function

Cipher-Block Chaining
mode

CBC Confidentiality mode whose encryption process features the combining
("chaining") of the plaintext blocks with the previous ciphertext blocks. The
CBC mode requires an IV (Initialization Vector) to combine with the first
plaintext block

NOTE: CBC mode uses both forward and inverse AES cipher. OFB and
CFB use only forward AES cipher.

Cipher-Block Chaining
mode with CipherText
Stealing (CTS)

CBC-CS2 CipherText Stealing is a variant of CBC mode for use when the plaintext is
not a multiple of the block size. CAAM supports Ciphertext Stealing variant
CS2 as defined in the NIST Addendum to Special Publication 800-38A:
"Recommendation for Block Cipher Modes of Operation: Three Variants of
Ciphertext Stealing for CBC Mode".

Cipher FeedBack mode
(128-bit)

CFB128 Confidentiality mode that features the feedback of successive ciphertext
segments into the input blocks of the forward cipher to generate output
blocks that are exclusive-ORed with the plaintext to produce the
ciphertext, and vice versa. The CFB mode requires an IV as the initial
input block. AESA implements 128-bit CFB mode where every ciphertext/
plaintext block must have 128 bits.

Output FeedBack mode OFB Confidentiality mode that features the iteration of the forward cipher on an
IV to generate a sequence of output blocks that are exclusive-ORed with
the plaintext to produce the ciphertext, and vice versa. The OFB mode
requires IV. The last block of OFB input data can have fewer than 16
bytes.

NOTE
References to CBC mode in the following text also apply to the
CBC-CS2 mode.

10.10.6.6.1 AES CBC, OFB, and CFB128 modes use of the Mode Register

The AES CBC, OFB, and CFB128 modes use the Mode Register as follows:

• The Encrypt (ENC) field should be 1 for encryption and 0 for decryption, except for
OFB mode in which this bit is not used.

• The ICV/TEST bit is not used in these modes.
• The Algorithm State (AS) field is used only in CBC mode to prevent IV update in the

context for the last data block when set to "Finalize" (2h).
• The Additional Algorithm Information (AAI) field defines which mode is used for

processing. For CBC, CBC-CS2, OFB, and CFB128, these values are 10h, 12h, 40h,
and 30h, respectively. The Decrypt Key [DK] (AAI field MSB) bit affects CBC
mode and specifies that the key loaded to the Class 1 Key Register is the decrypt key.
The illegal mode error is generated if DK=1 and ENC=1. If the DK bit is set in OFB
or CFB128 modes the illegal-mode error is also generated, because these modes do
not use inverse AES cipher.

• The Algorithm (ALG) field is used to activate AES by setting it to 10h .

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 573
Confidential Proprietary

10.10.6.6.2 AES CBC, OFB, and CFB128 modes use of the Context
Register

The AES CBC, OFB, and CFB128 modes use the Context Register as follows:

• AES CBC, OFB, and CFB all use the Context Registers to provide IV, which is
updated with every processed block of a message. When a message is split into
chunks and processed in multiple sessions, the IV must be saved and later restored
for the next chunk to be processed correctly. At the end of CBC processing, IV is
also the MAC of the message.

• If the AS field of the Mode Register is set to "Finalize" (2h) in the CBC mode, the
last IV update is not written to the context. This enables CBC encryption to
effectively perform ECB encryption transformation of a single-block message
located in the context in place of IV, and with an all-zero block provided as input
data through the FIFO without overwriting the context.

Table 10-216. Context usage in CBC, OFB, CFB modes

Context DWord Definition

0 IV [127:64]

1 IV [63:0]

10.10.6.6.3 AES CBC, OFB, and CFB128 modes use of the Data Size
Register

The AES CBC, OFB, and CFB128 modes use the Data Size Register as follows:

• The byte length of the message to be processed must be written to the Data Size
Register.

• The first write to this register initiates processing. This register can also be written
during processing, in which case the value written is accumulated to the current state
of the register.

• After the Data Size Register is written for the last time, its value must be divisible by
16 in CBC (but not CBC-CS2) and CFB128 modes, otherwise the data-size error is
generated.

• Only OFB and CBC-CS2 decrement the value in this register with every processed
block.

10.10.6.6.4 AES CBC, OFB, and CFB128 modes use of the Key Register

The AES CBC, OFB, and CFB128 modes uses the Key Register as follows:

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

574 NXP Semiconductors
Confidential Proprietary

• A CBC, OFB, or CFB key must be written to the Class 1 Key Register.
• Keys can have 16, 24, or 32 bytes.

10.10.6.6.5 AES CBC, OFB, and CFB128 modes use of the Key Size
Register

The AES CBC, OFB, and CFB128 modes use the Key Size Register as follows:

• The number of bytes in a key must be written to the Class 1 Key Size register.
• Any value other than 16, 24, or 32 causes a key-size error to be generated.

10.10.6.7 AES CTR mode

The counter (CTR) mode is a confidentiality mode that features the application of the
forward cipher to a set of input blocks, called counters, to produce a sequence of output
blocks that are exclusive-ORed with the plaintext to produce the ciphertext, and vice
versa. Note that the counter value must be unique for each data block that is encrypted
with the same key. CAAM uses a 128-bit counter to ensure that the counter value will not
overflow and wrap around.

NOTE
It is the user's responsibility to ensure that the same key value is
not used again following a reset.

10.10.6.7.1 AES CTR mode use of the Mode Register

The AES CTR mode uses the Mode Register as follows:

• The Additional Algorithm Information (AAI) field should be set to 00h to activate
CTR mode. If the Decrypt Key [DK] (AAI field MSB) bit is set, the illegal-mode
error is generated, because CTR uses only forward AES cipher requiring encryption
rather than decryption keys.

• The Algorithm State (AS) field when set to "Finalize" (2h) prevents counter update
in the context for the last data block.

• The Algorithm (ALG) field is used to activate AES by setting it to 10h .

10.10.6.7.2 AES CTR mode use of the Context Register

The AES CTR mode uses the Context Register as follows:

• CTR uses context dwords 2 and 3 to provide initial counter value (CTR0). This value
is incremented with every processed block of a message. When a message is split

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 575
Confidential Proprietary

into chunks and processed in multiple sessions, the CTR0 field of context has to be
saved and later restored for the next chunk to be processed correctly.

• If the AS field of the Mode Register is set to Finalize (2h) in the CTR mode, the last
counter update is not written to the context. This enables CTR encryption to
effectively perform ECB encryption transformation of a single-block message
located in the context dwords 2 and 3 in place of CTR0 and with all-zero block
provided as input data through the FIFO without overwriting the context.

Table 10-217. Context usage in CTR mode

Context dword Initial-input definition Context-switching definition

0 - -

1 - -

2 CTR0 [127:64] CTRi [127:64]

3 CTR0 [63:0] CTRi [63:0]

10.10.6.7.3 AES CTR mode use of the Data Size Register

The byte-length of the message to be processed must be written to the Data Size register.
The first write to this register initiates processing. It can also be written during processing
in which case the value written will be accumulated to the current state of the register.
After the Data Size register is written for the last time, the value of this register may not
be divisible by 16. CTR decrements the value in this register with every processed block.

10.10.6.7.4 AES CTR mode use of the Key Register
• CTR key must be written to the Class 1 Key Register.
• The Key Register can have 16, 24 or 32 bytes.

10.10.6.7.5 AES CTR mode use of the Key Size Register

The number of bytes in a key must be written to the Class 1 Key Size register. Any value
other than 16, 24, or 32 will cause Key Size error to be generated.

10.10.6.8 AES XCBC-MAC and CMAC modes

The AES XCBC-MAC and CMAC modes are described together because of their
similarities. They are extensions of the AES CBC mode that produces a key-dependent,
one--way hash (or message authentication code (MAC)) in a secure fashion across
messages of varying lengths. They also provide data-integrity and data-origin
authentication regarding the original message source.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

576 NXP Semiconductors
Confidential Proprietary

10.10.6.8.1 AES XCBC-MAC and CMAC modes use of the Mode Register

The AES XCBC-MAC and CMAC modes use the Mode Register as follows:

• The Encrypt (ENC) bit is ignored.
• The ICV_TEST bit must be set for computed MAC to be compared with the received

MAC. The received MAC must be written to the Input Data FIFO after message data
and the FIFO data type must be set to ICV. If this bit is not set, XCBC-MAC and
CMAC do not expect received ICV to be supplied after message data.

• The Algorithm State (AS) field is defined for XCBC-MAC as shown in this table.

Table 10-218. Mode Register[AS] operation selections in AES XCBC-MAC

Operation Description

INITIALIZE Message is processed in multiple sessions and the current session is the first one. During
initialization, derived keys K3 and K2 that are XOR-ed with the last message block are computed and
stored in the context to be used in the last processing session. The derived key K1 used as an AES
key is computed and written back to the Key Register over the original key

INITIALIZE/FINALIZE Message is processed in a single XCBC session and the final MAC is computed

UPDATE Message is processed in multiple sessions and the current session is neither the first nor the last.
Derived keys K2 and K3 are provided in the context and the derived key K1 is provided in the Key
Register. If decryption is requested, and data size is not written or is set to 0, and ICV_TEST bit is 1 -
AS = UPDATE means that Check ICV (CICV) job is requested. The CICV-only job does not process
any data, it just pops received ICV/MAC from the Input Data FIFO, and compares it to the computed
MAC that is restored with the rest of the context from the previous session.

FINALIZE Message is processed in multiple sessions and the current session is the last one. Derived keys K2
and K3 are provided in the context and the derived key K1 is provided in the Key Register. The final
MAC is computed

• The Algorithm State (AS) field is defined for CMAC as shown in this table.

Table 10-219. Mode Register[AS] operation selections in CMAC

Operation Function

INITIALIZE Message is processed in multiple sessions and the current session is the first one. During
initialization, the constant L = E(K, 0) is computed as encrypted block of zeros using key K and stored
in the context to be used in the last processing session for derivation of keys K1 and K2. One of these
keys will be XOR-ed with the last message block.

INITIALIZE/FINALIZE Message is processed in a single session and the final MAC is computed

UPDATE Message is processed in multiple sessions and the current session is neither the first nor the last. The
constant L used for key derivation is provided in the context. If decryption is requested, and data size
is not written or is set to 0, and ICV_TEST:w bit is 1 - AS = UPDATE means that Check ICV (CICV)
job is requested. The CICV-only job does not process any data, it just pops received ICV/MAC from
the Input Data FIFO, and compares it to the computed MAC that is restored with the rest of the
context from the previous session

FINALIZE Message is processed in multiple sessions and the current session is the last one. The constant L
used for key derivation is provided in the context. The final MAC is computed

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 577
Confidential Proprietary

• If the AS field is not set to either "Initialize/Finalize" or "Finalize" and the
ICV_TEST bit is set to 1, the illegal-mode error is generated, except for CICV-only
jobs.

• The Additional Algorithm Information (AAI) field must be set to 70h for XCBC and
60h for CMAC to be activated. Setting the DK bit (AAI field MSB) will cause the
Illegal Mode error.

• The Algorithm (ALG) field is used to activate AES by setting it to 10h .

10.10.6.8.2 AES XCBC-MAC and CMAC Modes use of the Context Register

The AES XCBC-MAC and CMAC modes use the Context Register as follows:

• No data needs to be provided in the context when starting a new XCBC or CMAC
session.

• The computed MAC and the derived keys K2 and K3 are written back to the context
by XCBC.

• The computed MAC and the constant L = E(K,0), computed as encrypted block of
zeros using key K, are written back to the context by CMAC.

• When a message is split into chunks and processed in multiple sessions, these values
need to be saved before context switch and restored before the next chunk of a
message is to be processed. At the end of message processing the first 2 dwords of
the context contain the MAC value.

Table 10-220. Context usage in XCBC-MAC and CMAC modes

Mode Context dword Context-switching definition Final-result definition

XCBC-MAC 0 MAC[127:64] MAC[127:64]

1 MAC[63:0] MAC[63:0]

2 K3[127:64] -

3 K3[63:0] -

4 K2[127:64] -

5 K2[63:0] -

CMAC 0 MAC[127:64] MAC[127:64]

1 MAC[63:0] MAC[63:0]

2 L[127:64] -

3 L[63:0] -

10.10.6.8.3 AES XCBC-MAC and CMAC modes use of the Class 1 ICV Size
Register

The AES XCBC-MAC and CMAC modes use the ICV Size Register as follows:

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

578 NXP Semiconductors
Confidential Proprietary

• This register is used to provide received ICV/MAC byte-size when it is other than 16
bytes.

• The computed ICV/MAC written to the context in the XCBC mode is always 16
bytes.

• In CMAC mode, this register determines also the computed MAC size-the remaining
bytes are cleared.

• Supported values for ICV size are 4 to 16 bytes. If this register is 0, the size of ICV is
16 bytes.

10.10.6.8.4 AES XCBC-MAC and CMAC modes use of the Data Size
Register

The AES XCBC-MAC and CMAC modes use the Data Size Register as follows:

• The byte-length of the message to be processed must be written to the Data Size
register.

• The first write to this register initiates processing. It can also be written during
processing in which case the value written is accumulated to the current state of the
register.

• XCBC-MAC and CMAC decrement the value in this register with every processed
block.

10.10.6.8.5 AES XCBC-MAC and CMAC modes use of the Key Register

The AES XCBC-MAC and CMAC modes use the Key Register as follows:

• The key must be written to this register.
• For XCBC-MAC, if the AS mode field is set to either "Initialize" or "Initialize/

Finalize", it is the original XCBC key (K) that must be written here. Otherwise, the
derived key (K1) must be restored to this register. CMAC only uses original key K as
an AES key.

10.10.6.8.6 AES XCBC-MAC and CMAC modes use of the Key Size
Register

The AES XCBC-MAC and CMAC modes use the Key Size Register as follows:

• The total number of key bytes must be written to the Class 1 Key Size register.
• For XCBC-MAC, any value other than 16 causes a key-size error to be generated.

For CMAC, this error is generated only if any value other than 16, 24, or 32 is
written.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 579
Confidential Proprietary

10.10.6.8.7 ICV checking in AES XCBC-MAC and CMAC modes

Automatic ICV checking is enabled by setting the ICV_TEST bit of the Mode Register to
1. When ICV is set to 1, the AS mode field must be set to either "Finalize" or "Initialize/
Finalize"; otherwise the illegal-mode error is generated, except for CICV-only (Check-
ICV-only) jobs.

The received ICV must be provided on the FIFO after the message data. The FIFO data
type must be set to ICV when it is put on the FIFO. The size of the received and
computed ICV is provided in the Class 1 ICV Size register.

If the ICV check detects a mismatch between the decrypted received ICV and the
computed ICV, the ICV error is generated.

10.10.6.9 AESA CCM mode

CCM consists of two related processes: generation encryption and decryption
verification, which combine two cryptographic primitives: counter mode encryption
(CTR) and cipher-block chaining based authentication (CBC-MAC). Only the forward
cipher function of the block cipher algorithm is used within these primitives. Note that
the counter value must be unique for each data block that is encrypted with the same key.
CAAM uses a 128-bit counter to ensure that the counter value does not overflow and
wrap around.

NOTE
It is the user's responsibility to ensure that the same key value is
not used again following a reset.

10.10.6.9.1 Generation encryption

A cipher-block chaining is applied to the payload, the associated data (AAD), and the
nonce to generate a message authentication code (MAC); then counter mode encryption
is applied to the MAC and the payload to transform them into an unreadable form, called
the ciphertext. Thus, CCM generation encryption expands the size of the payload by the
size of the MAC.

10.10.6.9.2 Decryption verification

Counter-mode decryption is applied to the purported ciphertext to recover the MAC and
the corresponding payload; then cipher block chaining is applied to the payload, the
received associated data, and the received nonce to verify the correctness of the MAC.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

580 NXP Semiconductors
Confidential Proprietary

In CCM mode, the FIFO data type must be set to message type for message data, while
for AAD, either AAD or message type can be used.

10.10.6.9.3 AES CCM mode use of the Mode Register

The AES CCM mode uses the Mode Register as follows:

• The Encrypt (ENC) bit must be set to 1 for encryption and 0 for decryption.
• The ICV_TEST bit must be set for CCM to compare computed MAC with the

received MAC when decryption is requested.
• The received MAC must be written to the input-data FIFO after message data and the

FIFO data type must be set to ICV.
• Setting the ICV_TEST bit causes the received MAC to be decrypted and compared

with the computed MAC.
• The number of MSBs to be compared is defined by the MAC size in the CCM IV

(B0) as described in the CCM specification.
• If the AS field is set to FINALIZE, but ICV = 0, AESA does not expect received

ICV to be put on the input-data FIFO. In that case, MAC is computed and truncated
to the specified size for decryption.

• For encryption, the computed MAC is encrypted and truncated to size. The illegal-
mode error is generated if ICV = 1 and ENC = 1.

• If ICV = 1 and the decrypted received MAC do not match computed MAC, the ICV
error is generated.

• The Algorithm State (AS) field is defined for CCM as follows:

Table 10-221. Mode Register[AS] operation selections in AES CCM

Operation Description

INITIALIZE Message is processed in multiple sessions and the current session is the first one. During
initialization, the initial counter CTR0 is encrypted in the CTR mode and the B0 is processed with the
CBC-MAC mode. The resulting values are stored in the context. Also, the size of MAC is decoded
from B0 and written to the context. This AS setting must be used whenever the first part (or whole)
AAD is being processed

INITIALIZE/FINALIZE Message is processed in a single CCM session and the final MAC is computed and encrypted. The
initial counter CTR0 and B0 must be provided in the context

UPDATE Message is processed in multiple sessions and the current session is neither the first nor the last. All
context data is restored from the previous session and the key is written to the Key Register. If
decryption is requested, and data size is not written or is set to 0, and ICV_TEST bit is 1 -
AS=UPDATE means that a CICV-only job is requested. The CICV-only job does not process any
data, it just pops received ICV/MAC from the Input Data FIFO, decrypts it and compares it to the
computed MAC that is restored with the rest of the context from the previous session

FINALIZE Message is processed in multiple sessions and the current session is the last one. All context data is
restored from the previous session and the key is written to the Key Register. The final MAC is
computed and encrypted

• Whenever AS is set to Initialize or Initialize/Finalize, context registers must be zero.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 581
Confidential Proprietary

• If the AS field is not set to either Initialize/Finalize or Finalize and the ICV_TEST
bit is set to 1, the illegal-mode error is generated. This does not apply in case when
only ICV check is requested as described for AS = UPDATE.

• The Additional Algorithm Information (AAI) field must be set to 80h for CCM to be
activated. CCM uses the key in the Class 1 Key Register.Setting the DK bit causes
the illegal-mode error.

• The Algorithm (ALG) field is used to activate AES by setting it to 10h .

10.10.6.9.4 AES CCM mode use of the Context Register

The AES CCM mode uses the Context Register as follows:

• B0 and the initial counter CTR0 must be provided in the context before the first
chunk of the message is to be processed. During initialization, the initial counter
CTR0 is encrypted in the CTR mode and B0 (which functions like a CBC-MAC IV
in CCM) is processed with the CBC-MAC mode. The resulting values are stored in
the context. Also, the size of MAC is decoded from B0 and written to the lower 32
bits of the context dword 6.

• If there is AAD, the first block of it defines its size, and that value is decoded and
written to the upper 32 bits of context dword 6. All of the context data must be
restored before the next chunk of the message is to be processed in multi-session
processing.

• For CCM encryption, the ICV (encrypted final MAC) is written to context words 4
and 5. For CCM decryption, the ICV (received MAC), which is always encrypted, is
decrypted to dwords 4 and 5. The final computed MAC is written (in clear) to
dwords 0 and 1.

Table 10-222. Context usage in CCM mode encryption

Context DWord Initial-input definition Intermediate definition Final-output definition

0 B0[127:64] intermediate MAC state MAC[127:64]

1 B0[63:0] intermediate MAC state MAC[63:0]

2 CTR0[127:64] CTR[127:64] -

3 CTR0[63:0] CTR[63:0] -

4 - E(CTR0)[127:64], 1 E(MAC)[127:64]

5 - E(CTR0)[63:01 E(MAC)[63:0]

6 - AAD size, MAC size; see Table 10-224 -

1. E(x) means encrypted x

Table 10-223. Context usage in CCM mode decryption

Context DWord Initial-input definition Context-switching Definition Final-result definition

0 B0[127:64] intermediate MAC state MAC[127:64]

Table continues on the next page...

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

582 NXP Semiconductors
Confidential Proprietary

Table 10-223. Context usage in CCM mode decryption (continued)

Context DWord Initial-input definition Context-switching Definition Final-result definition

1 B0[63:0] intermediate MAC state MAC[63:0]

2 CTR0[127:64] CTR[127:64] -

3 CTR0[63:0] CTR[63:0] -

4 - E(CTR0)[127:64] Decrypted Received
MAC[127:64]

5 - E(CTR0)[63:0] Decrypted Received
MAC[63:0]

6 - AAD size, MAC size -

Table 10-224. Format of Context DWord 6 in AES-CCM mode

Bit 63 Bits 62-48 Bits 47-32 Bits 31-3 Bits 2-0

AAD Presence Flag 0 AAD Size 0 Encoded MAC Size

10.10.6.9.5 AES CCM mode use of the Data Size Register

The AES CCM mode uses the Data Size Register as follows:

• The byte-length of the message to be processed must be written to the Data Size
register.

• The first write to this register initiates processing. It can also be written during
processing in which case the value written will be added to the current state of the
register.

• CCM decrements the value in this register with every processed block.
• The content of the Data Size register must be divisible by 16 after the last write to it

if the AS mode field is set to either "Update" or "Initialize". Otherwise, the data-size
error is generated. In other words, message splitting can be done only on a 16-byte
boundary.

10.10.6.9.6 AES CCM mode use of the Key Register

CCM key must be written to this register; it is always an encryption key.

10.10.6.9.7 AES CCM mode use of the Key Size Register

The AES CCM mode uses the Key Size Register as follows:

• The total number of key bytes must be written to the Class 1 Key Size register.
• Any value other than 16, 24, or 32 causes a key-size error to be generated.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 583
Confidential Proprietary

10.10.6.9.8 AES CCM mode use of the ICV check

The AES CCM mode uses ICV checking as follows:

• Automatic ICV checking is enabled by setting the ICV_TEST bit of the Mode
Register to 1. When ICV is set to 1, the AS mode field must be set to either
"Finalize" or "Initialize/Finalize"-otherwise the illegal-mode error is generated,
unless data size is 0 indicating ICV check is only requested. Also, if ICV = 1, the
ENC bit must be 0.

• The received ICV must be provided on the input data FIFO after the message data. In
CCM, received ICV is always encrypted. The FIFO data type must be set to ICV
when it is put on the FIFO. The size of the received and computed ICV is for CCM
encoded in the B0.

• If the ICV check detects mismatch between the decrypted received ICV and the
computed ICV, the ICV error is generated.

10.10.6.10 AES GCM mode

AES GCM mode provides the following:

• Data confidentiality using counter mode (CTR). Note that the counter value must be
unique for each data block that is encrypted with the same key. CAAM uses a 128-bit
counter to ensure that the counter value does not overflow and "wrap around", but it
is the user's responsibility to ensure that the same key value is not used again
following a reset.

• Authentication (assurance of integrity) of the confidential data using a universal hash
function (GHASH) that is defined over a binary Galois (that is, finite) field. GCM
can also provide authentication assurance for additional data (AAD) that is not
encrypted.

• Stronger authentication assurance than a (non-cryptographic) checksum or error
detecting code; in particular, GCM can detect both of the following:

• Accidental modifications of the data
• Intentional, unauthorized modifications

10.10.6.10.1 GMAC

If the GCM input is restricted to data that is not encrypted, the resulting specialization of
GCM, called GMAC, is simply an authentication mode on the input data.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

584 NXP Semiconductors
Confidential Proprietary

10.10.6.10.2 GCM data types

In the GCM mode, the FIFO data type must be set to the message data type for textdata
(payload), AAD type for additional data, IV type for IV data and ICV type for the
received ICV. These data types must always be provided in the following order:

1. IV
2. AAD
3. Message data

Any of these may be missing.

10.10.6.10.3 IV processing

IV is processed using GHASH function if the size of IV is not 12 bytes. The result of IV
processing is the initial counter (Y0) value used for encryption/decryption. GHASH
function is also performed on AAD and textdata before the MAC can be computed.

10.10.6.10.4 GCM initialization

GCM initialization is completed when all of the IV data is processed and the initial
counter value (Y0) is computed as a result. For that to happen, IV data needs to be
supplied through the Input Data FIFO and the FIFO data type must be set to IV.

10.10.6.10.5 AES GCM mode use of the Mode Register

The AES GCM mode uses the Mode Register as follows:

• The Encrypt (ENC) bit must be set to 1 for encryption and 0 for decryption. Even
though operations performed in either case are identical, the authentication is done of
the cipher text in parallel with decryption when ENC = 0, and after encryption of
each block when ENC = 1.

• The ICV_TEST bit must be set for GCM to compare computed MAC with the
received MAC. The received MAC must be written to the input-data FIFO after
message data and the FIFO data type must be set to ICV. If this bit is not set, GCM
does not expect received ICV to be supplied after textdata. The illegal-mode error is
generated if ICV = 1 and ENC = 1.

• The Algorithm State (AS) field is defined for GCM as shown in this table:

Table 10-225. Mode Register[AS] operation selections in AES GCM

Operation Value Description

INITIALIZE 1h Message is processed in multiple sessions and the current session processes final part of IV or
textdata; do the final GHASH step, but do not compute MAC.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 585
Confidential Proprietary

Table 10-225. Mode Register[AS] operation selections in AES GCM
(continued)

Operation Value Description

NOTE: This AS state does not indicate initialization in GCM; instead, it means that the final step of
the GHASH function is to be performed. In general, whenever the final GHASH iteration
needs to be computed (either for GHASH(IV) or GHASH(AAD, ciphertext)), and the current
message size provided in the Data Size Register is not equal to the total size for either IV,
AAD, or textdata, AS should be set to INITIALIZE (1h). Consequently, an AS = 1h also
indicates that the Context Registers 6-7 need to provide the total length of IV, AAD, or
textdata for this to be accomplished.

INITIALIZE/
FINALIZE

3h Message is processed in multiple sessions and the current session is the last. The final MAC is
computed.

UPDATE 0h Message is processed in multiple sessions (descriptors) and the current session is not the last. The
descriptor contains a non-final part of IV, AAD, textdata (IV, AAD or textdata split between
descriptors). If decryption is requested, and data size is not written or is set to 0, and ICV_TEST bit
is 1 - AS = UPDATE means that Check ICV (CICV) job is requested. The CICV-only job does not
process any data, it just pops received ICV/MAC from the Input Data FIFO, and compares it to the
computed MAC that is restored with the rest of the context from the previous session

FINALIZE 2h Message is processed in a single session. MAC is computed.

• If the AS field is not set to either "Initialize/Finalize" or "Finalize" and the
ICV_TEST bit is set to 1, the Illegal Mode error will be generated except for CICV-
only jobs.

Proper AS field settings

Assume that a message has IV, AAD, and textdata and each of these types is split into
two sessions (descriptors). The first IV descriptor should have AS set to "Update", the
second IV Descriptor should have AS set to "Initialize", both AAD Descriptors and the
first textdata descriptor should have AS field set to "Update", and the final Descriptor
sets AS to "Initialize/Finalize".

• The Additional Algorithm Information (AAI) field must be set to 90h for GCM to be
activated. GCM uses the key in the Class 1 Key Register.Setting the DK bit causes
an illegal-mode error.

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

10.10.6.10.6 AES GCM mode use of the Context Register

The AES GCM mode uses the Context Register as follows:

• New message processing does not need any data provided in the context. All of the
context data is written back by the GCM mode and needs to be restored before the
next data chunk is to be processed in the multi-session processing. The final MAC is
written in the context dwords 0-1.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

586 NXP Semiconductors
Confidential Proprietary

• The initial counter value required for encryption/decryption is derived from IV and
written to dwords 4-5. It is also required for the MAC computation.

• The incremented counter is placed in dwords 2-3 and is updated with every
encrypted/decrypted block.

• Bit sizes of IV, AAD and textdata are required for GHASH computation and are
accumulated in dwords 6-7 when multi-session processing is used.

Table 10-226. Context usage in GCM mode

Context DWord Context-switching definition Final-result definition

0 MAC[0:63] MAC[0:63]

1 MAC[64:127] MAC[64:127]

2 Yi[0:63] -

3 Yi[64:127] -

4 Y0[0:63] -

5 Y0[64:127] -

6 IV bit size (during GHASH of IV), AAD bit size (during message processing) -

7 textdata bit size -

10.10.6.10.7 AES GCM Mode use of the Data Size Register

The AES GCM mode uses the Data Size Register as follows:

• The byte-length of the message to be processed (including IV, AAD and textdata)
must be written to the Data Size register (IV and AAD sizes must include padding to
the 16 byte boundary).

• he first write to this register initiates processing. It can also be written during
processing in which case the value written will be accumulated to the current state of
the register.

• GCM decrements the value in this register with every processed block.
• Message splitting must be done only on a 16-byte boundary.

10.10.6.10.8 AES GCM mode use of the Class 1 IV Size Register

The Class 1 IV Size register is written with the number of bytes in the last IV block. If
the total IV size is written, only the low 4 bits are registered. GCM needs this information
to determine correct byte size of the IV used in the GHASH computation. To do this,
GCM also uses the fact that IV size padded to a 16-byte boundary is written to the Data
Size register.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 587
Confidential Proprietary

10.10.6.10.9 AES GCM mode use of the AAD Size Register

The AAD Size register is written with the number of bytes in the last AAD block. If the
total AAD size is written, only the low 4 bits are registered. GCM needs this information
to determine correct byte size of the AAD used in the GHASH computation. To do this,
GCM also uses the fact that AAD size padded to a 16-byte boundary is written to the
Data Size register.

10.10.6.10.10 AES GCM mode use of the Class 1 ICV Size Register

The AES GCM mode uses the Class 1 ICV Size Register as follows:

• This Class 1 register is used to provide ICV/MAC byte-size when it is other than 16
bytes. In that case, the remaining bytes of the ICV/MAC written to the context is
zero.

• If the ICV mode bit is set, the Class 1 ICV Size register also determines the number
of bytes in the received ICV. Supported values for ICV size are 4 to 16 bytes. If this
register is 0, ICV size will be 16 bytes.

10.10.6.10.11 AES GCM mode use of the Key Register

GCM key must be written to this register; it is always an encryption key.

10.10.6.10.12 AES GCM mode use of the Key Size Register

The AES GCM mode uses the Key Size Register as follows:

• The total number of key bytes must be written to the Key Size register.
• Any value other than 16, 24, or 32 causes key-size error to be generated.

10.10.6.10.13 AES GCM mode use of the ICV check

The AES GCM mode uses ICV checking as follows:

• Automatic ICV checking is enabled by setting ICV_TEST bit of the Mode Register
to 1. When ICV is set to 1, the AS mode field must be set to either "Finalize" or
"Initialize/Finalize"; otherwise the Illegal Mode error is generated except for CICV-
only jobs. Also, if ICV = 1, the ENC bit must be 0.

• The received ICV must be provided on the input-data FIFO after the message data.
The FIFO data-type must be set to ICV when it is put on the FIFO. The size of the
received and computed ICV is for GCM written to the Class 1 ICV Size register.

• If the ICV check detects mismatch between the decrypted received ICV and the
computed ICV, the ICV error is generated.

Cryptographic hardware accelerators (CHAs)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

588 NXP Semiconductors
Confidential Proprietary

10.11 Trust Architecture modules
The CAAM Trust Architecture functions may be performed in the run-time integrity
checker (RTIC), Secure Memory and the secure key module. Other Trust Architecture
Modules are special features for protecting data or keys.

10.11.1 Run-time Integrity Checker (RTIC)

The run-time integrity checker (RTIC) is a component of CAAM that is used to ensure
the integrity of the peripheral memory contents and assist with boot authentication. The
RTIC has the ability to verify the memory contents during system boot and during run-
time execution. If the memory contents at runtime fail to match a reference hash
signature, then a security violation is asserted. This security violation should then be
captured by a monitoring device on the platform.

10.11.1.1 RTIC modes of operation

The RTIC modes of operation are described in this table.

Table 10-227. RTIC modes of operation

Mode Description

One-time hash mode • Used during high assurance boot for code authentication or one time integrity checking
• Generates and stores a reference hash result internally and signals an interrupt to the

processor

Continuous hash mode • Used at run time to continuously verify the integrity of memory contents
• Checks a re-generated hash against an internally stored reference value and interrupts the

processor only if an error occurs

10.11.1.2 RTIC initialization and operation

RTIC supports integrity checking of up to four, independent memory blocks. RTIC's
Hash Register File stores a reference hash for each memory block. During the boot stage
integrity checking, each independent memory block's content is hashed and the result is
stored in the hash register file. At boot-time, the memory contents are read and hashed
(authenticated) as quickly as possible (RTIC Throttle Register should be set to 00h) to
minimize the performance impact at startup. The reference hash result for each memory
block is stored in RTIC for the processor to compare against the signed code hash value.
Once RTIC has finished hashing the memory block, RTIC interrupts software, which can

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 589
Confidential Proprietary

then check the generated hash value against digitally-signed hash value(s) stored with the
code. Software policy determines what actions to take in the event of a hash mismatch at
boot time. Note that in chips supporting high-assurance boot, RTIC's boot-image hashing
may take place after secure-boot software validates the first code to execute. This means
that any unauthorized code modification would either be caught by the secure boot
software before RTIC runs, or trusted software would detect the hash mismatch after
RTIC had integrity-checked the boot image.

After trusted boot software has verified the boot image, the software can put RTIC into
run-time mode to ensure that the boot image remains uncorrupted. In run-time mode,
RTIC periodically reads a small section of memory, waits for a specified period of time,
and then reads another small section of memory. During this process, RTIC computes a
hash of the software image. When RTIC has eventually read the entire software image, it
compares the newly computed hash with the reference hash that was validated earlier. If
the RTIC hardware detects a hash mismatch, RTIC generates an interrupt and signals a
security violation to the chip's security monitor (SecMon) hardware. If the hash matches,
RTIC starts over and re-validates the software image. This process repeats until the chip
is powered down or RTIC checking is turned off.

10.11.1.3 RTIC use of the Throttle Register

The RTIC scan rate is controlled using the Throttle Register. This allows the user to trade
off the software image revalidation rate against memory bandwidth utilization.
Depending on the settings, the software image might be revalidated every few seconds or
every few days. RTIC also implements a watchdog timer that can be used to ensure that
an attacker isn't able to block RTIC's access to memory for an extended period of time. If
a DMA read error, illegal address/length error, RTIC Watchdog time-out, or hash
mismatch occurs, the RTIC enters an error state and signals a security violation. A
hardware reset is required to resume operation.

10.11.1.4 RTIC use of command, configuration, and status registers

The RTIC controller holds the command/configuration registers, which are programmed
through CAAM's register interface. RTIC uses CAAM's DMA interface only to read
memory contents. The command/control registers are used to:

• Set the DMA and throttle level
• Specify which memory blocks to hash (one time or continuously)
• Enable/Disable/Clear interrupts
• Enable one-time or run-time hashing, software reset, and clear interrupts

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

590 NXP Semiconductors
Confidential Proprietary

A status register in the RTIC indicates the current state of the controller, which includes:

• Interrupt status
• Processing status
• Error status

The controller also contains a comparator to check the generated hash value against the
reference hash value.

10.11.1.5 Initializing RTIC

At boot time, RTIC can be used to accelerate software-image verification. This is
accomplished by first selecting the hash algorithm (SHA-256 or SHA-512) and one or
more RTIC memory blocks by writing to the RTIC Control Register, specifying the areas
of memory to be hashed by writing one or more pairs of RTIC Memory Block Address
and Length registers or creating a scatter/gather table and, if necessary, altering the
endianness settings via the RTIC Control Register ,and then writing to the RTIC
Command Register to initiate the hashing operations.

At chip-initialization time, RTIC is configured for run-time mode operation by writing to
the RTIC Control Register, the RTIC Throttle Register the RTIC Watchdog Register and
the RTIC Memory Block Address and Length registers and, if necessary, writing to the
RTIC Control Register to change the endianness settings, and then writing to the RTIC
Command Register to put RTIC into run-time mode.

10.11.1.6 RTIC Memory Block Address/Length Registers

Up to four independent memory blocks can be hashed by the RTIC, each with its own
message digest (reference hash value). The RTIC scans through the memory blocks in the
order they are defined in the RTIC Memory Block Address registers. Each of the four
Memory Blocks can be divided into two separate segments, with separate starting
addresses and segment lengths. RTIC computes the hash over each Memory Block that is
enabled by first reading segment 0 of the Memory Block and then appending segment 1.

Since there can be two segments per Memory Block, each memory block (A, B, C, D) is
defined by two address/length register pairs (RTIC Memory Block Address 0 Register /
RTIC Memory Block Length 0 Register and RTIC Memory Block Address 1 Register /
RTIC Memory Block Length 1 Register). For each memory block, starting at the address
indicated in the RTIC Memory Block Address 0 Register RTIC reads the number of
memory bytes specified in the RTIC Memory Block Length 0 Register. When that is
complete, RTIC starts at the address indicated in the RTIC Memory Block Address 1
Register and reads the number of memory bytes specified in the RTIC Memory Block

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 591
Confidential Proprietary

Length 1 Register. If a Length Register is set to zero, RTIC skips over that memory
segment. Once the specified number of bytes are read from both segments within the
memory block, the data is hashed and stored (Hash-Once mode) or compared to the
reference value (Run-Time mode). Information on additional registers used for RTIC
configuration can be found in the sections describing the RTIC registers in CAAM
register block 6.

10.11.2 CAAM virtualization and security domain identifiers
(SDIDs)

This section describes the CAAM features that are intended to support virtualization of
the CAAM hardware; that is, the ability to share the CAAM functionality among multiple
software entities.

10.11.2.1 Access Control

The hardware resources of CAAM can be shared among multiple users (processors or
processes). Each of these users can submit crypto jobs to CAAM or can access portions
of Secure Memory. Many of the different CAAM resources are accessible through
separate register pages, which are spaced within the address space to match the size of
memory pages. This is intended to allow access to different resources to be controlled via
CPU MMUs (for processes) or System MMUs (for processors). Processor access to
CAAM resources can also be controlled by setting CAAM's internal access control
hardware. This hardware controls access to individual register pages using certain bus
signals (DIDs). The DID value that grants access to a particular CAAM register page is
configured by writing into registers within CAAM register page 0. (See Job Ring a DID
Register - most significant half (JR0DID_MS - JR2DID_MS), RTIC DID Register for
Block a (RTICA_DID - RTICD_DID).) A CAAM register page is accessible if the DID
associated with the register read or write matches the DID in the appropriate register
within CAAM register page 0.

CAAM also controls access to register pages based on the TrustZone bus signal. This
signal is usually called "nonsecure" or "ns". A 1 on the ns signal indicates a
NonSecureWorld bus transaction, and a 0 on the ns signal indicates a SecureWorld
transaction. SecureWorld is a higher-privileged mode than NonSecureWorld, so bus
transactions with ns=0 are higher privileged than ns=1 transactions. A CAAM register
page can be made accessible only to TrustZone SecureWorld by setting the page's access
control register appropriately. If a CAAM register page is configured for access by the

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

592 NXP Semiconductors
Confidential Proprietary

TrustZone NonSecureWorld associated with a particular DID value, it can also be
accessed via a SecureWorld bus transaction (ns=0) with that particular DID value, but not
by SecureWorld or NonSecureWorld bus transactions with some other DID value.

Note that a Job Ring owner's DID value forms part of the SDID value associated with
that Job Ring. The SDID value is used to cryptographically separate Black Keys, Blobs
and Trusted Descriptors. A CAAM descriptor executed from a particular Job Ring can
access only Black Keys, Blobs and Trusted Descriptors associated with that Job Ring's
SDID value. Different Job Rings can be configured with different SDID values in order
to prevent jobs executing in one Job Ring from accessing Black Keys, Blobs or Trusted
Descriptors belonging to other Job Rings.

10.11.2.2 Virtualization

CAAM has been designed so that it can be "virtualized", that is, it can be shared among
multiple software entities while still maintaining individual security protections for each
of these entities. These software entities might include guest operating systems running
under a hypervisor that allocates the chip's hardware resources among the guest OSs.

10.11.2.3 Security domain identifiers (SDIDs)
CAAM implements 4096 security domain identifier (SDID) values that system control
software (for example: hypervisor, kernel, operating system) can associate with different
software entities. SDIDs are used to provide data separation between software entities,
and are used with

• black keys
• blobs
• trusted descriptors

The least significant 5 bits of the SDID (the TZ and DID bits) are also used with Secure
Memory. An SDID is a static value that must be maintained across power cycles as it is
used to provide data separation even across power cycles. A unique SDID value can be
associated with each software entity, or the same SDID value can be associated with
multiple software entities, or multiple SDID values can be associated with a single
software entity. The SDID values must be assigned at boot configuration time, and the
same SDID must always assigned to the same software entity. In the case of a guest OS
running under a hypervisor, the guest OS may assign some of its different SDID values to
processes under the guest OS's control. Note that the hypervisor is itself one of the
software entities that can utilize CAAM's functionality, and can assign itself as many
SDID values as it wishes. CAAM imposes no restrictions on how these SDID values are
assigned, but simply uses the SDID values to control how data is shared among SDID

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 593
Confidential Proprietary

assignees, or kept private to each assignee. SDID values are assigned to RTICand to Job
Rings by writing to registers in page 0 of CAAM's register address space. The sections
below describe how CAAM uses the SDID values to "virtualize"

• Secure Memory partitions
• black keys
• blobs
• trusted descriptors

10.11.2.4 TrustZone SecureWorld
CAAM recognizes TrustZone SecureWorld as a unique software entity with special
privileges, and identifies SecureWorld using a special "TZ" security identifier. All
CAAM registers that are used to hold 12-bit SDID values also have a separate TZ bit.
Hardware signals ensure that only TrustZone SecureWorld can write to TZ bits.
TrustZone SecureWorld indicates that specific CAAM resources belong to SecureWorld
by setting the TZ bit to 1. SDIDs are used to provide data separation between software
entities, and are used with

• black keys
• blobs
• trusted descriptors

This allows SecureWorld
• to claim CAAM Job Rings for its exclusive use
• to generate black keys that cannot be encrypted or decrypted by non-SecureWorld
• to encapsulate and decapsulate blobs that cannot be encapsulated or decapsulated by

non-SecureWorld
• to create trusted descriptors that can be executed in any Job Ring
• to claim CAAM Secure Memory partitions for its exclusive use

The sections below describe how CAAM enforces these SecureWorld privileges.

10.11.3 Special-purpose cryptographic keys

CAAM provides protection of session keys by means of black keys,integrity protection of
CAAM descriptors by means of trusted descriptors, and protection of long-term secrets
by means of blobs. All of these protection mechanisms make use of special-purpose
cryptographic keys managed by CAAM.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

594 NXP Semiconductors
Confidential Proprietary

10.11.3.1 Initializing and clearing black and trusted descriptor keys

The CAAM hardware implements special black key key encryption keys (see Black keys)
and trusted descriptor signing keys (see Trusted descriptors). These must be initialized to
random values each time that CAAM powers up. These keys are cleared when CAAM is
in the fail mode. The hardware implementation ensures that only CAAM itself can use
these keys. The values cannot be read or extracted from the chip by any means. However,
test values can be written or read by software for debug purposes when CAAM is in non-
secure mode, (see Keys available in non-secure mode).

10.11.3.2 Black keys and JDKEK/TDKEK

One special cryptographic key used with the black key mechanism is the 256-bit job
descriptor key encryption key (JDKEK) (see Black keys). When a Job Descriptor
instructs CAAM to store a Key Register into memory, the hardware first encrypts the
content of the Key Register using the JDKEK and then stores the resulting black key into
memory. When a Job Descriptor later references that key, the descriptor identifies the key
as a black key, causing the hardware to decrypt the key using the JDKEK before loading
the key into a Key Register. Trusted descriptors can also use the JDKEK, but they are
permitted to choose the 256-bit trusted descriptor key encryption key (TDKEK) instead
of the JDKEK. Using the TDKEK ensures that only trusted descriptors can use
particularly sensitive keys, such as keys that are used to derive session keys. If a
TDKEK-encrypted key is embedded as immediate data within a trusted descriptor, this
ensures that no other key could be substituted for that particular key.

10.11.3.3 Trusted descriptors and TDSK

The CAAM hardware controls use of the 256-bit trusted descriptor signing key (TDSK)
that is used to compute the signature (keyed hash) over trusted descriptors (see Trusted
descriptors). The TDSK is used for verifying the signature whenever a trusted descriptor
is executed. The TDSK is used to sign a descriptor only if the descriptor is executed in a
specially privileged Job Ring, or if a trusted descriptor modifies itself during execution.

10.11.3.4 Master key and blobs

The special cryptographic key used for blobs is the 256-bit master key. The CAAM
hardware uses this master key to derive keys that are used for blob encryption and
decryption when CAAM is in secure mode or trusted mode, but uses a known test key for
key derivation when CAAM is in non-secure mode or fail mode.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 595
Confidential Proprietary

10.11.4 Black keys

CAAM's black key mechanism is intended for protection of user keys against bus
snooping while the keys are being written to or read from memory external to the SoC.
The black key mechanism automatically encapsulates and decapsulates cryptographic
keys on-the-fly in an encrypted data structure called a black key. Before a value is copied
from a key register to memory, CAAM automatically encrypts the key as a black key
(encrypted key) using as the encryption key the current value in the JDKEKR or
TDKEKR, modified via the appropriate TZ/SDID value. Thus, each security domain (and
TrustZone SecureWorld) has its own private black keys, which cannot be decrypted by
the user of a different security domain identifier. When CAAM is instructed to use a
black key as an encryption key, CAAM automatically decrypts the black key and places
it directly into a key register before using the decrypted value in the user-specified
cryptographic operation.

10.11.4.1 Black key encapsulation schemes

CAAM supports two different black key encapsulation schemes, one intended for quick
decryption, and another intended for high assurance.

• The quick decryption scheme uses AES-ECB encryption.
• The high-assurance black key scheme uses AES-CCM encryption. The AES-CCM

mode is not as fast as AES-ECB mode, but AES-CCM includes an "MAC tag"
(integrity check value) that ensures the integrity of the encapsulated key. CAAM
does not mix the length of the encrypted key into the value of the key encryption key
when using the high assurance black key scheme, because the MAC-tag prevents
misrepresenting the length of the encrypted key. In AES-CCM encryption the AES
algorithm is always used in the "encryption" direction regardless of whether the key
is being encrypted or decrypted, so in the high-assurance black key scheme
encapulation and decapsulation require approximately the same amount of time.

10.11.4.2 Differences between black and red keys

Differences between black keys and red keys include the following:

• Black keys are encrypted, while red keys are un-encrypted.
• A black key is usually longer than the red key that is encapsulated. ECB encrypted

data is a multiple of 16 bytes long, because ECB is a block cipher with a block length
of 16 bytes. So if the red key that is to be encapsulated in an ECB-black key is not

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

596 NXP Semiconductors
Confidential Proprietary

already a multiple of 16 bytes long, it is padded with zeros to make it a multiple of
16 bytes long before it is encrypted, and the resulting black key is this length.

• A CCM-encrypted black key is always at least 12 bytes longer than the encapsulated
red key, because the encapsulation uses a 6-byte nonce and adds a 6-byte ICV. If the
key is not already a multiple of 8 bytes long, it is padded as necessary so that it is a
multiple of 8 bytes long. The nonce and ICV add another 12 bytes to the length.

10.11.4.3 Loading red keys

Red keys can be loaded into Key Registers using either a LOAD command or a KEY
command with ENC = 0. But keys cannot be stored from Key Registers back to memory
in red form. The only way to store keys back out to memory is in black form. This is
accomplished by using the FIFO STORE command with an appropriate OUTPUT DATA
TYPE value (see Table 10-36, values 10h-27h).

10.11.4.4 Loading black keys

The only way that black keys can be successfully loaded is by using a KEY command
with ENC = 1 and the proper setting of the EKT bit. The EKT bit in the KEY command
indicates which encryption algorithm (AES-ECB or AES-CCM) should be used to
decrypt the key. An ECB-encrypted black key can be successfully loaded only with EKT
= 0 (ECB mode), and a CCM-encrypted black key can be successfully loaded only with
EKT = 1 (CCM mode).

10.11.4.5 Avoiding errors when loading red and black keys

There are many ways to load red and black keys. Some of these ways will be successful,
and other ways will not be successful. In many cases an unsuccessful key load will
generate an error message, but there are a few cases that CAAM cannot detect, so these
do not produce error messages. In those cases special care should be taken.

Key
Type

Error Error Indication Comments

Black
Key

Black Key loaded as Red Key

(Black Key loaded into a key
register using a LOAD command

or a KEY command with ENC = 0)

The LOAD or KEY operation will
complete normally, but since the key

register will contain a Black Key rather
than a Red Key, the key value will be
incorrect. If the key is then used in an
encryption or decryption operation, the
operation will complete normally, but

incorrect results will be produced.

Since all possible values are
permissible in a Red Key, CAAM
cannot distinguish between a Black
Key and a Red Key. Software should
take care to distinguish Red Keys
from Black Keys either by location or
via software tags.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 597
Confidential Proprietary

Key
Type

Error Error Indication Comments

Red
Key or
ECB-
encrypt
ed
Black
Key

non-ECB-Encrypted Key loaded as
an ECB-Encrypted Black Key

(Key loaded into a key register
using a KEY command with ENC =

1 and EKT = 0)

The KEY command will decrypt the key
as if it were an ECB-encrypted Black
Key. The Key command will complete
normally, but since the key register will
contain a Black Key rather than a Red
Key, the key value will be incorrect. if

the key is then used in an encryption or
decryption operation, the operation will
complete normally, but incorrect results

will be produced.

Since all possible values are
permissible in an ECB-encrypted
Black Key, CAAM cannot distinguish
between a CCM-encrypted Black Key
or a Red Key and an ECB-encrypted
Black Key. Software should take care
to distinguish Red Keys and CCM-
encrypted Black Keys from ECB-
encrypted Black Keys either by
location or via software tags.

CCM-
encrypt
ed
Black
Key

CCM-encrypted Black Key loaded
as CCM-encrypted Black Key, but

key value is corrupted

(Key loaded into a key register
using a KEY command with ENC =

1 and EKT = 1)

MAC Check Error

Job termination status word:

Source = 2h (CCB); ERRID = Ah (ICV
check failed)

The MAC check failed when the CCM-
encrypted Black Key was decrypted.

Red
Key or
ECB-
encrypt
ed
Black
Key

Non-CCM-encrypted Black Key
loaded as CCM-encrypted Black

Key

(Key loaded into a key register
using a KEY command with ENC =

1 and EKT = 1)

MAC Check Error

Job termination status word:

Source = 2h (CCB); ERRID = Ah (ICV
check failed)

When CAAM tried to verify the MAC
tag, the check failed because the key
did not have a MAC tag.

CCM-
encrypt
ed
Black
Key

CCM-encrypted Black Key loaded
by the wrong security domain

(Key loaded into a key register
using a KEY command with ENC =

1 and EKT = 1)

MAC Check Error

Job termination status word:

Source = 2h (CCB); ERRID = Ah (ICV
check failed)

When CAAM tried to verify the MAC
tag, the check failed because the
wrong SDID value was used in
deriving the key encryption key.

Any
Key

Specified size too large for key
register

Value in KEY command's
LENGTH field is larger than the
Class 1 Key Register or Class 2

Key Register (depending upon the
destination specified in the Key

command).

Key Size Error

Job termination status word:

Source = 2h (CCB); ERRID = 3h (Key
size error)

LENGTH is less than 16 when reading
a key from a Secure Memory key
partitionSince all possible values are
permissible in an ECB-encrypted
Black Key, CAAM cannot distinguish
between a CCM-encrypted Black Key
or a Red Key and an ECB-encrypted
Black Key. Software should take care
to distinguish Red Keys and CCM-
encrypted Black Keys from ECB-
encrypted Black Keys either by
location or via software tags.

Any
Key

Specified size too small when
loading key from Secure Memory

key partition

Value in KEY command's
LENGTH field is less than 16.

Key Size Error

Job termination status word:

Source = 2h (CCB); ERRID = 3h (Key
size error)

The length of the key must be at least
16 bytes when loading a key from a
Secure Memory key partition. This
restriction is intended to prevent the
key value from being determined by
exhaustively testing subsets of the
actual key.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

598 NXP Semiconductors
Confidential Proprietary

10.11.4.6 Encapsulating and decapsulating black keys

CAAM's key-protection policy imposes restrictions on creating black keys and
converting between black key types. When loading a red or black key into a Key
Register, it is possible to prohibit the key from being written back out to memory at all.
Executing a KEY command with NWB = 1 prohibits writing the key out, whereas NWB
= 0 permits the key to be stored to memory as a black key. If a red key is loaded into a
key register, it can be stored as either an ECB or CCM-encrypted black key (assuming
NWB = 0). But if a black key is loaded into a key register, it can be stored out only as the
same type of black key as was loaded, as shown in this figure.

LOAD command (sets ENC=0 & NWB= 0)
or

KEY command with ENC = 0
(sets ENC= 0, NWB=0)Key Register

NWB flag
ENC flag

EKT flag

Plaintext key

Memory

KEY command with
ENC=1 & EKT=1
(sets ENC=1, EKT=1
and NWB=0 or 1)

CCM black key
CCM-encrypted key
plus 6-byte nonce,
6-byte ICV (and
padding added. if
needed, to reach
8-byte boundary)

ECB black key
ECB-encrypted key
and padding (added as
needed, to reach
16-byte boundary)

FIFO STORE
command

(store allowed
if NWB=0)

KEY command with
ENC=1 & EKT=0
(sets ENC=1, EKT=0
and NWB=0 or 1)

JDKEK or
TDKEK
modified by
SDID

AES-CCM

(allowed
if ENC=0
or EK=0)

(allowed if
ENC=0

or EKT=1)

iAES-ECB

Plaintext Key
 (Red key)

Figure 10-17. Encapsulating and decapsulating CAAM black keys

The cryptographic key used to encrypt or decrypt black keys is held in the 256-bit
JDKEKR or TDKEKR, and this key's value is modified via the appropriate TZ/SDID
value before being used in a black key operation on behalf of some descriptor. The TZ/
SDID value is taken from the job ring SDID register, depending upon where the
descriptor is executed. Job Descriptors or their shared descriptors always use the
JDKEKR key, but trusted descriptors, or shared descriptors referenced by trusted
descriptors, can use either the JDKEKR key or the TDKEKR key. Use of the TDKEKR
allows trusted descriptors to encapsulate keys so they cannot be decrypted by Job
Descriptors.

The black keys used by each SDID value are encrypted using a different modification of
the JDKEK or TDKEK in order to provide cryptographic separation between the keys
used in different security domains. Note that TrustZone trusted descriptors always use TZ
= 1b, SDID = 000h for the JDKEK/TDKEK modification, regardless of the Job Ring in
which the descriptor is executed.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 599
Confidential Proprietary

Because black keys are not intended for storage of keys across chip power cycles
(CAAM's blob mechanism (section Blobs) is intended for this purpose), the values in the
JDKEKR and TDKEKR are not preserved at chip power-down. Instead, new 256-bit
secret values are loaded into the JDKEKR and TDKEKR from the RNG following
power-on for use during the current power-on session. That means that a black key
created during one power-on session cannot be decrypted on subsequent power-on
sessions.

10.11.4.7 Types of black keys and their use

The four types of black keys that CAAM's black-key mechanism implements are listed in
this table.

Table 10-228. Black key types

Black key type Key used Encryption mode

JDKEK-ECB JDKEKR AES-ECB

TDKEK-ECB TDKEKR

JDKEK-CCM JDKEKR AES-CCM

TDKEK-CCM TDKEKR

Note that it is possible to inadvertently load a black key as the wrong type, resulting in an
incorrect key value in the key register. No error message is generated when any of the
black key types listed in this table are loaded in ECB mode. But an ICV check failure
error message is generated if the wrong black key type (or a red key) is loaded in CCM
mode.

It is possible to load a JDKEK-encrypted black key and save it out as a TDKEK-
encrypted black key, or vice versa. This is permitted because only trusted descriptors
have access to TDKEK encryption, and they are trusted to operate only in a secure
manner. Such conversions might be used during a key provisioning procedure. (But as
noted earlier, conversion between ECB-black keys and CCM-black keys is not
permitted.)

10.11.4.8 Types of blobs for key storage

As described in Blobs, CAAM implements different types of blobs that are intended for
storage of keys across power cycles. Because encapsulation or decapsulation of blobs
takes longer than encapsulation and decapsulation of black keys, if a long-term key is

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

600 NXP Semiconductors
Confidential Proprietary

stored in a blob and must be used multiple times during a power-on session, for
performance reasons it is preferable to decapsulate the blob at power-up and re-
encapsulate the key as a black key.

CAAM implements operations that convert between blob encapsulation and black-key
encapsulation without exposing the key in plaintext. There are several different blob
types dedicated to key storage that correspond to the different types of black keys. A
specific type of black key converts into a specific type of black-key blob. If this were not
enforced by CAAM, a hacker could attempt to convert one black key type to another
black key type by first exporting the black key as a black key blob, and then re-importing
the blob as if it were a different type of black key blob. But because each blob type uses a
different derivation for the blob key encryption key, such an attempt at misrepresenting
the blob type fails with a MAC-tag error when the blob is decapsulated.

10.11.5 Trusted descriptors

Trusted descriptors provide a means for trustworthy software to create trusted "applets"
that can be safely executed by less trustworthy software.

10.11.5.1 Why trusted descriptors are needed

Software utilizes the cryptographic features of CAAM by building a descriptor, and then
adding this descriptor to a Job Ring. Usually the same software entity performs both
operations, that is, building the descriptor and adding it to a Job Ring. But there are cases
in which different software entities perform the two operations. One important case is
when the descriptor builder is more trustworthy than the Job Ring owner. For example,
the boot software or TrustZone SecureWorld software might be trusted to properly handle
particularly sensitive data, such as digital-rights management keys, but the content-
rendering software that needs to use those keys may not be as trustworthy.

CAAM implements a trusted descriptor mechanism to be used in these cases. These
trusted descriptors are granted special privileges that ordinary job descriptors are not, and
to ensure that these special privileges are not abused by tampering with the trusted
descriptor, CAAM ensures the integrity of the trusted descriptor with a cryptographic
signature.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 601
Confidential Proprietary

10.11.5.2 Trusted-descriptor key types and uses

When CAAM is in trusted mode or secure mode, the hardware (Special-purpose
cryptographic keys) allows CAAM to use the trusted-descriptor key encryption key and
the trusted-descriptor signing key. These keys are available only to CAAM and cannot be
read or written. (For testing purposes, these registers, but not the trusted mode or secure
mode values of these keys, can be read and written in non-secure mode.) Furthermore,
these keys can be used only for key encryption/decryption or signing/signature
verification; users cannot use them for anything else. In addition, these keys are changed
every boot cycle so that any keys encrypted with the trusted-descriptor key encryption
key are lost when the system is rebooted. Likewise, following a reboot, any trusted
descriptors signed (HMAC'd) during the previous power-on cycle fail the integrity check
and do not execute.

10.11.5.3 Trusted descriptors encrypting/decrypting black keys

CAAM implements both trusted and normal (non-trusted) black keys, which are
encrypted with different key-encryption keys. Both trusted and normal descriptors are
allowed to encrypt or decrypt normal black keys, but only trusted descriptors are allowed
to encrypt or decrypt trusted black keys. Note that if any black keys are included as
immediate data within the trusted descriptor, it is the encrypted version of the key that is
verified when computing the signature. When executing the trusted descriptor, the black
key is not decrypted unless the signature is valid.

Trusted software can decapsulate master secrets from trusted-descriptor blobs and can
use these master secrets to derive keys that it embeds as trusted black keys within trusted
descriptors. Untrusted software can then cause CAAM to execute these trusted
descriptors to encrypt or decrypt data, without the master secrets or derived keys ever
being directly accessible to the untrusted software.

In addition, trusted descriptors can be written to ensure that these keys cannot be
misused. This mechanism would be useful in certain IKE key exchange processes, or for
supporting trusted-computing group, trusted-platform module operations, or various data
rights-management standards.

See Black keys for more information.

10.11.5.4 Trusted-descriptor blob types and uses

CAAM implements both trusted-descriptor blobs and normal (non-trusted descriptor)
blobs, which use different key derivations for the blob-key encryption keys. Both trusted
and normal descriptors are allowed to encapsulate or decapsulate normal blobs, but only

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

602 NXP Semiconductors
Confidential Proprietary

trusted descriptors are allowed to encapsulate or decapsulate trusted blobs. When
executing the trusted descriptor, the blob is not decapsulated unless the integrity check is
valid.

See Blobs for more information.

10.11.5.5 Trusted descriptors and secure memory

A Secure Memory partition can be assigned access-control permissions so that the
partition is accessible only by trusted descriptors. Such a partition can be used to store
sensitive data, such as cryptographic keys, that can be read or altered only by trusted
descriptors. See Secure memory for more information.

10.11.5.6 Configuring the system to create trusted descriptors
properly

NOTE
Trusted descriptors use the descriptor commands defined in
Using descriptor commands. The SIGNATURE command
(SIGNATURE command) is used only by trusted descriptors.

Although trusted descriptors cannot be forged or altered in unauthorized ways after they
are generated and signed, to be truly considered "trusted," the system must be configured
so that trusted descriptors can be created only by trusted software. Trusted descriptors can
be created only via a Job Ring that has the Allow Make Trusted Descriptor (AMTD) bit
set in the Job Ring's JRaDID register. Proper configuration is required to ensure that only
trusted software can write to any JRaDID register (because this would allow the AMTD
bit to be set). This can be ensured in any of the following ways:

• The register is written and then locked (via its LAMTD bit) by trusted boot software.
• The system uses the operating system or hypervisor to control access to the address

block that includes the JRaDID registers.

Proper configuration for the use of trusted descriptors must also ensure control of access
to the trusted-descriptor-creation Job Rings, that is, those Job Rings whose JRaDID
registers have been configured with the AMTD bit set. The operating system or
hypervisor can provide access control by granting certain processes access to the register
address block containing a particular Job Ring's control registers, and denying access to
that block to other processes.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 603
Confidential Proprietary

10.11.5.7 Creating trusted descriptors

To create a trusted descriptor, trustworthy software builds a candidate trusted descriptor
that uses the extra privileges properly. For example, the trusted descriptor might utilize
cryptographic keys that an ordinary Job Descriptor cannot access, but the trusted
descriptor would be designed so that the key values cannot be exposed.

The candidate trusted-descriptor is converted to a trusted descriptor by executing the
candidate trusted-descriptor in a specially-privileged Job Ring. This causes CAAM to
cryptographically sign the descriptor. The trusted descriptor can later be executed by less
trustworthy software. When the trusted descriptor is executed, CAAM executes the
commands within the trusted descriptor only if the signature is correct. This ensures that
the trusted descriptor has not been tampered with after it was created.

10.11.5.7.1 Trusted descriptors and descriptor-header bits

Descriptor headers contain a 2-bit field related to trusted descriptors. See HEADER
command for a full explanation of the descriptor header.

The 00 value in the TDES field indicates an ordinary job descriptor. The 11 value
indicates a candidate trusted descriptor, that is, a descriptor that CAAM should convert
into a trusted descriptor by affixing a signature. When CAAM executes a candidate
trusted descriptor, it checks to see if the AMTD (allow make trusted descriptor) bit is set
in the Job Ring's JRaDID register. If not, the candidate trusted descriptor is not converted
to a trusted descriptor and the job terminates with an error. If AMTD=1, CAAM changes
the TDES field value to 10 if the candidate trusted descriptor is being created in a Job
Ring owned by TrustZone nonSecureWorld, but changes the TDES field to 01 if the Job
Ring is owned by TrustZone SecureWorld. CAAM then either affixes a signature to the
new trusted descriptor, or executes the trusted descriptor, or both, depending upon the
option in the SIGNATURE command at the end of the descriptor.

10.11.5.7.2 Trusted-descriptor execution considerations

Important rules of use and things to consider when executing trusted descriptors are as
follows:

• When a trusted descriptor is executed, CAAM first checks the signature (HMAC) to
verify that the trusted descriptor has not been modified. If the trusted descriptor
references a shared descriptor, it is included in the computation of the signature. If
the signature is valid, the trusted descriptor is executed. If the signature is invalid, the
job is aborted with an error indication.

• A TrustZone non-SecureWorld trusted descriptor can be executed only within a Job
Ring that has the same SDID value as the Job Ring in which the trusted descriptor

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

604 NXP Semiconductors
Confidential Proprietary

was created. The reason for this restriction is that Job Rings may be owned by
different security domains that do not trust each other's TrustZone non-SecureWorld
trusted descriptors. This restriction is enforced by including the SDID of the Job
Ring's JRaDID register in the signature computation, both when creating the trusted
descriptor and before executing the trusted descriptor.

• A TrustZone SecureWorld trusted descriptor can be executed within any Job Ring,
regardless of that Job Ring's SDID or TZ value. TrustZone SecureWorld trusted
descriptors can be created only in a Job Ring owned by TrustZone SecureWorld.
This allows TrustZone SecureWorld to create special trusted descriptors that are
trusted by all security domains. The TDES field in the trusted descriptor's HEADER
command is used to distinguish SecureWorld trusted descriptors from non-
SecureWorld trusted descriptors.

• If a trusted descriptor contains a jump to another descriptor, it must also be trusted.
Jumping from a trusted descriptor to a job descriptor results in an error and
processing stops. Because all CHAs, all MODEs, and the Class 2 Key and Key Size
Registers are reset before a trusted descriptor's signature is checked, care must be
taken when transferring to a trusted descriptor from another descriptor (whether
trusted or not) via Non-Local JUMP (see Section JUMP (HALT) command), In-Line
Descriptor (see INL field in Table 10-95), or Replacement Job Descriptor (see RJD
field in Table 10-95).

• Note that although address pointers within a trusted descriptor are protected against
modification, any data referenced by an address pointer is not protected against
modification. Therefore, keys and other information that must be protected against
modification should be contained as immediate data within the trusted descriptor.
When a trusted descriptor executes, it is permitted to modify itself just like a non-
trusted descriptor can. This ability can be useful if the trusted descriptor is
maintaining an integrity-protected value that changes, such as a usage count,
sequence number, and so on. Because modifying the trusted descriptor renders the
signature invalid, the signature must be recomputed after the modification. This can
be accomplished by placing a SIGNATURE Command at the end of the trusted
descriptor. This directs CAAM to recompute the trusted descriptor's signature.

10.11.6 Blobs

CAAM can protect data in a cryptographic data structure called a blob, which provides
both confidentiality and integrity protection.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 605
Confidential Proprietary

10.11.6.1 Blob protocol

CAAM's built-in blob protocol provides a method for protecting user-defined data across
system power cycles. The data to be protected is encrypted so that it can be safely placed
into non-volatile storage before the chip is powered down. Each time that the blob
protocol is used to protect data, a different randomly generated key is used to encrypt the
data. This random key is itself encrypted using a key encryption key and the resulting
encrypted key is then stored along with the encrypted data. The key-encryption key is
derived from the chip's master secret key so the key-encryption key can be recreated
when the chip powers up again. The combination of encrypted key and encrypted data is
called a blob.

Table 10-57 shows the format of the PROTINFO field for the blob protocol, and Table
10-58 describes the bit values.

10.11.6.2 Why blobs are needed

To retain data across power cycles, the data must be stored in non-volatile memory. But
data stored in this manner is potentially vulnerable to disclosure or modification when the
SoC's software and hardware security-mechanisms are not functioning, for example,
during debug operations. CAAM is able to protect data for long term storage by
encrypting that data using a secure non-volatile key. 10 Using a unique non-volatile key
for each device prevents data encrypted on one device from being copied and decrypted
on a different device, which might compromise the secrecy of the data.

10.11.6.3 Blob conformance considerations

Generation of private blobs is not considered in any governmental security specification.
However, there are several steps in the process that can be viewed as having approved
methods. These methods were chosen to conform to the following specifications, (except
where noted).

• FIPS PUB 197, Advanced Encryption Standard (AES), November 26, 2001.
• FIPS PUB 180-2, SECURE HASH STANDARD, August 1, 2002.
• SP800-90A, Recommendation for Random Number Generation Using Deterministic

Random Bit Generators, January 2012. Draft SP800-90B, Recommendation of the
Entropy Sources Used for Random Bit Generation, August 2012.

• SP800-38C, Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality, May 2004.

10. The data is actually encrypted with a randomly generated blob key, and it is that blob key that is encrypted using the
secure non-volatile key

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

606 NXP Semiconductors
Confidential Proprietary

• SP800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography, March 2007.

• SP800-56C revision 1, Recommendation for Key-Derivation Methods in Key-
Establishment Schemes, April 2018.

• SP800-57, Recommendation for Key Management - Part 1: General, March 2007.

In the context of CAAM, a blob is encrypted data that is bound to a specific device by
virtue of using a secret non-volatile, device-specific master key. This master key is used
only for the purpose of creating and extracting blob data, and the value of this key cannot
itself be extracted from a device. To protect data requiring high-security strength, blob
creation is performed in hardware using 256-bit security strength. AES-256 is used as the
encryption algorithm. SHA-256 is used for key derivation (SP800-57 specifies that
SHA-256 has 256-bit security strength when used in key derivation).

The random number generator is specified in SP800-90A, using the Hash_DRBG with
SHA-256 as the hash function. It gets entropy from a live entropy source intended to
comply with SP800-90B. The random number generator has a security strength of 256
bits.

CAAM blobs provide both confidentiality and integrity protection for the encapsulated
data. Because a blob protects both confidentiality and integrity, it may be stored in
external long-term storage such as flash. Counter with cipher block chaining-message
authentication code (AES-CCM) is used as the bulk encryption algorithm. Note that the
MAC associated with a blob provides integrity protection not only for the encrypted data
the blob contains, but also for all intermediate keys used in the creation of a blob.

There may be many different blobs existing at the same time, used for many different
purposes, and subject to different security policies. To guarantee that blobs are not
inadvertently or intentionally swapped, CAAM encrypts different blobs with different
keys. Two mechanisms are used to guarantee that a single key is not used to encrypt
unrelated data and to ensure that each key is used to encrypt as little data as possible. One
of these mechanisms is random-key generation. Each time that a blob is created, CAAM
generates a different, random 256-bit key using CAAM's internal hardware random-
number generator (RNG). This blob key is used to encrypt the blob data using AES-
CCM, which provides both confidentiality and integrity protection. The second
mechanism is key derivation, using a device-unique, non-volatile master key as the key-
derivation key. The (volatile) random blob key is encrypted with the non-volatile key
derived from the master key, and then stored with the blob so that the blob data can be
decrypted during subsequent power-on cycles. Different types of blobs are encrypted
using different keys derived from the master key. The derived keys are further
differentiated by a key modifier supplied by software, which can be used to guarantee

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 607
Confidential Proprietary

that one blob cannot be inadvertently or maliciously substituted for another blob.
Software can use these key modifiers to differentiate specific data, or to prevent replay
attacks (the replacement of the current blob with an out-of-date version of the blob).

The master key is used in a key derivation function (KDF) similar to that specified in
SP800-56C (sec. 5.8.1), using SHA-256 as the hash function.

AES-CCM mode uses a nonce and initial counter value as inputs, along with the key and
data. SP800-38C requires that the nonce and counter values be unique across all
invocations of AES-CCM under a given key. This requirement is met by virtue of a
random key being generated for each blob. Because a key is never used more than once,
there are no requirements on the nonce and initial counter value. Therefore, both nonce
and initial counter value are fully specified, and the same values are used for all blobs.
Blob creation uses the formatting function specified in SP800-38C, Appendix A.

The entire 16-byte MAC is stored along with the encrypted data, to provide a strong
assurance of integrity. Note that due to the design of the blobs, the MAC provides
integrity protection for the data, blob key and blob-key encryption key.

10.11.6.4 Encapsulating and decapsulating blobs

When encapsulating a blob, CAAM:

1. Obtains a random blob key (BK) value from the RNG
2. Encrypts the data with that BK
3. Derives a blob-key encryption key (BKEK) from the master key
4. Encrypts the BK using that BKEK

When decapsulating a blob, CAAM:

1. Derives a BKEK from the master key
2. Decrypts the BK using that BKEK
3. Decrypts the data with the BK

10.11.6.5 Blob types

CAAM supports different types of blobs, and a coded value of the blob type is used as an
input to the key-derivation function. This prevents a blob that was exported as one type
from being imported as another type because it would decrypt improperly and so would
fail the MAC tag check. This table lists the types of blobs that CAAM supports. Note that
the type categories are orthogonal, that is, a blob has one type from each type category.
For instance, one blob may be a (normal format/black key/secure state/general memory

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

608 NXP Semiconductors
Confidential Proprietary

blob), while another blob may be a (test format/general data/trusted state/Secure
Memory) blob. In addition, black key blobs are differentiated by encryption mode and
encryption key, so one black key blob may be a (AES-ECB/TDKEK) type and another
black key blob may be a (AES-CCM/JDKEK) type.

Table 10-229. Blob types

Type Category Type Cross-reference

Formats Normal format Blob types differentiated by format

Test format

Master key verification format

Contents General data (that is, red blobs) Blob types differentiated by content

Black keys (that is, black blobs)

• Encryption modes: AES-ECB and AES-CCM
• Encryption keys: JDKEK and TDKEK

Security states Trusted state Blob types differentiated by security state

Secure state

Non-secure state

Memory types General memory Blob types differentiated by memory type

Secure memory

10.11.6.5.1 Blob types differentiated by format

CAAM supports three different formats for blobs, usable for all blob content types, all
blob memory types and all blob security state types. This figure describes the blob
formats and how they work.

Encrypted
portions

Test-format blob
Master key

Verification-format blob

Normal-format blob

Indirectly
authenticated

portion

Directly
authenticated

portions

Unencrypted
portions

MAC tag over data

Blob key encrypted
with BKEK

Data encryted
with blob Key

BKEK

Blob key

BKEK

Normal-format blob

Normal-format blob

Figure 10-18. Formats of CAAM blobs

• A normal-format blob consists of the encrypted blob key, the encrypted data, and a
message authentication code (MAC) tag, as shown on the left side of the figure. A
randomly-generated, 256-bit blob key is used to encrypt the data using the AES-

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 609
Confidential Proprietary

CCM cryptographic algorithm. AES-CCM encrypts the data and also yields a MAC
tag that is used to protect the data's integrity. The blob key itself is encrypted in AES-
ECB mode using a 256-bit blob-key encryption key (BKEK). Checking the MAC
directly authenticates the data encapsulated in the blob. The blob key is indirectly
authenticated because substitution or corruption of the encrypted blob key yields an
incorrect plaintext blob key, which causes the blob content to be decrypted
incorrectly, which is detected by the MAC check. Because a normal-format blob is
used to protect actual data, the blob-key encryption key (BKEK) that is used to
encrypt the blob key for a normal format blob is secret, by virtue of having been
derived from the secret master key.

• As shown in the middle of the figure, a test-format blob consists of a normal-format
blob, with the unencrypted BKEK and unencrypted blob key prepended. Because the
purpose of a test-format blob is to facilitate testing blob encapsulation and
decapsulation, the BKEK for a test-format blob is derived from a known test key.
CAAM permits test-format blobs to be encapsulated or decapsulated only when
CAAM is in non-secure mode.

• As shown on the right side of the figure, a master key verification format blob
consists of only the unencrypted BKEK. Because the purpose of a master key
verification format blob is to verify that the master key has been properly
programmed, the BKEK for a master key verification format blob is derived from the
secret master key. In order to ensure the secrecy of BKEKs used for normal format
blobs, the derivation is different from the derivation used for normal format blobs.
This ensures that the BKEKs used to protect data cannot be exposed by examining
the BKEK values in master key verification format blobs.

10.11.6.5.2 Blob types differentiated by content

One of the blob content types is intended for general data (see Red blobs (for general
data)), and four content types are intended for cryptographic keys (see Black blobs (for
cryptographic keys)).

10.11.6.5.2.1 Red blobs (for general data)

Unencrypted data that should be protected is sometimes referred to as "red data", so the
type of blob intended for general data (which is left unencrypted when the blob is
decapsulated) is called a red blob. When CAAM is instructed to encapsulate data as a red
blob, it assumes that the data to be encapsulated is unencrypted and it proceeds to encrypt
the data with the blob key. Likewise, when CAAM is instructed to decapsulate a red blob,
it assumes that the data that is decapsulated is to be left in memory unencrypted. Other
mechanisms, such as an operating system or hypervisor acting in conjunction with a

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

610 NXP Semiconductors
Confidential Proprietary

memory management unit, may be used to protect the data before it is encapsulated into a
blob and after it is decapsulated from a blob. CAAM's Secure Memory can also be used
to protect un-encapsulated data.

10.11.6.5.2.2 Black blobs (for cryptographic keys)

CAAM's black blob mechanism is a means for translating between black key
encapsulation and blob encapsulation without exposing the key during the translation
process. A black blob is simply a blob whose input during blob encapsulation is assumed
to be a black key, and whose output during blob decapsulation is either a black key that is
written into memory, or an unencrypted key that is placed directly into a Key Register.

CAAM supports the protection of cryptographic session keys by encrypting these keys in
a "black key" encapsulation format when storing them in memory via a STORE
command, and then decapsulating them "on-the-fly" as they are referenced by a Job
Descriptor with a descriptor KEY command. Black key encapsulation or decapsulation is
very quick, but black keys are intended only for protection during the current SoC power-
on session. Black keys encapsulated during one chip power-on session cannot be
decapsulated on subsequent power-on sessions because the key encryption key (JDKEK
or TDKEK) is erased during power-down and is replaced by a new randomly-generated
key encryption key at power-up. To protect a key so that it can be recovered on
subsequent power cycles, the key must be encapsulated as a blob. A key could be
encapsulated as a red blob, but this would require exposing the key in memory in
unencrypted form. To avoid exposing keys in unencrypted form, CAAM supports the
concept of black blobs. (Data that is not sensitive to disclosure, either because it is
inherently nonsensitive or because it always remains encrypted, is sometimes referred to
as "black data".)

10.11.6.5.2.3 Enforcing blob content type

When CAAM is instructed to encapsulate a black blob, it first decapsulates the black key
that was specified as input and then encapsulates the resulting key as a Black blob. The
black blob itself is exactly the same as a red blob, except that the BKEK derivation is
different from red blobs. This prevents a black blob from being decapsulated as a red
blob, which would leave the key exposed in memory. Because black keys can be
encrypted under either the JDKEK or the TDKEK, and can be encrypted in either AES-
ECB mode or AES-CCM mode, CAAM first decrypts the black key data with the
appropriate KEK using the appropriate mode and then re-encrypts the key data with the
BK using AES-CCM. During this process the key that is temporarily unencrypted is
safely protected within CAAM's hardware storage. To prevent mixing up the different
types of black blobs (JDKEK vs. TDKEK and ECB vs. CCM), the BKEK for each type is
derived differently.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 611
Confidential Proprietary

10.11.6.5.3 Blob types differentiated by security state

CAAM also supports different types of blobs for use in different security states. All of the
blob-format types and blob-content types are available in each of the following different
security states:

• Trusted state
• Secure state
• Non-secure state

However, the BKEKs for the blobs are derived differently for each of these states.
Therefore, a blob encapsulated while operating in a particular state cannot be
decapsulated while CAAM is operating in another of these states:

• During trusted and secure states, the BKEK is derived from the secret master key
(but using different key derivation functions in the two states).

• While CAAM is operating in non-secure state, the BKEK is derived from the known
test key. This latter type of blob is intended to facilitate testing using known-answer
tests.

10.11.6.5.4 Blob types differentiated by memory type

CAAM supports blobs for use with different types of memory:

• General memory blobs contain data that originated from any memory accessible to
CAAM.

• Secure memory blobs contain data that originated from CAAM's Secure Memory.

All of the blob-format types, blob-content types, and security-state blob types are
available for use with either general memory blobs or Secure Memory blobs. The input
data for Secure Memory blob encapsulation must all come from a single, Secure Memory
partition, and a Secure Memory blob can be decapsulated only to a single, Secure
Memory partition, else the encapsulation or decapsulation process is terminated with an
error indication before reading or writing the second partition. CAAM immediately
aborts any attempt to decapsulate a secure memory blob into memory other than CAAM
Secure Memory, because this would bypass the access controls implemented by Secure
Memory.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

612 NXP Semiconductors
Confidential Proprietary

10.11.6.5.4.1 General/Secure Memory blobs and access control

CAAM also prevents the access controls implemented by Secure Memory from being
bypassed by exporting data from a Secure Memory partition as a blob, and then re-
importing the data from the blob into a Secure Memory partition with different access
control permissions. See Exporting/importing memory type blobs for more information.

10.11.6.5.4.2 Differences between general memory and Secure Memory blobs

General memory blobs can be used to encapsulate data from, or decapsulate data to, any
memory, including Secure Memory. Secure memory blobs can be used only with Secure
Memory, and all data must be encapsulated from, or decapsulated to, the same partition.
Another important difference is that Secure Memory blobs are subject to different Secure
Memory access control restrictions than are general memory blobs.

Another important way that Secure Memory blobs differ from general memory blobs is in
the derivation of the blob-key encryption key (BKEK). The BKEK for general memory
blobs is derived from the master key (or the test key, in non-secure mode), and the 128-
bit key modifier value within the blob descriptor, and a blob type identifier that includes a
constant specific to general memory blobs. The BKEK for Secure Memory blobs is also
derived from the master key (or the test key, in non-secure mode), but uses a 64-bit key
modifier value within the blob descriptor, and a blob type identifier that includes a
constant specific to Secure Memory blobs, and the values in the PSDID, SMAPJR and
SMAG2/1JR registers of the partition that the blob is being exported from, or imported
to. The reason that the PSDID, SMAPJR and SMAGR contents are included in the
BKEK derivation for Secure Memory blobs is to cryptographically bind the access
permissions to the blob. This ensures that a Secure Memory blob can be imported only
into a partition with the same access permission settings (and Security Domain
ownership) as the partition from which the blob was exported.

10.11.6.6 Blob encapsulation

A data blob is encrypted using a blob key (BK), which is a random number used as an
AES-CCM key. The NIST AES-CCM specification states that for any key, all
invocations must use distinct nonces and counter blocks. Although CAAM uses the same
nonce and initial counter block values for all data blobs, CAAM satisfies the AES-CCM
requirement because each encryption operation uses a different key (that is, a random
number generated by the RNG). The nonce is given as all zeros, and so the initial block
B0 = 3B00_0000_0000_0000_0000_0000_0000_xxxxh, where xxxx is the number of
bytes of plaintext (maximum length is 65535 bytes), while the initial counter value Ctr0=
0300_0000_0000_0000_0000_0000_0000_0000h. These values are automatically
generated during the encapsulation operation.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 613
Confidential Proprietary

Figure 10-19 shows the entire blob-encryption operation. B0 is generated internally and
stored in the Class 1 Context DWords 0 and 1, while Ctr0, also generated internally, is
stored in Class 1 Context DWords 2 and 3 (see Table 10-222). The random BK value is
stored in the Class 1 Key Register, and the operation mode is set to AES-CCM.

If the plaintext data is in Secure Memory and the data is exported as a Secure Memory
blob, then all data must be from the same partition. At the blob pointer, the first 32 bytes
contain the key blob, which is the encrypted value of the random blob key. Output
ciphertext data (data blob) is stored at the blob pointer + 32. The generated message-
authentication code (MAC, the signature over the data blob) is stored in the final 16 bytes
of the blob.

Memory

Data

AES ECB
or

AES CCM
decryption

(for Black blobs)

JDKEK
or

TDKEK

Ctr

Blob- key encryption key (BKEK)

Plaintext

o

Bo

Plaintext
AES-CCM
encryption

Ciphertext

MAC tag

Blob Key

Cryptographic blob

Key blob

Data blob

MAC

AES-ECB
encryption

ciphertext

RNG

256

Figure 10-19. Encapsulating a blob

10.11.6.7 Blob decapsulation

Before decrypting a data blob, the associated key blob must be decrypted to obtain the
blob key. The key blob resides at the blob pointer. AES-ECB mode is used to decrypt the
key blob using the BKEK. Generation of the BKEK for general memory blobs and
Secure Memory blobs is described below.

Ctr0 and B0 are generated internally, and are stored in the Class 1 Context 1 and Context
2 registers, respectively (see Figure 10-20). AES-CCM mode is used to decrypt the data
blob (starting at the blob pointer + 32), using the decrypted blob key. If the decrypted
data is from a Secure Memory blob, then the decrypted data must be written into Secure
Memory and all of the data must be written into the same partition. If any of the pages are

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

614 NXP Semiconductors
Confidential Proprietary

not within the same partition of Secure Memory, the blob decryption process is
terminated with an error, but any data written prior to the error overwrites the previous
data within the partition.

Memory

Data

AES ECB
or

AES CCM
encryption

(for black blobs)

JDKEK
or

TDKEK

Ctr

Blob- key encryption key (BKEK)

Plaintext

o

Bo

Plaintext
AES-CCM
decryption

Ciphertext

MAC tag

Blob Key

Cryptographic blob

Key blob

Data blob

MAC

AES-ECB
decryption

ciphertext

Figure 10-20. Decapsulating a blob

10.11.7 Critical security parameters

CAAM contains several encryption and authentication keys that are identified as being
critical security parameters (CSPs), as defined in FIPS140-2. Each of these CSPs are
zeroized (cleared) upon entering the FAIL mode. This FAIL mode indicator is an input to
CAAM and can be observed via the CAAM Status Register.

Upon receiving an indication that the security state machine has entered the FAIL state,
all register-based CSPs are zeroized via the asynchronous hardware reset. Memory-based
CSPs are zeroized by means of a hardware-based state machine that writes a constant
value to every word of the CSP partitions of the CAAM Secure Memory. CAAM can be
restarted after the chip has transitioned from FAIL to non-secure state; however, all
critical security parameters are lost forever.

This table lists the critical security parameters included in CAAM.

Table 10-230. Critical security parameters

CSP Notes Related cross-reference

Zeroizable master key Inside of security power island; loaded
and locked once at provisioning time

—

CCB Class 1 Key Register — See register appendix

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 615
Confidential Proprietary

Table 10-230. Critical security parameters (continued)

CSP Notes Related cross-reference

CCB Class 2 Key Register — See register appendix

PKHA E register Exponent See register appendix

Trusted descriptor signing key Loaded at boot time from RNG Trusted descriptors

Trusted descriptor key encryption key

Job descriptor key encryption key Loaded at boot time from RNG Keys available in different security
modes

ARC4 SBox — ARC-4 hardware accelerator (AFHA)
CHA functionality

Crypto-engine internal datapath registers — See register appendix

Secure Memory CSP partitions — Secure memory

Output data FIFO — —

10.11.8 Secure memory

The CAAM Secure Memory can be used either as general-purpose memory for storing
data and software, or as special, confidentiality-preserving memory that protects
disclosure-sensitive data such as cryptographic keys, passwords, proprietary software, or
PIN numbers, or different portions can be used for each purpose.

10.11.8.1 CAAM Secure Memory features

This table lists the features included in CAAM Secure Memory.

Table 10-231. CAAM Secure Memory features

Feature Type Feature Function

Security Automatic RAM
zeroization

Upon detection of a security failure, specified portions of the RAM automatically
zeroize

Access control Read/write permissions can be set to maintain privacy and integrity of data

Cryptographic
protection of exported
data

CAAM can cryptographically protect the confidentiality, integrity and access
control permissions of sensitive data exported from the Secure Memory

Performance/Reuse AXI slave interface Supports all bursting modes

Parameterized for
number of partitions,
number of pages, and
page size

Supports different configurations of Secure Memory

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

616 NXP Semiconductors
Confidential Proprietary

10.11.8.2 Secure memory controller (SMC) states

The Secure Memory controller (SMC) has the following operational states
(corresponding to the non-reset states indicated by the Secure Memory Status Register:

• SMC initialize state
• SMC normal state
• SMC fail state

This figure illustrates the transitions between the states of the secure memory controller.

Upon reset of SoC

[Secure memory registers unblocked]

[Pages become available as they
complete initialization]

Completion of page initialization

[Secure memory registers unblocked]
Completion of page

zeroization/intalization

SEC fail modeSMC
normal
state

SMC
fail

state

SMC
initialize

state

Write zeros into all CSP
secure memory pages

and previously uninitialized
secure memory words

[secure memory registers blocked]

Secure memory initialization failure
or SEC fail mode

Write initialization pattern into all secure memory pages

Verify initialization pattern in all secure memory pages

Figure 10-21. Secure memory state machine diagram

10.11.8.2.1 SMC initialize state

Upon reset, the Secure Memory controller begins initializing its memory pages by
writing a bit pattern to each memory word in the page. Each word is written with its own
address (relative to the beginning address of Secure Memory) divided by 16. After an
entire page has been written, each word of the page is read to verify that the initialization
of that page was successful. If initialization was not successful, the Secure Memory
controller asserts the CAAM security violation signal and transitions to SMC fail state.
Secure memory also transitions to SMC fail state if CAAM enters CAAM fail mode.

In SMC initialize state, access is blocked to all pages that have not yet been initialized.
As individual pages successfully complete initialization, they are assigned to partition 0
so they may be used while the remaining pages are still being initialized. The PAGE field
in the Secure Memory Status Register indicates how many pages are currently available
(that is, have completed power-on-reset initialization). Partition 0 is initialized with all
access types permitted and all master identities allowed so that by default Secure
Memory may be used as normal RAM. The Secure Memory registers are not blocked in
SMC initialize state, so it is possible to allocate additional partitions, change access
permissions, and de-allocate and re-allocate available pages even before the Secure
Memory controller enters SMC normal state.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 617
Confidential Proprietary

10.11.8.2.2 SMC normal state

The Secure Memory controller enters SMC normal state from SMC initialize state after
successful completion of initialization, and enters SMC normal state from SMC fail state
after all CSP pages and previously uninitialized words have been zeroized (that is,
overwritten with all 0s). (CSP pages are pages that are currently assigned to any partition
that has the CSP bit set in its APregister.)

The Secure Memory controller remains in SMC normal state unless CAAM enters
CAAM fail mode. Note that if SMC normal state was entered from SMC fail state, the
Secure Memory controller immediately transitions back to SMC fail state if CAAM is
still in CAAM fail mode.

At POR, partition 0 is automatically allocated to the owner of Job Ring 0, but by default
partition 0 can be accessed using any DID. Processors operating with the Job Ring 0
owner's DID can alter the permissions for partition 0, or can de-allocate individual pages
from Partition 0 or can simply de-allocate partition 0 in its entirety so that pages are
available for allocation to other partitions. Additional partitions can be allocated to any
Job Ring, and their access permissions can be changed by the Job Ring's owner. Note that
access is blocked to pages allocated to a partition for which the accessor does not have
access permission.

10.11.8.2.3 SMC fail state

The Secure Memory controller enters SMC fail state from either initialize state or normal
state when CAAM enters CAAM fail mode. The controller also enters SMC fail state
from initialize state if an initialization failure occurs (that is, the controller cannot
successfully read the initialization pattern from a word).

While in SMC fail state, the Secure Memory controller zeroizes (writes an all-0 pattern
into) all words that were not already initialized while in SMC initialize state and all
words within CSP pages. CSP pages are those pages that are currently allocated to CSP
partitions, that is, partitions that have the Critical Security Parameter (CSP) bit set in the
partition's SMAP register.

While the Secure Memory controller is in SMC fail state, the secure memory registers are
blocked (that is, they are neither readable nor writable), so no partitions or pages can be
allocated or deallocated while in SMC fail state. All non-CSP pages that were already
successfully initialized are still accessible, and all other already allocated pages become
accessible as they complete their zeroization. The current access permissions remain in
effect as long as the Secure Memory controller remains in SMC fail state. The Secure
Memory controller exits SMC fail state when it has finished zeroizing CSP pages and
previously uninitialized Secure Memory words.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

618 NXP Semiconductors
Confidential Proprietary

10.11.8.3 Secure memory organization

As shown in Figure 10-22, CAAM Secure Memory is divided into access-controlled
partitions. The number of implemented partitions can be read from the Secure Memory
Version ID Register. An unallocated partition may be claimed by any one of the Job Ring
owners. A software entity (e.g. process) is considered a Job Ring owner if the entity can
read and write the registers in the Job Ring's register page. Since the ability to read and
write a particular CAAM register page is restricted by the CPU's MMU, the operating
system (and perhaps also a hypervisor) can determine the Job Ring owners via
appropriate MMU settings. Note that CAAM imposes additional access restrictions on
access to register pages by examining the DID value that is asserted during register
accesses. For each Job Ring there is a JRaDID register in register page 0 that is used to
specify a DID value that must be asserted when accessing the registers within a particular
Job Ring page. The Job Ring owner can change the access control permissions associated
with the Secure Memory partition, and can adjust the amount of memory associated with
the partition by adding or releasing pages. Secure Memory is divided into equal-sized
memory pages. The size and the number of pages can be read from the Secure Memory
Version ID Register. Each partition may have any number of the Secure Memory's
memory pages associated with it, thus providing variable-sized partitions.

Each page can be associated with only one partition at a time, and each page has a
partition pointer that specifies the partition it is currently associated with. Note that there
is no direct indication of which pages are currently associated with a particular partition,
although this information can be obtained by issuing a page-inquiry command for each
individual page. All pages assigned to a given partition inherit the access permissions set
for that partition. When a memory access is started, the partition indicator is used to
determine which partition's access control information should apply to the current
memory access. This incurs an extra wait cycle to determine the associated partition, but
is only incurred during the first read or write of a burst.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 619
Confidential Proprietary

1 set of SM version ID, status and partition owner
registers shared by all job rings

SMVID

SMSTA

SMPO

1 pair of SM command/status
registers per job ring

SMCJR0

SMCSJR0

SMCJR1

SMCSJR1

SMCJR2

SMCSJR2

SMCJR3

SMCSJR3

16 SM partitions
APJRx_0
AG2/1JRx_0

APJRx_1
AG2/1JRx_1

APJRx_2
AG2/1JRx_2

APJRx_15
AG2/1JRx_15

1 set of SM Access Control
registers per partition, but
with separate address aliases
for each job ring

Partiton
pointers

n SM pages

page 0

page 1

page 2

page 3

page n-1

1

0

1

15

2

Figure 10-22. Secure memory registers and memory organization

When a partition is de-allocated, all pages assigned to the partition are freed and may
subsequently be assigned to any currently allocated partition. Only the owner of a
partition may de-allocate that partition, or assign pages to, or free pages from, that
partition. For those partitions that have the Critical Security Parameter (CSP) bit set,
CAAM zeroizes all pages allocated to the partition before they are freed and made
available for reassignment.

If software loses track of the partition to which a page is assigned, it can re-acquire the
information by issuing an inquire-page command via the Secure Memory Command
Register and then reading the partition number from the Secure Memory Command
Status Register.

10.11.8.4 Secure memory security functions

The Secure Memory's primary security functions are as follows:

• Automatic RAM zeroization
• Secure Memory Access Control
• Cryptographic protection of exported data

10.11.8.4.1 Automatic RAM zeroization

When CAAM initializes following a power-on reset (POR), the CAAM Secure Memory
controller begins zeroizing the secure RAM by overwriting each word. because there may
be sensitive data that remains in the Secure Memory from before the POR. This could
happen either because the POR occurred without an actual loss of chip power, or because

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

620 NXP Semiconductors
Confidential Proprietary

the RAM used for the secure memory exhibits some state retention even when powered
off. The value that CAAM writes into each word of RAM is not actually zero because
CAAM writes a different value to different memory words. This allows the Secure
Memory controller to verify that each word was overwritten by re-reading the word and
comparing the read value with the proper value. If there is a mismatch, the Secure
Memory controller raises a security alarm that causes CAAM to go into Fail Mode.

10.11.8.4.1.1 Zeroizing Secure Memory marked "CSP"

When portions of Secure Memory that are marked "CSP" are released by the current
owner for use by another owner, the Secure Memory zeroizes (by writing zeros) these
memory areas so that sensitive data cannot be scavenged by the new owner. When
CAAM detects an internal security error the Secure Memory immediately blocks access
to and begins zeroizing (by writing zeros) the portions of the Secure Memory that hold
sensitive data. The Secure Memory can identify these portions of memory because the
partitions were previously marked by software as CSP (critical security parameter). If a
partition is not marked as CSP, this indicates that the partition is not used to store
disclosure-sensitive data, so the Secure Memory does not zeroize that memory area when
a security alarm occurs or when that partition or pages from that partition are de-
allocated.

10.11.8.4.2 Secure Memory Access Control

An OS running on a processor uses that processor's MMU to control the accesses that the
processor makes to memory. This can be used to protect the OS's memory spaces from
user processes running on that processor, and to protect process memory spaces from
other processes on that processor.

10.11.8.4.2.1 Access control through the OS or hypervisor

CAAM assumes that the OS or hypervisor sets the CPU MMU so that only the correct
processes have access to specific pages of Secure Memory. If DMA engines can access
Secure Memory, the OS or hypervisor must either set a system MMU so that DMA
engines can access specific pages of Secure Memory only when they are acting on behalf
of the correct processes, or the OS or hypervisor must verify the addresses given to the
DMA engines before initiating DMA operations.

10.11.8.4.2.2 Access control through Job Rings

When CAAM Job Descriptors are fetched or executed, CAAM's own DMA engine can
access Secure Memory via a datapath internal to CAAM, so it does not pass through a
system MMU, if there is one. Consequently, CAAM is designed to enforce its own access

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 621
Confidential Proprietary

control over accesses from Job Descriptors to Secure Memory. Because each CAAM Job
Ring may be used by a different process or guest operating system or by TrustZone
SecureWorld, CAAM enforces access control independently for each Job Ring. This is
done by comparing the owner of the job ring with the access group membership of the
Secure Memory partition that is being accessed.

10.11.8.4.2.3 Setting Secure Memory access control permissions

Two registers are used to specify access permissions for a partition. One of these registers
is the Secure Memory Access Groups (SMAG) Register, which specifies which
TrustZone and domain identifiers (DIDs) can access the memory assigned to this
partition:

• If a bus master (including CAAM) accesses a partition using a TZ/DID combination
that is not listed in one of the partition's two SMAGJR registers, the bus master is
denied access, regardless of the access permissions specified in the partition's other
access permissions register, the Secure Memory Access Permissions (SMAP)
Register.

• If the access is permitted by the SMAG registers, the partition's SMAP register is
consulted to see if the attempted access type (for example, read, write, blob
operation) is allowed for that access group.

• If the access is denied on the basis of access group membership or access type,
Secure Memory returns a bus error.

• If the access was attempted by a job descriptor, the execution of the job descriptor
terminates with a bus error code.

A partition is claimed and the access permissions for the partition are established by
writing into an unowned partition's SMAP register by means of one of the Job Ring
register pages or CAAM register page 0. At that time the SDID value in the Job Ring's
JRaDID register is copied to the partition's PSDID register to indicate that the partition is
owned by the SDID. Thereafter, the SMAP and SMAG registers of that partition are
writable through a Job Ring page only if that Job Ring's JRaDID register has the same
SDID value. Note that if the Job Rings have been reassigned by the hypervisor this could
be a different Job Ring than the one that claimed the partition. Note also that a partition
can be deallocated or pages allocated to or deallocated from a partition by writing to the
SMC register in a Job Ring page, but only if the JRaDID register of that Job Ring has the
same SDID value as that of the partition. The SMAP, SMAG and SMC registers in
CAAM register page 0 can also be used (typically by the hypervisor or TrustZone
SecureWorld) to claim or release any partition, or allocate pages to or deallocate pages
from any partition, regardless of the partition's SDID value (except that partitions owned
by TrustZone SecureWorld can be controlled only by SecureWorld). Note that TrustZone
SecureWorld can claim a partition for itself by writing to the partition's SMAP register

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

622 NXP Semiconductors
Confidential Proprietary

via a Job Ring page owned by SecureWorld or via the Secure Memory registers in
CAAM register page 0. A Job Ring is claimed for SecureWorld by writing a 1 to the
TZ_OWN bit in the Job Ring's JRaDID register. The TZ_OWN bit can be set to 1 only
when JRaDID is written via a SecureWorld bus transaction. If the Job Ring is owned by
SecureWorld, the PRIM_TZ bit can be set to 1 to indicate that only SecureWorld can
access registers in that Job Ring's register page. (Note that PRIM_TZ can be set to 0 even
if TZ_OWN is 1, which would permit non-SecureWorld to access that Job Ring's register
page. But if PRIM_TZ is 1, nonSecureWorld cannot alter that Job Ring's ownership.)
When a partition is claimed via a Job Ring page the TZ_OWN value is copied into the
partition's PSDID register along with the SDID value (possibly modified, as described in
JRaDID_MS[SDID_MS]). If TZ_OWN is 1 when the partition is claimed, the partition is
owned by SecureWorld.

The transaction types that may be specified in the SMAP Register are as follows:

• Read
• Write
• Trusted descriptor override
• Secure memory blob export/import permitted (even if read or write is prohibited)

The SMAP Register also includes some other information about the partition, such as a
key modifier field (see Blob encapsulation), lock bits for the SMAP, whether it is a
critical security parameter (CSP), and whether it is a public security parameter (PSP)
partition.

NOTE
CSP partitions are intended to hold data whose confidentiality
must be protected. Therefore, as discussed in Automatic RAM
zeroization, pages assigned to CSP partitions are zeroized if the
partition or the pages are de-allocated or upon detection of
enabled security events.

A Secure Memory partition may contain software or data whose integrity and availability
are security-critical. For example, the partition may contain software that is intended to
be invoked when a security violation occurs. The partition and its individual pages should
not be de-allocated. Setting the PSP flag in a partition's SMAP Register prevents the
partition from being de-allocated, and prevents any pages from being de-allocated from
that partition. However, if a PSP partition is also marked as CSP, the partition's pages
will still be zeroized in the event of a security violation.

The SMAP Register also contains a SMAP_LCK bit. Once this has been set to 1, the only
field in the SMAP register that can be written is the PARTITION_KMOD field, which
can still be changed to any value at any time. After a lock bit is set, it cannot be reset until
the partition is de-allocated, or the chip undergoes a power-on reset.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 623
Confidential Proprietary

10.11.8.4.3 Cryptographic protection of exported data

CAAM implements a special type of blob (see Blob types differentiated by memory type)
to enable data to be safely exported from, and later restored to, a Secure Memory
partition.

10.11.8.4.3.1 Exporting/importing memory type blobs

When used with Secure Memory, general memory blobs are subject to the G1/2 read and
write permissions in the SMAPJR registers of the accessed partitions, but are not subject
to the blob permission. Secure memory blobs are subject only to the G1/2 BLOB
permissions bits. If the G1_BLOB bit is 1, a descriptor executing with an
ACCESS_GROUP1 SDID can export a Secure Memory blob even if the G1_READ bit is
0, and can import a Secure Memory blob even if the G1_WRITE bit is 0. The same is
true for the G2 bits. This allows data from partitions to be backed up to nonvolatile
storage, or swapped in and out of Secure Memory for other reasons, even if read
permission or write permission is not set. See Blob types differentiated by memory type
for more information.

10.11.8.4.3.2 Access permissions cryptographically bound to Secure Memory
blobs

The BKEK for Secure Memory blobs is created in a manner that cryptographically binds
the access permissions of the Secure Memory partition to the blob. As a consequence,
any attempt to decapsulate a Secure Memory blob into a partition with different access
permissions fails because the BKEK would be derived incorrectly, which leads to the BK
also being decrypted incorrectly. This then causes the data blob to be decrypted
incorrectly and the MAC tag check to fail. Although the destination addresses would be
overwritten, the decapsulated data would be indecipherable. Note that in this case the
decapsulation process would terminate with an error indication.

A Secure Memory blob does not have to be decapsulated into the same partition from
which it was exported, as long as the two partitions have identical access permissions and
are owned by the same Job Ring.

10.11.8.5 Initializing Secure Memory

At POR, the Secure Memory automatically initializes itself by overwriting all pages with
a known data pattern, allocating all pages to partition 0, and assigning the ownership of
partition 0 to SDID 0.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

624 NXP Semiconductors
Confidential Proprietary

The SMAPJR and SMAG2/1JR registers for partition 0 are set to allow any type of
access by any SDID. Thus, by default, Secure Memory appears as ordinary non-access
controlled memory, and can be used for that purpose without software initialization.
However, if software wishes to use the access control features of Secure Memory, further
initialization is required to specify the access permission settings.

If one partition is sufficient to implement the desired access control policy then all that is
required is for the owner of Job Ring 0 to write the appropriate values to SMAPJR0
and/or SMAG2/1JR0.

If the desired access control policy requires more than one set of access privileges then
additional Secure Memory partitions must be initialized. Because all pages are allocated
to partition 0 at POR some of partition 0's Secure Memory pages must be reallocated to
other partitions. To do this partition 0's owner or the hypervisor or TrustZone
SecureWorld must either de-allocate one or more pages from partition 0 one page at a
time, or release the entire partition, which frees all of its pages at once. De-allocating
pages or partitions, or allocating pages to partitions, is accomplished by writing to the
Secure Memory Command Register. Only the owner of the partition or the hypervisor or
TrustZone SecureWorld can deallocate pages from that partition, or release that partition.
Any Job Ring owner or the hypervisor or TrustZone SecureWorld can claim an
unclaimed partition by writing access control settings into the partition's SMAPJR
register. The partition's new owner can then write to the partition's SMAG2/1JR registers
to limit access to the partition to certain security domain identifiers.

10.11.9 Manufacturing-protection chip-authentication process
The manufacturing-protection authentication process is used to authenticate the SoC to
the OEM's server. This authentication process ensures that the SoC:

• Is a genuine NXP part
• Is the correct part type
• Has been properly configured by means of fuses
• Is running authenticated OEM software
• Is currently in the secure or trusted mode

Software running on the SoC attests to all this by signing a Manufacturing Protection
message using the ECDSA private key stored in the MPPKR. Software running on the
SOC then sends this MP attestation message to the OEM's server. The OEM's server
verifies the signature over the MP message using the corresponding ECDSA public key.

During the SoC's secure boot process the boot ROM code uses the Super Root Key Hash
(SRKH) stored in the SoC's fuse bank to verify a public key that is then used to verify the
signature over the device's boot image. The boot ROM code is trusted, and cannot be

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 625
Confidential Proprietary

altered in a fielded chip, thus successful completion of secure boot verifies that the
booted image was signed by a private key whose matching public key was included in the
SRKH value. But this alone does not verify that the OEM's public key was included
when generating the SRKH. The SRKH may have been burned into fuses by a contract
manufacturer, who could have created a SRKH using a public key matching the contract
manufacturer's own private key. Thus the contract manufacturer could fool the boot ROM
code into booting software written by the contract manufacturer. The Manufacturing
Protection authentication procedure is designed to thwart this.

The OEM initiates the Manufacturing Protection authentication procedure by obtaining,
via a trusted delivery procedure, one or more genuine SoCs of the correct part type. The
OEM creates a public key signature keypair, uses the private key to sign the OEM's
software and hashes the public key to yield the Super Root Key Hash. The OEM then
burns the SRKH into the fusebank on one or more of the genuine parts. The OEM next
boots the part with the OEM's software and runs the MPPrivKey command. One of the
inputs to the MPPrivKey command is the SRKH that is in the SoC's fusebank. The
MPPrivKey command creates an ECDSA private key derived from the SRKH value and
several secret values built into the SoC. The MPPrivKey command leaves the private key
in the Manufacturing Protection Private Key register (MPPKR), which cannot be read or
altered now that the MPPrivKey command has been executed. The OEM then runs the
MPPubKey command, which generates an ECDSA public key that matches the ECDSA
private key in the MPPKR. The MPPubKey command exports the public key, which the
OEM then stores on the OEM server for use in verifying Manufacturing Protection
attestation messages. Generating the MP public key need only be done once. Although no
one, not even the OEM, ever sees the Manufacturing Protection private key, the OEM
can be assured that it matches the private key in the MPPKR, and that it is
cryptographically bound to the SRKH.

When SoCs are delivered to the contract manufacturering facility, the contract
manufacturer burns a SRKH hash into fuses, and boots the SoC. When the SoC boots up,
the boot ROM code runs the MPPrivKey command, which leaves the ECDSA private key
in the Manufacturing Protection Private Key register. Trusted software should also collect
SoC-specific information, such as the chip UID and fuse configuration and store them in
the Manufacturing Protection Message register (MPMR), and then write-lock the MPMR.
(Note that MPMR must be written and locked before RNG instantiation -- RNG
instantiation prevents writes to the MPMR.) If the contract manufacturer has burned the
correct OEM-supplied SRKH into fuses, the OEM-supplied boot image can be executed.
This software will create a Manufacturing Protection attestation message, possibly
containing additional SoC-specific information. The OEM software will execute the
Manufacturing Protection Sign command, which will prepend the data in the MPMR to
the attestation message, and then sign the entire message using the ECDSA private key
stored in the MPPKR. Note that the MP Sign command can be executed by untrusted

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

626 NXP Semiconductors
Confidential Proprietary

software. This software cannot alter or omit the data that was previously stored in the
MPMR by the trusted boot software, so the data in this portion of the attestation message
can be trusted to be accurate. The software will then send the MP attestation message to
the OEM's server, where it will be verified using the OEM's MP Public Key. If the
signature over the attestation message verifies, the OEM can be assured that the message
was signed within an SOC that has the correct SRKH burned into fuses, and therefore
could only have booted software signed by the OEM's software signing key. The OEM
can therefore trust the SoC UID value in the message (because this was stored in the
MPMR by trusted boot software), and can be assured that the message originated on a
specific SoC. Relying on this assurance, the OEM server can safely download over an
SSL connection the confidential information (e.g. proprietary software) needed for
operation of the manufactured device. If the contract manufacturer did not burn the
proper SRKH into the fusebank bogus software could be booted on the SoC, but the
proper MP private key will not have been generated on the SoC, and the MP attestation
message will fail the signature verification at the OEM's server. If the contract
manufacturer's bogus software never contacts the OEM's server, the SoC will not
download the confidential information needed for operation of the manufactured device.
This information is input to a key derivation function, to create a private ECC key that is
available only to the crypto hardware. The public ECC key can be generated and used to
later authenticate the chip and verify the security status of the chip. These properties can
be verified by digitally signing a message using this private ECC key. The message may
be verified by a server using the public ECC key. Because only a genuine NXP part,
configured correctly, and running in the proper security state can correctly sign the
message, assurance of all of this is provided by the verification of the message signature.
The message cannot be spoofed by untrustworthy software, because the private-key
generation, public-key generation and signature functions are all implemented in
hardware, and the chip-specific data is supplied by secure-boot firmware. After the
signature over the message has been verified, the server can be assured that it is safe to
download proprietary data to the chip over a secured connection. The Manufacturing
Protection public key signature authentication process takes place in three stages,
implemented via the MPPrivK, MPPubK and MPSign functions built into the CAAM
hardware.

Table 10-232. Manufacturing-protection chip-authentication functions

Function name Abbreviation Authentication steps
implemented by function

Cross-reference

Manufacturing-protection
private-key generation
function

MPPrivK • Takes input data to be
authenticated and
hashes that data with a
secret value embedded
in the silicon. The result
is an ECDSA private

MPPrivk_generation function

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 627
Confidential Proprietary

Table 10-232. Manufacturing-protection chip-authentication functions (continued)

Function name Abbreviation Authentication steps
implemented by function

Cross-reference

key that is securely
stored in the MPPKR.

Manufacturing-protection
public-key generation function

MPPubK • Generates an ECDSA
public key that matches
the private key in
MPPKR and outputs
that public key.1

MPPubk_generation function

Manufacturing-protection sign
function

MPSign • Takes the value in the
MPMsg register and
concatenates any
additional data supplied
as ordinary input to the
MPSign function

• Signs the concatenated
message data using the
private key that was
stored in the MPPKR by
the MPPrivK Generation
function

• Outputs the signed
message, along with the
message
representative.
Software running on the
chip sends this signed
message to the OEM's
server, which then
verifies the signature by
means of the public key
output earlier by the
MPPubK Generation
function.

MPSign function

1. The MPPubk_generation function is run once on a single chip at the OEM's facility, and the OEM's server retains a copy of
this public key to be used later in the authentication process.

10.11.9.1 Providing data to the manufacturing-protection
authentication process

The purpose of the manufacturing-protection authentication process is to authenticate
certain information, such as the chip's part number, serial number, and the super root key
hash, by signing it with a private key that can be used only in a legitimate NXP chip of
the correct type running in the secure or trusted states.

The following sections describe how data is input to the manufacturing-protection
process.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

628 NXP Semiconductors
Confidential Proprietary

10.11.9.1.1 Specifying the ECC domain curve for the manufacturing-
protection functions

All of the Manufacturing Protection functions must use the same ECC domain curve.
This is specified via the CSEL field in the function's PDB. An error will be generated if
different curves are specified in different Manufacturing Protection functions. The
encoding of the CSEL field is shown below.

Table 10-233. Encoding of the CSEL field

20-17

CSEL (Curve Select)

• 0011 = P256
• 0100 = P384
• 0101 = P521

All other values are reserved.

10.11.9.1.2 Providing data to the MPPrivk_generation function

The MPPrivk_generation function is expected to be run only by the secure boot firmware.

10.11.9.1.3 Providing data to the MPPubk_generation function

The only inputs to the MPPubk_generation function are the manufacturing protection
private key from the MPPKR, and the elliptic curve selection from the CSEL field in the
PDB. The hardware guarantees the correctness of both of these inputs because the
MPPKR is accessible only to hardware, and the value in the CSEL field must match the
value used in the MPPrivk_generation function.

10.11.9.1.4 Providing data to the MPSign function

To provide data to the MPSign function, trusted software writes some or all of the data
into the MPMR, then locks it by setting the MPMRL bit in the Security Configuration
Register. Additional data can be provided as ordinary message input to the MPSign
function. This additional data will be appended to the content of the MPMR before the
data is hashed and signed. All this data is authenticated as having originated from a
legitimate NXP chip of a specific type, because the data is signed with the
manufacturing-protection private key when the MPSign function is invoked. Note that the
MPSign function is intended to be invoked by software whose signature has been verified
against the SRKH, however the SRKH has not yet been authenticated. (Authenticating
the SRKH is the reason for executing first the MPPrivk_generation function and later the
MPSign function.) Until the SRKH authentication process is complete the extra data
supplied as ordinary message input to the MPSign function should be treated skeptically.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 629
Confidential Proprietary

NOTE
On this device, RNG Instantiation prevents ability to write
MPMR. If using manufacturing protection features, MPMR
should be written and locked before RNG is instantiated.

10.11.9.1.5 Role of the ROM-resident secure boot firmware

Because the ROM-resident secure boot firmware is the only software that is known to be
trusted prior to authentication, it plays a crucial role in the manufacturing-protection
authentication process. The ROM-resident boot firmware reads fuse-resident data that
needs to be authenticated and either supplies some or all of it as data to the MPPrivK
generation function, with trusted software (but not boot ROM code) writing any
additionally required data to MPMR. Note that all of the data needed to authenticate the
software image that will be booted must be supplied by the ROM-resident firmware using
either the MPPrivK generation function or by trusted software configuring the MPMR.

The MPSign function is intended to be invoked by untrusted software that has just
booted, which is why the data to be authenticated via the MPSign function must be
supplied in advance by trusted ROM-resident secure boot or other trusted software and
then securely conveyed to the MPSign function via the MPMR. After the operating
system has booted and is able to run a network-protocol stack, application software
establishes a communication session with the OEM's server. The application software
then runs a descriptor that invokes the MPSign protocol, which uses the ECDSA private
key stored in MPPKR to sign a message composed of the content of MPMR followed by
other optional data. Note that this additional optional data is supplied by potential
untrustworthy software, so it can be relied on only if data authenticated via the
MPPrivk_generation function or via the MPMR has demonstrated that the software that
supplied the data was properly authenticated via the super root key hash.

10.11.9.2 MPPrivk_generation function

The MPPrivk_generation function uses supplied input data together with a secret value
embedded in the silicon to generate an elliptic-curve DSA private key. The function
stores the private key in the MPPKR and then the MPPKR is locked to prevent reading or
writing from the register bus. The private key is later used in the MPPubk_generation
function and the MPSign function. Note that an error is generated if the MPPrivK
Generation function is run a second time in the same power-on session.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

630 NXP Semiconductors
Confidential Proprietary

10.11.9.2.1 Differences between the MPPrivk_generation function and the
DL KEY PAIR GEN function

The MPPrivK generation function is a specialized version of the DL KEY PAIR GEN
function. The following list summarizes the key differences between the two functions.

• The MPPrivK generation function generates only ECDSA private keys, not DSA
keypairs.

• The MPPrivK generation function generates the private key by applying a key
generation function to the input message data and a secret value embedded in the
silicon. The secret value is different in each chip type. The DL KEY PAIR GEN
function cannot use the secret value embedded in the silicon.

• The MPPrivK generation function uses predefined ECC curves embedded in
hardware. The choice of curve is specified by the CSEL field in the PDB. The DL
KEY PAIR GEN function uses curve parameters supplied via the PDB.

• The MPPrivK generation function keeps the private key secret by storing it in the
MPPrivK register. The DL KEY PAIR GEN function outputs the private key to
memory (along with the public key).

10.11.9.2.2 MPPrivk_generation function parameters and operation

This table describes the MPPrivk_generation parameters.

Table 10-234. MPPrivk_generation function parameters

Parameter Source/Destination Length Definition

q Built-in L Prime number or irreducible
polynomial that creates the
field

r Built-in N Order of the field of private
keys

a,b Built-in 2*L ECC curve parameters.

Gx,y Built-in 2*L Generator point

m Input - The message data to be input
to the private-key generator
function

s Stored in MPPKR N Private key

This table describes the inputs, outputs and operation of the MPPrivK function.

Table 10-235. MPPrivk_generation function inputs, outputs, and operation

Property Value

Inputs • Message data to be input to the private key generation function.
• The Csel field in the PDB, selecting a predefined ECC curve.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 631
Confidential Proprietary

Table 10-235. MPPrivk_generation function inputs, outputs, and operation (continued)

Property Value

Outputs • The manufacturing protection private key s, which is stored in the MPPrivK register.

Operation • Generate a private key s, in the range 1≤s<r. (Hash the supplied message data and the built-in secret
value to yield s. If s=0, alter the input to the generation function by a constant and generate a new s.)

• Store s in MPKeyR as the private key.

10.11.9.2.3 Protocol data block (PDB) for the MPPrivk_generation function

This figure shows the PDB for the MPPrivk_generation function.

Table 10-236. MPPrivk_generation PDB

SGF1

(bits
31..28)

Reserved

(bits 27..21)

Csel

(bits 20..17)

Reserved

(bits 16..0)

Pointer to m (SGF in bit 31)

Message length constant (Not a pointer. No SGF)

1. SGF (Scatter Gather Flag) If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not
set, the argument is referenced via a direct-address pointer.

The encoding of the CSEL field is shown in Table 10-233.

10.11.9.3 MPPubk_generation function

The MPPubk_generation function uses the private key value stored in the MPPrivK
register by the MPPrivk_generation function to generate a matching elliptic-curve DSA
public key. The curve selected via the Csel field in the PDB must match the curve used
by the MPPrivk_generation function, else an error is generated. The public key created
by the MPPubk_generation function is written out to the specified results destination.
Note that the MPPubK Generation function is intended to be run just once, at the OEM's
facility, but no harm is done if it is run at other times.

10.11.9.3.1 Differences between the MPPubk_generation function and the
DL KEY PAIR GEN function

The MPPubK generation function is a specialized version of the DL KEY PAIR GEN
function. The following list summarizes the key differences between the two functions.

• The MPPubK generation function generates only an ECDSA public key, not DSA or
ECDSA keypairs.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

632 NXP Semiconductors
Confidential Proprietary

• The MPPubK generation function creates a public key to match the private key value
that was stored in the MPPrivK register by the MPPrivK generation function.

• The MPPubK generation function uses predefined ECC curves embedded in
hardware. The choice of curve is specified by the Csel field in the PDB.

• The MPPubK generation function outputs only the public key. Unlike the DL KEY
PAIR GEN function it does not output the private key.

• The private key stored in the MPPrivK register by the MPPrivK generation function
is not altered, and remains available for use in the MPSign function.

10.11.9.3.2 MPPubk_generation function parameters and operation

This table describes the MPPubk_generation parameters.

Table 10-237. MPPubk_generation function parameters

Parameter Source/Destination Length Definition

q Built-in L Prime number or irreducible polynomial that creates the field

r Built-in N Order of the field of private keys

a,b Built-in 2*L ECC curve parameters.

Gx,y Built-in 2*L Generator point

s Read from MPPKR N Private key

Wx,y Output 2*L Public key

This table describes the inputs, outputs and operation of the MPPubK function.

Table 10-238. MPPubk_generation function inputs, outputs, and operation

Property Value

Inputs • The Csel field in the PDB, selecting a predefined ECC curve.
• The manufacturing protection private key s, which is read from the MPPrivK register

Outputs • The manufacturing protection public key Wx,y, which is output to memory.

Operation • Compute Wx,y = sGx,y
• Output Wx,y as the public key.

10.11.9.3.3 Protocol data block (PDB) for the MPPubk_generation function

This figure shows the PDB for the MPPubk_generation function.

Table 10-239. MPPubk_generation PDB

SGF1

(bits
31..28)

Reserved

(bits 27..21)

Csel

(bits 20..17)

Reserved

(bits 16..0)

Pointer to Wx,y (SGF in bit 31)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 633
Confidential Proprietary

1. SGF (Scatter Gather Flag) If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not
set, the argument is referenced via a direct-address pointer.

The encoding of the CSEL field is shown in Table 10-233.

10.11.9.3.4 Running the MPPubK generation function at the OEM's facility

When a chip is first adopted by an OEM, the OEM runs the MPPubk_generation function
on a sample of the chip and saves the public key of the manufacturing protection keypair
on the OEM's server. Running the MPPubk_generation function at the OEM's facility this
one time guarantees that the public key is authentic, that is, that it matches the private key
that is used to sign messages generated by properly configured NXP chips of this type.
The OEM will first have programmed the trusted root public key into fuses, and then
reboot the chip. The secure boot firmware will run the MPPrivk_generation function at
POR and store the manufacturing protection private key in the MPPrivK register. The
MPPubk_generation function will read the manufacturing protection private key from the
MPPrivK register and generate a matching public key. Later when the identically
configured chips are booted within the contract manufacturing facility, the identical
private key will be generated by the MPPrivK generation function. The
MPPrivk_generation function stores the private key in the MPPKR for use in the MPSign
function. The message signed by the MPSign function can be authenticated against the
manufacturing protection public key stored on the OEM's server.

10.11.9.4 MPSign function

MPSign is the elliptic-curve, digital-signature algorithm (ECDSA) signing function used
in the manufacturing protection authentication process. See Manufacturing-protection
chip-authentication process for a discussion of this process. MPSign supports only
ECDSA in prime fields. This function takes message data as input, and outputs a
signature over a message composed of the content of the MPMR, followed by the input-
data message.

Note that the curve specified via the Csel field in the PDB must match the curve used in
the MPPrivk_generation function. This table lists the MPSign protocol parameters.

10.11.9.4.1 MPSign function parameters and operation

This table describes the MPSign function parameters.

Trust Architecture modules

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

634 NXP Semiconductors
Confidential Proprietary

Table 10-240. MPSign function parameters

Paramete
r

Source/Destination Lengt
h

Definition

q Built-in L Prime number or irreducible polynomial that creates the field

r Built-in N Order of the field of private keys

a,b Built-in 2*L ECC curve parameters

Gx,y Built-in 2*L Generator point

s Read from MPPKR N Private key

m Input - The message data to be signed.

C Output N First part of digital signature

d Output N Second part of digital signature. The buffer for d must be a multiple of 16 bytes,
as it is used to store an encrypted intermediate result, which may include
padding.

mes-rep Output 256 The hash of the MPMR concatenated with m.

This table describes the inputs, outputs and operation of the MPSign function.

Table 10-241. MPSign function inputs, outputs, and operation

Property Value

Inputs • m, the message data to be signed
• u, the private key (from the MPPrivK register)
• a,b, the curve parameters (selected via the Csel field in the PDB)

Outputs • The signature over the signed message.
• mes-rep, the hash of MPMR concatentated with the message data

Operation • Compute Vx,y = u Gx,y, c = Vx mod r. If c=0, try again with a new u.
• Compute d = u-1(f+sc) mod r. If d=0, try again with a new u.
• Output (C, d) as the signature.

10.11.9.4.2 Protocol data block (PDB) MPSign function

This figure shows the MPSign function PDB.

Table 10-242. MPSign function PDB

SGF1

(bits 31..28)

Reserved

(bits 27..21)

Csel

(bits 20..17)

Reserved

(bits 16..0)

Pointer to m (SGF in bit 31)

Pointer to mes-rep (SGF in bit 30)

Pointer to c (SGF in bit 29)

Pointer to d (SGF in bit 28)

Message length constant (Not a pointer. No SGF)

1. SGF (Scatter Gather Flag) If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not
set, the argument is referenced via a direct-address pointer.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 635
Confidential Proprietary

The encoding of the CSEL field is shown in Table 10-233.

10.12 CAAM service error detection, recovery (reset), and
reconfiguration

CAAM can be concurrently used by multiple users through use-case optimized Service
interfaces that efficiently coordinate the use of CAAM hardware resources and address
different user needs. The sharing of CAAM hardware is generally managed through
privileged software providing means to assign physical or virtualized CAAM service
access to less privileged software. While this use model enables efficient sharing of
hardware resources, it requires that errors introduced by one user must not significantly
affect other users.

CAAM addresses this requirement by enabling service interface users to handle most of
their own service management needs and by enabling management software to monitor
and, if necessary, take corrective action if individual CAAM users do not 'behave' in a
cooperative manner, have fatally failed and need to be terminated or restarted, or simply
have finished and their assigned CAAM service access capability can be made available
to other users. In addition, management software may detect fatal error conditions within
SoC hardware components and requires support for a limited reset of CAAM and/or the
connected components to maximize SoC operation availability, e.g., perform a sub-
system reset to minimize SoC out-of-service times.

The following sections describe CAAM's facilities available to both (ordinary) user and
(privileged) management software to detect CAAM service problems and take corrective
action, or enable and reassign CAAM services to alternate users.

10.12.1 Software CAAM Reset

The software CAAM reset will cause most registers and state machines in SEC to reset.
Registers that are not affected by software reset are listed in the description of the
SWRST field in the Master Config Register (MCFGR). A software CAAM reset is
initiated by writing 1 to the SWRST bit. Note that SWRST will remain 1 (and the
registers will be held in reset) until any outstanding CAAM DMA transactions complete.
Writing a 1 to SWRST will not cause a reset of the CAAM DMA unless SWRST is
already 1 and a 1 is also written to DMARST. Note that writing to MCFGR will
overwrite the values in LARGE_BURST, AXIPIPE, AWCACHE and ARCACHE, so to
avoid disrupting outstanding DMA transactions when initiating a SWRST, these fields
should be rewritten with their current values.

CAAM service error detection, recovery (reset), and reconfiguration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

636 NXP Semiconductors
Confidential Proprietary

10.12.2 Job ring error detection, recovery, reset and
reconfiguration

CAAM's Job Ring interface can be independently assigned (and re-assigned) to different
users. Examples include, but are not limited to, Arm TZ software, operating systems, and
(ordinary) user processes. In all cases privileged software is either using a Job Ring itself
or is granting Job Ring use to less privileged software.

The following sections describe the error detection, recovery, reset features available to
less privileged (e.g. user mode) software being granted use of the Job Ring (the 'user')
and the features available to the privileged software having granted Job Ring use to the
user (the 'manager'). A 'manager' may need to utilize Job Ring services and thus also play
the role of a 'user'.

10.12.2.1 Job ring user error detection, recovery, reset, and
reconfiguration services

This section describes the error detection, recovery, reset, and reconfiguration features
available to Job Ring users. Error detection, recovery, reset, and reconfiguration features
available to privileged system management software are described in section Job ring
error detection, recovery, reset, and reconfiguration management services.

10.12.2.1.1 Error recovery

The functional errors that can be detected by Job Rings are the ones that are reported in
the ERR_TYPE field of the Job Ring Interrupt Register (JRINTR). Almost all of these
errors are caused by incorrect programming of the Job Ring.

• 00001b - Memory access error writing status to Output Ring
• 00011b - Invalid Input Ring Base Address Register IRBAR (not on a 4-byte

boundary)
• 00100b - Invalid Output Ring Base Address Register ORBAR (not on a 4-byte

boundary)
• 00101b - Invalid write to IRBAR or Input Ring Size Register (IRSR)
• 00110b - Invalid write to ORBAR or Output Ring Size Register (ORSR)
• 00111b - Job ring reset released before Job Ring is halted.
• 01000b - Removed too many jobs (ORJRR larger than ORSFR)
• 01001b - Added too many jobs (IRJAR larger than IRSAR)
• 01010b - Writing ORSFR > ORSR
• 01011b - Writing IRSAR > IRSR

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 637
Confidential Proprietary

• 01100b - Writing ORWIR > ORSR in bytes
• 01101b - Writing IRRIR > IRSR in bytes
• 01110b - Writing IRSAR when ring is not empty
• 01111b - Writing IRRI when ring is not empty
• 10000b - Writing ORSFR when ring is not empty
• 10001b - Writing ORWIR when ring is not empty

Each of these errors cause the JRI bit, if IMSK is not set in the Job Ring Configuration
Register (JRCFGR), the JRE bit, and the ERR_TYPE field to be set in the Job Ring
Interrupt Register (JRINTR). Also, if IMSK is not set, the CAAM interrupt output for
this Job Ring will assert.

The recovery procedure for error type 00011b is to reprogram the Input Ring Base
Address Register with an address that is aligned to a 4-byte boundary. Then clear the JRI
and JRE bits in the Job Ring Interrupt Register.

The recovery procedure for error type 00100b is to reprogram the Output Ring Base
Address Register (ORBAR) with an address that is aligned to a 4-byte boundary. Then
clear the JRI and JRE bits in the Job Ring Interrupt Register.

The error codes 01010b, 01011b, 01100b, and 01101b are caused by attempting to write
out of range values to the Output Ring Slots Full Register (ORSFR), Input Ring Slots
Available Register (IRSAR), Output Ring Write Index Register (ORWIR), or Input Ring
Read Index Register (IRRIR). The write operation to the ORSFR, IRSAR, ORWIR, or
IRRIR register that caused the error will be ignored. In order to recover from these errors,
simply clear the JRE and JRI bits in the Job Ring Interrupt Register and write a valid
value in the ORSFR, IRSAR, ORWIR, or IRRIR register. If a valid value cannot be
determined, a Job Ring reset may be required.

All other error types are more serious and may cause some jobs to never run or cause loss
of some completed job information. The recovery procedure for these errors is perform a
Job Ring reset (see Job Ring Command Register JRCR RESET field). A Job Ring reset
will clear all registers for that particular Job Ring except the REIRxJRa, IRBAR, IRSR,
ORBAR, ORSR, and JRCFGR registers. The REIRxJRa registers should be manually
reset after a Job Ring reset. The IRBAR, IRSR, ORBAR, ORSR, and JRCFGR registers
can be rewritten or not, as appropriate, after a Job Ring reset. If a Job Ring reset cannot
be performed for some reason, then a management service will be required.

CAAM service error detection, recovery (reset), and reconfiguration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

638 NXP Semiconductors
Confidential Proprietary

10.12.2.1.2 Unrecoverable conditions

An unrecoverable condition is one from which the Job Ring user will not be able to
recover or will not be able to recover without assistance from the manager or from the
user of one of the other Job Rings. A security violation is an unrecoverable error
condition.A second type of unrecoverable error condition occurs when a privileged
CAAM manager has stopped CAAM to prevent further jobs from processing.

If CAAM detects a security violation, this will be reported in the Job Ring Interrupt
Register (JRINTR). The ENTER_FAIL bit in the JRINTR sets when security violation
occurs and the EXIT_FAIL bit in that same register sets when the security violation is
cleared. If the interrupt is not masked and the FAIL_MODE bit is set in the JRCFGR, the
interrupt for this Job Ring will assert when the ENTER_FAIL bit sets and again when the
EXIT_FAIL bit sets. Any jobs running while the security violation is active terminate
with a DECO fail mode error status (see Job termination status/error codes). If the
FAIL_MODE bit in JRCFGR is not set when the security violation is detected, the Job
Ring will begin to halt. During the time while jobs from this Job Ring are still in
progress, the HALT field in the JRINTR will return 01b, indicating that the Job Ring is
halting. When all jobs are complete, the HALT field of the JRINTR will return 10b.

Until the security violation is resolved, the Job Ring will remain halted or will continue to
process jobs, but return them with a fail mode error status, depending on the setting of the
FAIL_MODE bit in JRCFGR. After the security violation is resolved, the job ring will
process jobs normally again. However, certain features of CAAM may remain disabled
until the manager performs a software CAAM reset or a power on reset.

If the manager stops CAAM either as a result of a recoverable error interrupt or to begin
reading various debug registers, no further jobs for any user will run until the manager
restarts CAAM to allow processing to resume.

10.12.2.1.3 User reconfiguration options
It is possible for the user to reconfigure the Job Ring. This can be done by performing the
following steps:

• Stop adding new jobs to the input ring.
• Wait until all jobs issued to the input ring are complete or perform a Job Ring reset

or park and wait for halt. A park (initiated by writing the PARK bit of the JRCR
register) will allow the jobs to complete normally, while a reset will cause the jobs to
terminate with a DECO Job Ring reset error.

• Process all jobs in the output ring.
• Clear any interrupt or error status in the Job Ring Interrupt Register (JRINTR).
• Clear the recoverable error indication registers (REIRxJRa).
• Reprogram the Job Ring (IRBAR, IRSR, ORBAR, ORSR, and JRCFGR) registers

and issue new jobs to the input ring.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 639
Confidential Proprietary

10.12.2.2 Job ring error detection, recovery, reset, and
reconfiguration management services

This section describes the error detection, recovery, reset, and reconfiguration features
available to privileged system software to manage Job Ring users and their assigned
resources. Error detection, recovery, reset, and reconfiguration features available to Job
Ring user software are described in section Job ring user error detection, recovery, reset,
and reconfiguration services.

10.12.2.2.1 Recoverable error status notifications

The Job Ring recoverable error indication registers (REIR0JRa, REIR2JRa, REIR4JRa,
and REIR5JRa) provide additional information in the event of a memory access error
reading or writing the Job Ring, or while one of the Job Ring jobs is executing.

In the event of a memory access error while writing the output ring, error status will also
be reported in the Job Ring Interrupt Status register (JRINTR). In the event of memory
access errors reading the input ring, reading a Job Ring job descriptor, or during the
execution of a Job Ring job descriptor, the error code written to the output ring will
indicate a DMA error or an error reading the Descriptor or Descriptor address. See Job
termination status/error codes.

10.12.2.2.2 Ring user access termination procedure

When the manager wants to terminate the access for the current ring user, the manager
must first prevent the current user from further accessing the Job Ring. Then the manager
must reset the Job Ring to terminate any in progress jobs using the Job Ring Command
register (JRCR). This also prevents any new jobs that were already programmed in the
input ring from starting. When the HALT field in the Job Ring Interrupt Status register
(JRINTR[HALT]) indicates that the Job Ring has stopped, perform a Job Ring soft reset
using JRCR or, if virtualization is enabled, stop the Job Ring. This procedure does not
save any state information for the Job Ring, so the ring will need to be completely
reconfigured for the next user.

10.12.2.2.3 Ring user (re-)assignment procedure

If the Job Ring is currently assigned to a user, terminate that user's access as described
above. Stop the Job Ring if it is not already stopped, if virtualization is enabled. Program
the Job Ring DID register. Start the job ring, if virtualization is enabled. Enable user Job
Ring register access so that the user can program the IRBAR, IRSR, ORBAR, ORSR,
and JRCFGR registers.Set the IRBAR, IRSR, IRSAR, ORBAR, ORSR, ORSFR,

CAAM service error detection, recovery (reset), and reconfiguration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

640 NXP Semiconductors
Confidential Proprietary

JRCFGR_MS, JRCFGR_LS, IRRIR and ORWIR appropriately. If the Job Ring is being
reassigned to a new user, assign the appropriate default values. If the Job Ring is being
returned to a previous user, restore the user's saved Job Ring context.

10.12.3 RTIC error detection, recovery, reset, and
reconfiguration

CAAM's Run-Time Integrity Checker (RTIC) services are designed to be utilized by
privileged software because they may affect all CAAM service users. Privileged RTIC
software (e.g., an OS driver) may make select (including no) RTIC services available to
unprivileged (ordinary) software. The following sections describe the error detection,
recovery, reset features available to privileged software utilizing CAAM's RTIC services.

10.12.3.1 RTIC user services

As stated above, the RTIC feature set is designed to be utilized only by privileged
software, i.e., any RTIC services made available to unprivileged software need to be
made available by the privileged software. Privileged software may provide a subset
(including none) of the available services available to privileged software to the
unprivileged software. For a list of the available services see the following RTIC
management services section.

10.12.3.2 RTIC management services

The RTIC interface is used by management software to offer both user and privileged
run-time integrity checking. Management software can initially use RTIC to perform
One-time hash generation, and offer this service to other user software. This is intended
for initial boot services only. After boot, the management software is expected to
configure RTIC for run-time integrity checking. RTIC will stay in the run-time integrity
check mode until a system reset occurs.

There are two run-time services which may be offered: Temporary run-time integrity
checking; and permanent run-time integrity checking. Temporary run-time integrity
checking can be disabled by software, or will terminate with an error interrupt. This is a
recoverable error. Permanent run-time integrity checking cannot be disabled, and will run
until a system reset occurs, or an error is detected. An error will be reported as a
hardware security violation.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 641
Confidential Proprietary

RTIC can monitor, or hash, up to four independent regions of memory. The management
software can offer four services simultaneously. The completion of one monitoring, or
hashing, operation does not affect the operation of those other three services. When RTIC
is not monitoring, or hashing, any of the four memory regions, it can be configured for
another operation, independently of any other operations it is currently performing.

10.12.3.2.1 Recoverable error conditions

The only error condition for one-time hash generation is a bus error; an access to memory
is not allowed. This may be caused by an invalid address, or perhaps a hardware error
(e.g., ECC error). When an interrupt is generated, manager software will read the RTIC
status register to determine whether the hash generation completed properly, or
terminated with a bus error. In either case, after the one-time hash generation has
completed, RTIC can be re-configured to perform a new operation.

Temporary run-time integrity checking can be disabled by management software, or it
will receive an interrupt specifying that a memory integrity check, or address error has
occurred. In this case, an interrupt can only mean that an error has occurred, and RTIC
will stop hashing that region of memory. Software can determine the cause of the error by
reading the RTIC status register. The status register has the status of all four memory
regions, and the act of reading the status register clears all errors. RTIC can then be re-
configured to perform its next operation or remain idle. The management software will
need to deal with the corrupted memory, perhaps by terminating the process being
monitored.

10.12.3.2.2 Unrecoverable error conditions

Permanent run-time integrity checking can only terminate with a non-recoverable error.
In this mode, RTIC is locked to prevent any software turning off the checking. RTIC will
typically be checking a critical piece of software, such as the trusted base component of
the manager software itself. This software is expected to be so critical that any detected
modification of code memory can only be fixed through a system shutdown and re-boot.
In this case, RTIC will report the detected error by issuing a security violation.

After issuing a security violation, RTIC will not be usable until the next system reset.
There is no recovery from this error condition.

10.12.3.2.3 Reconfiguration procedure

A recoverable error will disable run-time integrity checking of the memory region that
had the error. Management software reads the RTIC status register to determine which
memory had a recoverable error. The RTIC configuration for that region will go back to
an idle state and can simply be configured for a new monitoring operation.

CAAM service error detection, recovery (reset), and reconfiguration

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

642 NXP Semiconductors
Confidential Proprietary

10.12.4 Global and DECO error detection, recovery, reset, and
reconfiguration

CAAM's global and DECO services are designed to be utilized by privileged software
because they may affect all CAAM service users. Privileged CAAM software (e.g., an
OS driver) may make select (including no) global CAAM or DECO services available to
unprivileged (ordinary) software. The following sections describe the error detection,
recovery, reset features available to privileged software utilizing CAAM's global and
DECO services.

10.12.4.1 Global and DECO user services

As stated above, the global CAAM and DECO services feature set is designed to be
utilized only by privileged software, i.e., any global CAAM or DECO services made
available to unprivileged (ordinary) software need to be made available by privileged
software. Privileged software may provide a subset (including none) of the available
services available to privileged software to the unprivileged software. For a list of the
available services see the following Global and DECO management services section.

10.12.4.2 Global CAAM and DECO management services

This section describes the error detection, recovery, reset, and reconfiguration features
available to manage global CAAM and DECO services and resources.

10.12.4.2.1 Error detection

Descriptors that do not run properly in a DECO can encounter two classes of problems.
The first class of problems consists of errors detected by DECO, CCB, or a CHA. In such
cases, DECO reacts to the error by terminating execution and returning the corresponding
error status. Note that such errors include execution errors, e.g. illegal DECO commands,
and functional errors, e.g. bad data or ICV failures. Such errors are handled via normal
channels and no additional access to the DECO is required.

The second class of problems is due to a hang. The vast majority of hangs are detected by
the watchdog timer. If the watchdog timer fires, then the hang turns into a problem of the
first class and no further action is required. However, there are some hangs that the timer
either cannot detect or, having detected the hang, from which DECO still can't recover.
(The most common case that the watchdog can't detect is a loop that doesn't terminate.)
In such cases, software must intervene through the recovery procedure.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 643
Confidential Proprietary

Although it is possible to detect that a DECO has hung by noticing that the status for a
job has not been returned after an unusually long time, there is a better method. The
DECO Availabilty Register (DAR) can be used to detect a DECO that is potentially
hung. Each DECO automatically clears its corresponding bit in this register whenever it
is idle. (Note that DECOs always report themselves as idle between jobs.) If it is
suspected that a job has hung in a DECO, then software can write a 1 to each bit in this
register which corresponds to a DECO. (It is safe to write all 32 bits of this register to 1
since unimplemented bits are not written and will remain 0 when read.) Software would
then wait long enough for most jobs to finish and then read the register. Any bit position
that is still a 1 would correspond to a DECO that has not completed its job. Software can
use this method proactively. For example, software could set all the bits in the DECO
Availability Register to 1, then wait a second, and check to see if any DECO was not idle
during that second. If not, then set all the bits to 1 again and repeat. The actual length of
time used between checks is a function of the type of descriptors being run in a particular
application, the likelihood that such descriptors will hang, and the availability of a
processor to check on progress.

If the DECO Availability Register indicates that a DECO has not completed a job in an
excessive amount of time, further work can be done to identify the descriptor running in
that DECO by reading debug registers. These registers, which are always accessible for
reading, include the DECO Debug Job Register (D0DJR), the DECO Debug DECO
Register (D0DDR), the DECO Debug Job Pointer (D0DJP), and DECO Debug Share
Pointer Register (D0SDP). They can be used to identify what job and/or shared descriptor
is running. Furthermore, the first two of these registers can identify whether progress is
being made. This information can help determine whether one of the recovery processes
needs to be utilized. If progress is being made, or if this particular job is expected to run
for a very long time, then no action needs to be taken.

10.12.4.2.2 Recovery procedure

In order to recover the DECO identified as hung in the DECO Availability Register
(DAR), write a 1 to the corresponding bit in the DECO Reset Register (DRR). Note that
this forces the DECO into an error state from which that DECO should recover.
However, that recovery may not be instantaneous as the DECO needs to wait for
outstanding DMA transactions to complete. Once the DECO completes the reset process,
the corresponding bit in the DECO Availability Register will clear. The bit in the DECO
Reset Register is auomatically cleared.

10.13 CAAM register descriptions

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

644 NXP Semiconductors
Confidential Proprietary

CAAM`s register address space is divided into multiple register address blocks. Each
register address block is dedicated to a specific purpose, and access to different register
blocks may be restricted to different software processes via the MMU or System MMU
or CAAM register access control hardware. Each CAAM register block occupies 4K
bytes of address space. The lowest address of each block corresponds to the lowest
address of a memory page, whose size is determined by the MMUs in the SoC.
Successive CAAM register blocks occupy successive memory pages. In SoCs with 4k
byte memory pages, each CAAM register block occupies a full memory page. In SoCs
with 64k byte memory pages, each CAAM register block occupies the lowest 4k bytes of
the 64k byte memory page, with 60K bytes of unimplemented addresses in the upper
portion of the memory page. CAAM`s register address blocks are shown in the table
below.

Table 10-243. CAAM Register Address Block Identifiers

Block Identifier Included registers

0 General registers (e.g., configuration, control, debugging, and RNG)

1-3 Job Ring registers (JR0-2) and Secure Memory registers

6 Real-time integrity check registers

8 Descriptor controller (DECO) and CHA control block (CCB)

All reads of undefined and write-only addresses always return zero. Writes to undefined
and read-only addresses are ignored. CAAM will never generate a transfer error on the
register bus. Although many of the CAAM registers hold more than 32 bits, the register
addresses shown in the Memory Map below represent how these registers are accessed
over the register bus as 32-bit words.

NOTE
CAAM performs certain actions automatically immediately
after POR, and CAAM may be used by the boot firmware at
boot time. As a consequence, by the time software reads the
CAAM registers their reset values may already have been
changed from the POR values.

NOTE
The CAAM address space is divided into 16 4 KB pages to
match the access granularity of the MMU. Registers that are
intended to be accessed by a specific processor or process are
grouped into one of these 16 pages so that access to these
registers can be restricted via CAAM's own DID-based access
control mechanism, or via the CPU's MMU. For instance, many
configuration and status registers are located within page 0 and
these are intended to be accessed only by privileged software.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 645
Confidential Proprietary

The settings in many of these page 0 registers affect the
behavior of CAAM hardware for all users of CAAM. The CPU
MMUs should be configured to prevent page 0 from being
accessed by untrusted software. The CAAM register interface
uses bus transaction attributes to limit access to register page 0.
In this chip both TrustZone SecureWorld and nonSecureWorld
can access these registers, but only from the any master. The
registers that control each Job Ring are located in a separate
address block so that access to each Job Ring can be restricted
to a particular process. Some registers, such as the version ID
registers, are intended to be shared among processes. Rather
than require each CAAM driver process to have two MMU
page entries, one page for its private registers and one for the
shared registers, CAAM "aliases" these shared registers into the
upper section of each of the 16 address blocks. Reading any one
of the address aliases for the same register returns the same
information. Some of these aliased registers are writable, so
access to these registers may require that software implement a
concurrency control construct, as would be the case with any
register that is read/write accessible by multiple processes.

NOTE
In versions of CAAM that incorporate Secure Memory, a few
read/write registers (i.e. the SMAPJR and SMAGJR registers)
are aliased to each of the Job Ring register address blocks. This
is done so that Secure Memory partitions can be claimed on a
first-come first-served basis. The first of the Job Ring owners to
write to a partition's SMAPJR register claims that partition, and
the SMAPJR and SMAGJR registers for that partition become
unwritable by other Job Ring owners.

NOTE
The reset value of some registers differs between different
versions of CAAM. To ensure driver compatibility across
different versions of CAAM, when updating fields within
registers the registers should first be read, the required fields
updated, and then the register should be written. This will avoid
inadvertently changing the settings of other fields in the same
register.

Most of CAAM's configuration registers are accessible in block 0 of CAAM's register
space, as indicated in the following table. These registers are intended to be accessed by
privileged software (e.g. boot software, hypervisor, secure operating system).

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

646 NXP Semiconductors
Confidential Proprietary

The format and fields in each CAAM register are defined below. Some of the register
format figures apply to several different registers. In such cases a different register name
will be associated with each of the register offset addresses that appear at the top of the
register format figure. Although these registers share the same format, they are
independent registers. In addition, many registers can be accessed at multiple addresses.
In these cases there will be a single register name and the list of addresses at which that
register is accessible will be indicated as aliases. Unless noted in the individual register
descriptions, registers are reset only at Power-On Reset (POR).

Although many of the CAAM registers hold more than 32 bits, these registers are
accessed over the register bus as 32-bit words. Note that all registers other than the CCB/
DECO registers must be accessed only as full 32-bit words. Byte enables are permitted
only for the CCB/DECO registers. All addresses not shown are reserved.

NOTE
In order to facilitate software compatibility across both big-
endian and little-endian SoCs, CAAM can be set to double-
word swap registers that are indicated in the Memory Map as
64 bits. (See MCFGR[DWT].) These registers hold address
pointers or integers larger than 32 bits, so setting the DWT bit
appropriately will cause 64-bit read or write transactions to
place the most-significant and least-significant words in the
proper positions in 64-bit registers. A register whose width is
shown as 32 bits in the Memory Map should be accessed as a
single 32-bit bus transaction, even if there is an adjacent related
32-bit register (e.g. CAAMVID_MS and CAAMVID_LS).
CAAM does not double-word swap the addresses of such
register pairs, so accessing them via 32-bit bus transactions will
facilitate software portability across big-endian and little-endian
SoCs.

Data read from and written to DECO registers by software is treated as control data for
the purpose of endianness conversion.

CAAM Secure Memory base address: 0x100000

10.13.1 CAAM memory map

CAAM base address: 3090_0000h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 647
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

4 Master Configuration Register (MCFGR) 32 RW 0008_2300

8 Page 0 SDID Register (PAGE0_SDID) 32 RW 0000_0000

C Security Configuration Register (SCFGR) 32 RW 0000_0000

10 Job Ring 0 DID Register - most significant half (JR0DID_MS) 32 RW 0000_0000

14 Job Ring 0 DID Register - least significant half (JR0DID_LS) 32 RW 0000_0000

18 Job Ring 1 DID Register - most significant half (JR1DID_MS) 32 RW 0000_0000

1C Job Ring 1 DID Register - least significant half (JR1DID_LS) 32 RW 0000_0000

20 Job Ring 2 DID Register - most significant half (JR2DID_MS) 32 RW 0000_0000

24 Job Ring 2 DID Register - least significant half (JR2DID_LS) 32 RW 0000_0000

58 Debug Control Register (DEBUGCTL) 32 RW 0000_0000

5C Job Ring Start Register (JRSTARTR) 32 RW 0000_0000

60 RTIC OWN Register (RTIC_OWN) 32 RW 0000_0000

64 RTIC DID Register for Block A (RTICA_DID) 32 RW 0000_0000

6C RTIC DID Register for Block B (RTICB_DID) 32 RW 0000_0000

74 RTIC DID Register for Block C (RTICC_DID) 32 RW 0000_0000

7C RTIC DID Register for Block D (RTICD_DID) 32 RW 0000_0000

94 DECO Request Source Register (DECORSR) 32 RW 0000_0000

9C DECO Request Register (DECORR) 32 RW 0000_0000

120 DECO Availability Register (DAR) 32 RW 0000_0000

124 DECO Reset Register (DRR) 32 WO 0000_0000

184 Job Ring 0 Secure Memory Virtual Base Address Register (JR0S
MVBAR)

32 RW 0010_0000

18C Job Ring 1 Secure Memory Virtual Base Address Register (JR1S
MVBAR)

32 RW 0010_0000

194 Job Ring 2 Secure Memory Virtual Base Address Register (JR2S
MVBAR)

32 RW 0010_0000

220 Peak Bandwidth Smoothing Limit Register (PBSL) 32 RW 0000_0000

240 DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS) 32 RO Table 10-243

244 DMA0_AIDL_MAP_LS (DMA0_AIDL_MAP_LS) 32 RO Table 10-243

248 DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS) 32 RO Table 10-243

24C DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS) 32 RO Table 10-243

250 DMA0 AXI ID Enable Register (DMA0_AID_ENB) 32 RO Table 10-243

260 DMA0 AXI Read Timing Check Register (DMA0_ARD_TC) 64 RW 0000_0000_00
00_0000

26C DMA0 Read Timing Check Latency Register (DMA0_ARD_LAT) 32 RW 0000_0000

270 DMA0 AXI Write Timing Check Register (DMA0_AWR_TC) 64 RW 0000_0000_00
00_0000

27C DMA0 Write Timing Check Latency Register (DMA0_AWR_LAT) 32 RW 0000_0000

300 - 33F Manufacturing Protection Private Key Register (MPPKR0 - MPPK
R63)

8 RW 00

380 - 39F Manufacturing Protection Message Register (MPMR0 - MPMR31) 8 RW 00

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

648 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

3C0 - 3DF Manufacturing Protection Test Register (MPTESTR0 - MPTESTR31) 8 RO 00

3F8 Manufacturing Protection ECC Register (MPECC) 32 RO 0000_0000

400 - 41C Job Descriptor Key Encryption Key Register (JDKEKR0 - JDKEKR7) 32 RW Table 10-243

420 - 43C Trusted Descriptor Key Encryption Key Register (TDKEKR0 - TDKE
KR7)

32 RW Table 10-243

440 - 45C Trusted Descriptor Signing Key Register (TDSKR0 - TDSKR7) 32 RW Table 10-243

4E0 Secure Key Nonce Register (SKNR) 64 RW 0000_0000_00
00_0000

50C DMA Status Register (DMA_STA) 32 RO 0000_0080

510 DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP) 32 RO Table 10-243

514 DMA_X_AID_3_0_MAP (DMA_X_AID_3_0_MAP) 32 RO Table 10-243

518 DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP) 32 RO Table 10-243

51C DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP) 32 RO Table 10-243

524 DMA_X AXI ID Map Enable Register (DMA_X_AID_15_0_EN) 32 RO Table 10-243

530 DMA_X AXI Read Timing Check Control Register (DMA_X_ARTC_C
TL)

32 RW 0000_0000

534 DMA_X AXI Read Timing Check Late Count Register (DMA_X_AR
TC_LC)

32 RW 0000_0000

538 DMA_X AXI Read Timing Check Sample Count Register (DMA_X_
ARTC_SC)

32 RW 0000_0000

53C DMA_X Read Timing Check Latency Register (DMA_X_ARTC_LAT) 32 RW 0000_0000

540 DMA_X AXI Write Timing Check Control Register (DMA_X_AWTC_C
TL)

32 RW 0000_0000

544 DMA_X AXI Write Timing Check Late Count Register (DMA_X_AW
TC_LC)

32 RW 0000_0000

548 DMA_X AXI Write Timing Check Sample Count Register (DMA_X_
AWTC_SC)

32 RW 0000_0000

54C DMA_X Write Timing Check Latency Register (DMA_X_AWTC_LAT) 32 RW 0000_0000

600 RNG TRNG Miscellaneous Control Register (RTMCTL) 32 RW 0000_0000

604 RNG TRNG Statistical Check Miscellaneous Register (RTSCMISC) 32 RW 0001_0022

608 RNG TRNG Poker Range Register (RTPKRRNG) 32 RW 0000_09A3

60C RNG TRNG Poker Maximum Limit Register (RTPKRMAX) 32 RW 0000_6920

60C RNG TRNG Poker Square Calculation Result Register (RTPKRSQ) 32 RO 0000_0000

610 RNG TRNG Seed Control Register (RTSDCTL) 32 RW 0C80_09C4

614 RNG TRNG Sparse Bit Limit Register (RTSBLIM) 32 RW 0000_003F

614 RNG TRNG Total Samples Register (RTTOTSAM) 32 RO 0000_0000

618 RNG TRNG Frequency Count Minimum Limit Register (RTFRQMIN) 32 RW 0000_0640

61C RNG TRNG Frequency Count Register (RTFRQCNT) 32 RO 0000_0000

61C RNG TRNG Frequency Count Maximum Limit Register (RTFRQMAX) 32 RW 0000_6400

620 RNG TRNG Statistical Check Monobit Count Register (RTSCMC) 32 RO 0000_0000

620 RNG TRNG Statistical Check Monobit Limit Register (RTSCML) 32 RW 010C_0568

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 649
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

624 RNG TRNG Statistical Check Run Length 1 Count Register (RTSC
R1C)

32 RO 0000_0000

624 RNG TRNG Statistical Check Run Length 1 Limit Register (RTSC
R1L)

32 RW 00B2_0195

628 RNG TRNG Statistical Check Run Length 2 Count Register (RTSC
R2C)

32 RO 0000_0000

628 RNG TRNG Statistical Check Run Length 2 Limit Register (RTSC
R2L)

32 RW 007A_00DC

62C RNG TRNG Statistical Check Run Length 3 Count Register (RTSC
R3C)

32 RO 0000_0000

62C RNG TRNG Statistical Check Run Length 3 Limit Register (RTSC
R3L)

32 RW 0058_007D

630 RNG TRNG Statistical Check Run Length 4 Count Register (RTSC
R4C)

32 RO 0000_0000

630 RNG TRNG Statistical Check Run Length 4 Limit Register (RTSC
R4L)

32 RW 0040_004B

634 RNG TRNG Statistical Check Run Length 5 Count Register (RTSC
R5C)

32 RO 0000_0000

634 RNG TRNG Statistical Check Run Length 5 Limit Register (RTSC
R5L)

32 RW 002E_002F

638 RNG TRNG Statistical Check Run Length 6+ Count Register (RTSC
R6PC)

32 RO 0000_0000

638 RNG TRNG Statistical Check Run Length 6+ Limit Register (RTSC
R6PL)

32 RW 002E_002F

63C RNG TRNG Status Register (RTSTATUS) 32 RO 0000_0000

640 - 67C RNG TRNG Entropy Read Register (RTENT0 - RTENT15) 32 RO 0000_0000

680 RNG TRNG Statistical Check Poker Count 1 and 0 Register (RTPK
RCNT10)

32 RO 0000_0000

684 RNG TRNG Statistical Check Poker Count 3 and 2 Register (RTPK
RCNT32)

32 RO 0000_0000

688 RNG TRNG Statistical Check Poker Count 5 and 4 Register (RTPK
RCNT54)

32 RO 0000_0000

68C RNG TRNG Statistical Check Poker Count 7 and 6 Register (RTPK
RCNT76)

32 RO 0000_0000

690 RNG TRNG Statistical Check Poker Count 9 and 8 Register (RTPK
RCNT98)

32 RO 0000_0000

694 RNG TRNG Statistical Check Poker Count B and A Register (RTPK
RCNTBA)

32 RO 0000_0000

698 RNG TRNG Statistical Check Poker Count D and C Register (RTPK
RCNTDC)

32 RO 0000_0000

69C RNG TRNG Statistical Check Poker Count F and E Register (RTPK
RCNTFE)

32 RO 0000_0000

6C0 RNG DRNG Status Register (RDSTA) 32 RO 0000_0000

6D0 RNG DRNG State Handle 0 Reseed Interval Register (RDINT0) 32 RO 0000_0000

6D4 RNG DRNG State Handle 1 Reseed Interval Register (RDINT1) 32 RO 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

650 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

6E0 RNG DRNG Hash Control Register (RDHCNTL) 32 RW 0000_0000

6E4 RNG DRNG Hash Digest Register (RDHDIG) 32 RO 0000_0000

6E8 RNG DRNG Hash Buffer Register (RDHBUF) 32 WO 0000_0000

A00 Partition 0 SDID register (P0SDID_PG0) 32 RO 0000_0000

A04 Secure Memory Access Permissions register (P0SMAPR_PG0) 32 RW 0000_00FF

A08 Secure Memory Access Group Registers (P0SMAG2_PG0) 32 RW FFFF_FFFF

A0C Secure Memory Access Group Registers (P0SMAG1_PG0) 32 RW FFFF_FFFF

A10 Partition 1 SDID register (P1SDID_PG0) 32 RO 0000_0000

A14 Secure Memory Access Permissions register (P1SMAPR_PG0) 32 RW 0000_00FF

A18 Secure Memory Access Group Registers (P1SMAG2_PG0) 32 RW FFFF_FFFF

A1C Secure Memory Access Group Registers (P1SMAG1_PG0) 32 RW FFFF_FFFF

A20 Partition 2 SDID register (P2SDID_PG0) 32 RO 0000_0000

A24 Secure Memory Access Permissions register (P2SMAPR_PG0) 32 RW 0000_00FF

A28 Secure Memory Access Group Registers (P2SMAG2_PG0) 32 RW FFFF_FFFF

A2C Secure Memory Access Group Registers (P2SMAG1_PG0) 32 RW FFFF_FFFF

A30 Partition 3 SDID register (P3SDID_PG0) 32 RO 0000_0000

A34 Secure Memory Access Permissions register (P3SMAPR_PG0) 32 RW 0000_00FF

A38 Secure Memory Access Group Registers (P3SMAG2_PG0) 32 RW FFFF_FFFF

A3C Secure Memory Access Group Registers (P3SMAG1_PG0) 32 RW FFFF_FFFF

A40 Partition 4 SDID register (P4SDID_PG0) 32 RO 0000_0000

A44 Secure Memory Access Permissions register (P4SMAPR_PG0) 32 RW 0000_00FF

A48 Secure Memory Access Group Registers (P4SMAG2_PG0) 32 RW FFFF_FFFF

A4C Secure Memory Access Group Registers (P4SMAG1_PG0) 32 RW FFFF_FFFF

A50 Partition 5 SDID register (P5SDID_PG0) 32 RO 0000_0000

A54 Secure Memory Access Permissions register (P5SMAPR_PG0) 32 RW 0000_00FF

A58 Secure Memory Access Group Registers (P5SMAG2_PG0) 32 RW FFFF_FFFF

A5C Secure Memory Access Group Registers (P5SMAG1_PG0) 32 RW FFFF_FFFF

A60 Partition 6 SDID register (P6SDID_PG0) 32 RO 0000_0000

A64 Secure Memory Access Permissions register (P6SMAPR_PG0) 32 RW 0000_00FF

A68 Secure Memory Access Group Registers (P6SMAG2_PG0) 32 RW FFFF_FFFF

A6C Secure Memory Access Group Registers (P6SMAG1_PG0) 32 RW FFFF_FFFF

A70 Partition 7 SDID register (P7SDID_PG0) 32 RO 0000_0000

A74 Secure Memory Access Permissions register (P7SMAPR_PG0) 32 RW 0000_00FF

A78 Secure Memory Access Group Registers (P7SMAG2_PG0) 32 RW FFFF_FFFF

A7C Secure Memory Access Group Registers (P7SMAG1_PG0) 32 RW FFFF_FFFF

B00 Recoverable Error Indication Status (REIS) 32 W1C 0000_0000

B0C Recoverable Error Indication Halt (REIH) 32 RW 0000_0000

BD0 - BD8 Secure Memory Write Protect Job Ring Register (SMWPJR0R -
SMWPJR2R)

32 RW 0000_0000

BE4 Secure Memory Command Register (SMCR_PG0) 32 WO 0000_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 651
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

BEC Secure Memory Command Status Register (SMCSR_PG0) 32 RO 0000_0000

BF8 (alias) CAAM Version ID Register, most-significant half (CAAMVID_MS) 32 RO 0A16_0401

BFC (alias) CAAM Version ID Register, least-significant half (CAAMVID_LS) 32 RO 0000_0000

C00 Holding Tank 0 Job Descriptor Address (HT0_JD_ADDR) 64 RO 0000_0000_00
00_0000

C08 Holding Tank 0 Shared Descriptor Address (HT0_SD_ADDR) 64 RO 0000_0000_00
00_0000

C10 Holding Tank 0 Job Queue Control, most-significant half (HT0_JQ_C
TRL_MS)

32 RO 0000_0000

C14 Holding Tank 0 Job Queue Control, least-significant half (HT0_JQ_C
TRL_LS)

32 RO 0000_0000

C1C Holding Tank Status (HT0_STATUS) 32 RO 0000_0000

C24 Job Queue Debug Select Register (JQ_DEBUG_SEL) 32 RW 0000_0000

DBC Job Ring Job IDs in Use Register, least-significant half (JRJIDU_LS) 32 RO 0000_0000

DC0 Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC) 32 RO 0000_0000

DC4 Job Ring Job-Done Job ID FIFO (JRJDJIF) 32 RO 0000_0000

DE4 Job Ring Job-Done Source 1 (JRJDS1) 32 RO 0000_0000

E00 Job Ring Job-Done Descriptor Address 0 Register (JRJDDA) 64 RO 0000_0000_00
00_0000

FA0 (alias) CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 0000_0000

FA4 (alias) CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 6003_411A

FA8 (alias) Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0191_4201

FAC (alias) Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_6403

FB4 (alias) Secure Memory Status Register (SMSTA) 32 RO 0000_0000

FBC (alias) Secure Memory Partition Owners Register (SMPO) 32 RO 5555_0003

FC0 (alias) Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000

FC8 (alias) Fault Address DID Register (FADID) 32 RO 0000_0000

FCC (alias) Fault Address Detail Register (FADR) 32 RO 0000_0000

FD4 (alias) CAAM Status Register (CSTA) 32 RO 0000_0002

FD8 (alias) Secure Memory Version ID Register, most-significant half (SMVID_
MS)

32 RO 000F_7007

FDC (alias) Secure Memory Version ID Register, least-significant half (SMVID_
LS)

32 RO 0002_0300

FE0 (alias) RTIC Version ID Register (RVID) 32 RO 0F02_0004

FE4 (alias) CHA Cluster Block Version ID Register (CCBVID) 32 RO 0900_0005

FE8 (alias) CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 4500_0000

FEC (alias) CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1004_0133

FF0 (alias) CHA Number Register, most-significant half (CHANUM_MS) 32 RO 3100_0000

FF4 (alias) CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1001_1111

FF8 (alias) CAAM Version ID Register, most-significant half (CAAMVID_MS) 32 RO 0A16_0401

FFC (alias) CAAM Version ID Register, least-significant half (CAAMVID_LS) 32 RO 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

652 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

1000 Input Ring Base Address Register for Job Ring 0 (IRBAR_JR0) 64 RW 0000_0000_00
00_0000

100C Input Ring Size Register for Job Ring 0 (IRSR_JR0) 32 RW 0000_0000

1014 Input Ring Slots Available Register for Job Ring 0 (IRSAR_JR0) 32 RW 0000_0000

101C Input Ring Jobs Added Register for Job Ring0 (IRJAR_JR0) 32 RW 0000_0000

1020 Output Ring Base Address Register for Job Ring 0 (ORBAR_JR0) 64 RW 0000_0000_00
00_0000

102C Output Ring Size Register for Job Ring 0 (ORSR_JR0) 32 RW 0000_0000

1034 Output Ring Jobs Removed Register for Job Ring 0 (ORJRR_JR0) 32 RW 0000_0000

103C Output Ring Slots Full Register for Job Ring 0 (ORSFR_JR0) 32 RW 0000_0000

1044 Job Ring Output Status Register for Job Ring 0 (JRSTAR_JR0) 32 RO 0000_0000

104C Job Ring Interrupt Status Register for Job Ring 0 (JRINTR_JR0) 32 W1C 0000_0000

1050 Job Ring Configuration Register for Job Ring 0, most-significant half
(JRCFGR_JR0_MS)

32 RW 0000_0000

1054 Job Ring Configuration Register for Job Ring 0, least-significant half
(JRCFGR_JR0_LS)

32 RW 0000_0000

105C Input Ring Read Index Register for Job Ring 0 (IRRIR_JR0) 32 RW 0000_0000

1064 Output Ring Write Index Register for Job Ring 0 (ORWIR_JR0) 32 RW 0000_0000

106C Job Ring Command Register for Job Ring 0 (JRCR_JR0) 32 WO 0000_0000

1704 Job Ring 0 Address-Array Valid Register (JR0AAV) 32 RO 0000_0000

1800 Job Ring 0 Address-Array Address 0 Register (JR0AAA0) 64 RO 0000_0000_00
00_0000

1808 Job Ring 0 Address-Array Address 1 Register (JR0AAA1) 64 RO 0000_0000_00
00_0000

1810 Job Ring 0 Address-Array Address 2 Register (JR0AAA2) 64 RO 0000_0000_00
00_0000

1818 Job Ring 0 Address-Array Address 3 Register (JR0AAA3) 64 RO 0000_0000_00
00_0000

1A00 Partition 0 SDID register (P0SDID_JR0) 32 RO 0000_0000

1A04 Secure Memory Access Permissions register (P0SMAPR_JR0) 32 RW 0000_00FF

1A08 Secure Memory Access Group Registers (P0SMAG2_JR0) 32 RW FFFF_FFFF

1A0C Secure Memory Access Group Registers (P0SMAG1_JR0) 32 RW FFFF_FFFF

1A10 Partition 1 SDID register (P1SDID_JR0) 32 RO 0000_0000

1A14 Secure Memory Access Permissions register (P1SMAPR_JR0) 32 RW 0000_00FF

1A18 Secure Memory Access Group Registers (P1SMAG2_JR0) 32 RW FFFF_FFFF

1A1C Secure Memory Access Group Registers (P1SMAG1_JR0) 32 RW FFFF_FFFF

1A20 Partition 2 SDID register (P2SDID_JR0) 32 RO 0000_0000

1A24 Secure Memory Access Permissions register (P2SMAPR_JR0) 32 RW 0000_00FF

1A28 Secure Memory Access Group Registers (P2SMAG2_JR0) 32 RW FFFF_FFFF

1A2C Secure Memory Access Group Registers (P2SMAG1_JR0) 32 RW FFFF_FFFF

1A30 Partition 3 SDID register (P3SDID_JR0) 32 RO 0000_0000

1A34 Secure Memory Access Permissions register (P3SMAPR_JR0) 32 RW 0000_00FF

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 653
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

1A38 Secure Memory Access Group Registers (P3SMAG2_JR0) 32 RW FFFF_FFFF

1A3C Secure Memory Access Group Registers (P3SMAG1_JR0) 32 RW FFFF_FFFF

1A40 Partition 4 SDID register (P4SDID_JR0) 32 RO 0000_0000

1A44 Secure Memory Access Permissions register (P4SMAPR_JR0) 32 RW 0000_00FF

1A48 Secure Memory Access Group Registers (P4SMAG2_JR0) 32 RW FFFF_FFFF

1A4C Secure Memory Access Group Registers (P4SMAG1_JR0) 32 RW FFFF_FFFF

1A50 Partition 5 SDID register (P5SDID_JR0) 32 RO 0000_0000

1A54 Secure Memory Access Permissions register (P5SMAPR_JR0) 32 RW 0000_00FF

1A58 Secure Memory Access Group Registers (P5SMAG2_JR0) 32 RW FFFF_FFFF

1A5C Secure Memory Access Group Registers (P5SMAG1_JR0) 32 RW FFFF_FFFF

1A60 Partition 6 SDID register (P6SDID_JR0) 32 RO 0000_0000

1A64 Secure Memory Access Permissions register (P6SMAPR_JR0) 32 RW 0000_00FF

1A68 Secure Memory Access Group Registers (P6SMAG2_JR0) 32 RW FFFF_FFFF

1A6C Secure Memory Access Group Registers (P6SMAG1_JR0) 32 RW FFFF_FFFF

1A70 Partition 7 SDID register (P7SDID_JR0) 32 RO 0000_0000

1A74 Secure Memory Access Permissions register (P7SMAPR_JR0) 32 RW 0000_00FF

1A78 Secure Memory Access Group Registers (P7SMAG2_JR0) 32 RW FFFF_FFFF

1A7C Secure Memory Access Group Registers (P7SMAG1_JR0) 32 RW FFFF_FFFF

1BE4 Secure Memory Command Register (SMCR_JR0) 32 WO 0000_0000

1BEC Secure Memory Command Status Register (SMCSR_JR0) 32 RO 0000_0000

1E00 Recoverable Error Indication Record 0 for Job Ring 0 (REIR0JR0) 32 RO 0000_0000

1E08 Recoverable Error Indication Record 2 for Job Ring 0 (REIR2JR0) 64 RO 0000_0000_00
00_0000

1E10 Recoverable Error Indication Record 4 for Job Ring 0 (REIR4JR0) 32 RO 0000_0000

1E14 Recoverable Error Indication Record 5 for Job Ring 0 (REIR5JR0) 32 RO 0000_0000

1FA0 (alias) CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 0000_0000

1FA4 (alias) CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 6003_411A

1FA8 (alias) Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0191_4201

1FAC (alias) Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_6403

1FB4 (alias) Secure Memory Status Register (SMSTA) 32 RO 0000_0000

1FBC (alias) Secure Memory Partition Owners Register (SMPO) 32 RO 5555_0003

1FC0 (alias) Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000

1FC8 (alias) Fault Address DID Register (FADID) 32 RO 0000_0000

1FCC (alias) Fault Address Detail Register (FADR) 32 RO 0000_0000

1FD4 (alias) CAAM Status Register (CSTA) 32 RO 0000_0002

1FD8 (alias) Secure Memory Version ID Register, most-significant half (SMVID_
MS)

32 RO 000F_7007

1FDC (alias) Secure Memory Version ID Register, least-significant half (SMVID_
LS)

32 RO 0002_0300

1FE0 (alias) RTIC Version ID Register (RVID) 32 RO 0F02_0004

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

654 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

1FE4 (alias) CHA Cluster Block Version ID Register (CCBVID) 32 RO 0900_0005

1FE8 (alias) CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 4500_0000

1FEC (alias) CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1004_0133

1FF0 (alias) CHA Number Register, most-significant half (CHANUM_MS) 32 RO 3100_0000

1FF4 (alias) CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1001_1111

1FF8 (alias) CAAM Version ID Register, most-significant half (CAAMVID_MS) 32 RO 0A16_0401

1FFC (alias) CAAM Version ID Register, least-significant half (CAAMVID_LS) 32 RO 0000_0000

2000 Input Ring Base Address Register for Job Ring 1 (IRBAR_JR1) 64 RW 0000_0000_00
00_0000

200C Input Ring Size Register for Job Ring 1 (IRSR_JR1) 32 RW 0000_0000

2014 Input Ring Slots Available Register for Job Ring 1 (IRSAR_JR1) 32 RW 0000_0000

201C Input Ring Jobs Added Register for Job Ring1 (IRJAR_JR1) 32 RW 0000_0000

2020 Output Ring Base Address Register for Job Ring 1 (ORBAR_JR1) 64 RW 0000_0000_00
00_0000

202C Output Ring Size Register for Job Ring 1 (ORSR_JR1) 32 RW 0000_0000

2034 Output Ring Jobs Removed Register for Job Ring 1 (ORJRR_JR1) 32 RW 0000_0000

203C Output Ring Slots Full Register for Job Ring 1 (ORSFR_JR1) 32 RW 0000_0000

2044 Job Ring Output Status Register for Job Ring 1 (JRSTAR_JR1) 32 RO 0000_0000

204C Job Ring Interrupt Status Register for Job Ring 1 (JRINTR_JR1) 32 W1C 0000_0000

2050 Job Ring Configuration Register for Job Ring 1, most-significant half
(JRCFGR_JR1_MS)

32 RW 0000_0000

2054 Job Ring Configuration Register for Job Ring 1, least-significant half
(JRCFGR_JR1_LS)

32 RW 0000_0000

205C Input Ring Read Index Register for Job Ring 1 (IRRIR_JR1) 32 RW 0000_0000

2064 Output Ring Write Index Register for Job Ring 1 (ORWIR_JR1) 32 RW 0000_0000

206C Job Ring Command Register for Job Ring 1 (JRCR_JR1) 32 WO 0000_0000

2704 Job Ring 1 Address-Array Valid Register (JR1AAV) 32 RO 0000_0000

2800 Job Ring 1 Address-Array Address 0 Register (JR1AAA0) 64 RO 0000_0000_00
00_0000

2808 Job Ring 1 Address-Array Address 1 Register (JR1AAA1) 64 RO 0000_0000_00
00_0000

2810 Job Ring 1 Address-Array Address 2 Register (JR1AAA2) 64 RO 0000_0000_00
00_0000

2818 Job Ring 1 Address-Array Address 3 Register (JR1AAA3) 64 RO 0000_0000_00
00_0000

2A00 Partition 0 SDID register (P0SDID_JR1) 32 RO 0000_0000

2A04 Secure Memory Access Permissions register (P0SMAPR_JR1) 32 RW 0000_00FF

2A08 Secure Memory Access Group Registers (P0SMAG2_JR1) 32 RW FFFF_FFFF

2A0C Secure Memory Access Group Registers (P0SMAG1_JR1) 32 RW FFFF_FFFF

2A10 Partition 1 SDID register (P1SDID_JR1) 32 RO 0000_0000

2A14 Secure Memory Access Permissions register (P1SMAPR_JR1) 32 RW 0000_00FF

2A18 Secure Memory Access Group Registers (P1SMAG2_JR1) 32 RW FFFF_FFFF

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 655
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

2A1C Secure Memory Access Group Registers (P1SMAG1_JR1) 32 RW FFFF_FFFF

2A20 Partition 2 SDID register (P2SDID_JR1) 32 RO 0000_0000

2A24 Secure Memory Access Permissions register (P2SMAPR_JR1) 32 RW 0000_00FF

2A28 Secure Memory Access Group Registers (P2SMAG2_JR1) 32 RW FFFF_FFFF

2A2C Secure Memory Access Group Registers (P2SMAG1_JR1) 32 RW FFFF_FFFF

2A30 Partition 3 SDID register (P3SDID_JR1) 32 RO 0000_0000

2A34 Secure Memory Access Permissions register (P3SMAPR_JR1) 32 RW 0000_00FF

2A38 Secure Memory Access Group Registers (P3SMAG2_JR1) 32 RW FFFF_FFFF

2A3C Secure Memory Access Group Registers (P3SMAG1_JR1) 32 RW FFFF_FFFF

2A40 Partition 4 SDID register (P4SDID_JR1) 32 RO 0000_0000

2A44 Secure Memory Access Permissions register (P4SMAPR_JR1) 32 RW 0000_00FF

2A48 Secure Memory Access Group Registers (P4SMAG2_JR1) 32 RW FFFF_FFFF

2A4C Secure Memory Access Group Registers (P4SMAG1_JR1) 32 RW FFFF_FFFF

2A50 Partition 5 SDID register (P5SDID_JR1) 32 RO 0000_0000

2A54 Secure Memory Access Permissions register (P5SMAPR_JR1) 32 RW 0000_00FF

2A58 Secure Memory Access Group Registers (P5SMAG2_JR1) 32 RW FFFF_FFFF

2A5C Secure Memory Access Group Registers (P5SMAG1_JR1) 32 RW FFFF_FFFF

2A60 Partition 6 SDID register (P6SDID_JR1) 32 RO 0000_0000

2A64 Secure Memory Access Permissions register (P6SMAPR_JR1) 32 RW 0000_00FF

2A68 Secure Memory Access Group Registers (P6SMAG2_JR1) 32 RW FFFF_FFFF

2A6C Secure Memory Access Group Registers (P6SMAG1_JR1) 32 RW FFFF_FFFF

2A70 Partition 7 SDID register (P7SDID_JR1) 32 RO 0000_0000

2A74 Secure Memory Access Permissions register (P7SMAPR_JR1) 32 RW 0000_00FF

2A78 Secure Memory Access Group Registers (P7SMAG2_JR1) 32 RW FFFF_FFFF

2A7C Secure Memory Access Group Registers (P7SMAG1_JR1) 32 RW FFFF_FFFF

2BE4 Secure Memory Command Register (SMCR_JR1) 32 WO 0000_0000

2BEC Secure Memory Command Status Register (SMCSR_JR1) 32 RO 0000_0000

2E00 Recoverable Error Indication Record 0 for Job Ring 1 (REIR0JR1) 32 RO 0000_0000

2E08 Recoverable Error Indication Record 2 for Job Ring 1 (REIR2JR1) 64 RO 0000_0000_00
00_0000

2E10 Recoverable Error Indication Record 4 for Job Ring 1 (REIR4JR1) 32 RO 0000_0000

2E14 Recoverable Error Indication Record 5 for Job Ring 1 (REIR5JR1) 32 RO 0000_0000

2FA0 (alias) CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 0000_0000

2FA4 (alias) CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 6003_411A

2FA8 (alias) Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0191_4201

2FAC (alias) Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_6403

2FB4 (alias) Secure Memory Status Register (SMSTA) 32 RO 0000_0000

2FBC (alias) Secure Memory Partition Owners Register (SMPO) 32 RO 5555_0003

2FC0 (alias) Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

656 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

2FC8 (alias) Fault Address DID Register (FADID) 32 RO 0000_0000

2FCC (alias) Fault Address Detail Register (FADR) 32 RO 0000_0000

2FD4 (alias) CAAM Status Register (CSTA) 32 RO 0000_0002

2FD8 (alias) Secure Memory Version ID Register, most-significant half (SMVID_
MS)

32 RO 000F_7007

2FDC (alias) Secure Memory Version ID Register, least-significant half (SMVID_
LS)

32 RO 0002_0300

2FE0 (alias) RTIC Version ID Register (RVID) 32 RO 0F02_0004

2FE4 (alias) CHA Cluster Block Version ID Register (CCBVID) 32 RO 0900_0005

2FE8 (alias) CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 4500_0000

2FEC (alias) CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1004_0133

2FF0 (alias) CHA Number Register, most-significant half (CHANUM_MS) 32 RO 3100_0000

2FF4 (alias) CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1001_1111

2FF8 (alias) CAAM Version ID Register, most-significant half (CAAMVID_MS) 32 RO 0A16_0401

2FFC (alias) CAAM Version ID Register, least-significant half (CAAMVID_LS) 32 RO 0000_0000

3000 Input Ring Base Address Register for Job Ring 2 (IRBAR_JR2) 64 RW 0000_0000_00
00_0000

300C Input Ring Size Register for Job Ring 2 (IRSR_JR2) 32 RW 0000_0000

3014 Input Ring Slots Available Register for Job Ring 2 (IRSAR_JR2) 32 RW 0000_0000

301C Input Ring Jobs Added Register for Job Ring2 (IRJAR_JR2) 32 RW 0000_0000

3020 Output Ring Base Address Register for Job Ring 2 (ORBAR_JR2) 64 RW 0000_0000_00
00_0000

302C Output Ring Size Register for Job Ring 2 (ORSR_JR2) 32 RW 0000_0000

3034 Output Ring Jobs Removed Register for Job Ring 2 (ORJRR_JR2) 32 RW 0000_0000

303C Output Ring Slots Full Register for Job Ring 2 (ORSFR_JR2) 32 RW 0000_0000

3044 Job Ring Output Status Register for Job Ring 2 (JRSTAR_JR2) 32 RO 0000_0000

304C Job Ring Interrupt Status Register for Job Ring 2 (JRINTR_JR2) 32 W1C 0000_0000

3050 Job Ring Configuration Register for Job Ring 2, most-significant half
(JRCFGR_JR2_MS)

32 RW 0000_0000

3054 Job Ring Configuration Register for Job Ring 2, least-significant half
(JRCFGR_JR2_LS)

32 RW 0000_0000

305C Input Ring Read Index Register for Job Ring 2 (IRRIR_JR2) 32 RW 0000_0000

3064 Output Ring Write Index Register for Job Ring 2 (ORWIR_JR2) 32 RW 0000_0000

306C Job Ring Command Register for Job Ring 2 (JRCR_JR2) 32 WO 0000_0000

3704 Job Ring 2 Address-Array Valid Register (JR2AAV) 32 RO 0000_0000

3800 Job Ring 2 Address-Array Address 0 Register (JR2AAA0) 64 RO 0000_0000_00
00_0000

3808 Job Ring 2 Address-Array Address 1 Register (JR2AAA1) 64 RO 0000_0000_00
00_0000

3810 Job Ring 2 Address-Array Address 2 Register (JR2AAA2) 64 RO 0000_0000_00
00_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 657
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

3818 Job Ring 2 Address-Array Address 3 Register (JR2AAA3) 64 RO 0000_0000_00
00_0000

3A00 Partition 0 SDID register (P0SDID_JR2) 32 RO 0000_0000

3A04 Secure Memory Access Permissions register (P0SMAPR_JR2) 32 RW 0000_00FF

3A08 Secure Memory Access Group Registers (P0SMAG2_JR2) 32 RW FFFF_FFFF

3A0C Secure Memory Access Group Registers (P0SMAG1_JR2) 32 RW FFFF_FFFF

3A10 Partition 1 SDID register (P1SDID_JR2) 32 RO 0000_0000

3A14 Secure Memory Access Permissions register (P1SMAPR_JR2) 32 RW 0000_00FF

3A18 Secure Memory Access Group Registers (P1SMAG2_JR2) 32 RW FFFF_FFFF

3A1C Secure Memory Access Group Registers (P1SMAG1_JR2) 32 RW FFFF_FFFF

3A20 Partition 2 SDID register (P2SDID_JR2) 32 RO 0000_0000

3A24 Secure Memory Access Permissions register (P2SMAPR_JR2) 32 RW 0000_00FF

3A28 Secure Memory Access Group Registers (P2SMAG2_JR2) 32 RW FFFF_FFFF

3A2C Secure Memory Access Group Registers (P2SMAG1_JR2) 32 RW FFFF_FFFF

3A30 Partition 3 SDID register (P3SDID_JR2) 32 RO 0000_0000

3A34 Secure Memory Access Permissions register (P3SMAPR_JR2) 32 RW 0000_00FF

3A38 Secure Memory Access Group Registers (P3SMAG2_JR2) 32 RW FFFF_FFFF

3A3C Secure Memory Access Group Registers (P3SMAG1_JR2) 32 RW FFFF_FFFF

3A40 Partition 4 SDID register (P4SDID_JR2) 32 RO 0000_0000

3A44 Secure Memory Access Permissions register (P4SMAPR_JR2) 32 RW 0000_00FF

3A48 Secure Memory Access Group Registers (P4SMAG2_JR2) 32 RW FFFF_FFFF

3A4C Secure Memory Access Group Registers (P4SMAG1_JR2) 32 RW FFFF_FFFF

3A50 Partition 5 SDID register (P5SDID_JR2) 32 RO 0000_0000

3A54 Secure Memory Access Permissions register (P5SMAPR_JR2) 32 RW 0000_00FF

3A58 Secure Memory Access Group Registers (P5SMAG2_JR2) 32 RW FFFF_FFFF

3A5C Secure Memory Access Group Registers (P5SMAG1_JR2) 32 RW FFFF_FFFF

3A60 Partition 6 SDID register (P6SDID_JR2) 32 RO 0000_0000

3A64 Secure Memory Access Permissions register (P6SMAPR_JR2) 32 RW 0000_00FF

3A68 Secure Memory Access Group Registers (P6SMAG2_JR2) 32 RW FFFF_FFFF

3A6C Secure Memory Access Group Registers (P6SMAG1_JR2) 32 RW FFFF_FFFF

3A70 Partition 7 SDID register (P7SDID_JR2) 32 RO 0000_0000

3A74 Secure Memory Access Permissions register (P7SMAPR_JR2) 32 RW 0000_00FF

3A78 Secure Memory Access Group Registers (P7SMAG2_JR2) 32 RW FFFF_FFFF

3A7C Secure Memory Access Group Registers (P7SMAG1_JR2) 32 RW FFFF_FFFF

3BE4 Secure Memory Command Register (SMCR_JR2) 32 WO 0000_0000

3BEC Secure Memory Command Status Register (SMCSR_JR2) 32 RO 0000_0000

3E00 Recoverable Error Indication Record 0 for Job Ring 2 (REIR0JR2) 32 RO 0000_0000

3E08 Recoverable Error Indication Record 2 for Job Ring 2 (REIR2JR2) 64 RO 0000_0000_00
00_0000

3E10 Recoverable Error Indication Record 4 for Job Ring 2 (REIR4JR2) 32 RO 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

658 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

3E14 Recoverable Error Indication Record 5 for Job Ring 2 (REIR5JR2) 32 RO 0000_0000

3FA0 (alias) CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 0000_0000

3FA4 (alias) CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 6003_411A

3FA8 (alias) Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0191_4201

3FAC (alias) Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_6403

3FB4 (alias) Secure Memory Status Register (SMSTA) 32 RO 0000_0000

3FBC (alias) Secure Memory Partition Owners Register (SMPO) 32 RO 5555_0003

3FC0 (alias) Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000

3FC8 (alias) Fault Address DID Register (FADID) 32 RO 0000_0000

3FCC (alias) Fault Address Detail Register (FADR) 32 RO 0000_0000

3FD4 (alias) CAAM Status Register (CSTA) 32 RO 0000_0002

3FD8 (alias) Secure Memory Version ID Register, most-significant half (SMVID_
MS)

32 RO 000F_7007

3FDC (alias) Secure Memory Version ID Register, least-significant half (SMVID_
LS)

32 RO 0002_0300

3FE0 (alias) RTIC Version ID Register (RVID) 32 RO 0F02_0004

3FE4 (alias) CHA Cluster Block Version ID Register (CCBVID) 32 RO 0900_0005

3FE8 (alias) CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 4500_0000

3FEC (alias) CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1004_0133

3FF0 (alias) CHA Number Register, most-significant half (CHANUM_MS) 32 RO 3100_0000

3FF4 (alias) CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1001_1111

3FF8 (alias) CAAM Version ID Register, most-significant half (CAAMVID_MS) 32 RO 0A16_0401

3FFC (alias) CAAM Version ID Register, least-significant half (CAAMVID_LS) 32 RO 0000_0000

6004 RTIC Status Register (RSTA) 32 RO 0004_0000

600C RTIC Command Register (RCMD) 32 RW 0000_0000

6014 RTIC Control Register (RCTL) 32 RW 0000_0000

601C RTIC Throttle Register (RTHR) 32 RW 0000_0000

6028 RTIC Watchdog Timer (RWDOG) 64 RW 0000_0000_00
00_0000

6034 RTIC Endian Register (REND) 32 RW 0000_0000

6100 RTIC Memory Block A Address 0 Register (RMAA0) 64 RW 0000_0000_00
00_0000

610C RTIC Memory Block A Length 0 Register (RMAL0) 32 RW 0000_0000

6110 RTIC Memory Block A Address 1 Register (RMAA1) 64 RW 0000_0000_00
00_0000

611C RTIC Memory Block A Length 1 Register (RMAL1) 32 RW 0000_0000

6120 RTIC Memory Block B Address 0 Register (RMBA0) 64 RW 0000_0000_00
00_0000

612C RTIC Memory Block B Length 0 Register (RMBL0) 32 RW 0000_0000

6130 RTIC Memory Block B Address 1 Register (RMBA1) 64 RW 0000_0000_00
00_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 659
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

613C RTIC Memory Block B Length 1 Register (RMBL1) 32 RW 0000_0000

6140 RTIC Memory Block C Address 0 Register (RMCA0) 64 RW 0000_0000_00
00_0000

614C RTIC Memory Block C Length 0 Register (RMCL0) 32 RW 0000_0000

6150 RTIC Memory Block C Address 1 Register (RMCA1) 64 RW 0000_0000_00
00_0000

615C RTIC Memory Block C Length 1 Register (RMCL1) 32 RW 0000_0000

6160 RTIC Memory Block D Address 0 Register (RMDA0) 64 RW 0000_0000_00
00_0000

616C RTIC Memory Block D Length 0 Register (RMDL0) 32 RW 0000_0000

6170 RTIC Memory Block D Address 1 Register (RMDA1) 64 RW 0000_0000_00
00_0000

617C RTIC Memory Block D Length 1 Register (RMDL1) 32 RW 0000_0000

6200 RTIC Memory Block A Big Endian Hash Result Word 0 (RAMDB_0) 32 RW 0000_0000

6204 RTIC Memory Block A Big Endian Hash Result Word 1 (RAMDB_1) 32 RW 0000_0000

6208 RTIC Memory Block A Big Endian Hash Result Word 2 (RAMDB_2) 32 RW 0000_0000

620C RTIC Memory Block A Big Endian Hash Result Word 3 (RAMDB_3) 32 RW 0000_0000

6210 RTIC Memory Block A Big Endian Hash Result Word 4 (RAMDB_4) 32 RW 0000_0000

6214 RTIC Memory Block A Big Endian Hash Result Word 5 (RAMDB_5) 32 RW 0000_0000

6218 RTIC Memory Block A Big Endian Hash Result Word 6 (RAMDB_6) 32 RW 0000_0000

621C RTIC Memory Block A Big Endian Hash Result Word 7 (RAMDB_7) 32 RW 0000_0000

6220 RTIC Memory Block A Big Endian Hash Result Word 8 (RAMDB_8) 32 RW 0000_0000

6224 RTIC Memory Block A Big Endian Hash Result Word 9 (RAMDB_9) 32 RW 0000_0000

6228 RTIC Memory Block A Big Endian Hash Result Word 10 (RAMDB_
10)

32 RW 0000_0000

622C RTIC Memory Block A Big Endian Hash Result Word 11 (RAMDB_
11)

32 RW 0000_0000

6230 RTIC Memory Block A Big Endian Hash Result Word 12 (RAMDB_
12)

32 RW 0000_0000

6234 RTIC Memory Block A Big Endian Hash Result Word 13 (RAMDB_
13)

32 RW 0000_0000

6238 RTIC Memory Block A Big Endian Hash Result Word 14 (RAMDB_
14)

32 RW 0000_0000

623C RTIC Memory Block A Big Endian Hash Result Word 15 (RAMDB_
15)

32 RW 0000_0000

6240 RTIC Memory Block A Big Endian Hash Result Word 16 (RAMDB_
16)

32 RW 0000_0000

6244 RTIC Memory Block A Big Endian Hash Result Word 17 (RAMDB_
17)

32 RW 0000_0000

6248 RTIC Memory Block A Big Endian Hash Result Word 18 (RAMDB_
18)

32 RW 0000_0000

624C RTIC Memory Block A Big Endian Hash Result Word 19 (RAMDB_
19)

32 RW 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

660 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

6250 RTIC Memory Block A Big Endian Hash Result Word 20 (RAMDB_
20)

32 RW 0000_0000

6254 RTIC Memory Block A Big Endian Hash Result Word 21 (RAMDB_
21)

32 RW 0000_0000

6258 RTIC Memory Block A Big Endian Hash Result Word 22 (RAMDB_
22)

32 RW 0000_0000

625C RTIC Memory Block A Big Endian Hash Result Word 23 (RAMDB_
23)

32 RW 0000_0000

6260 RTIC Memory Block A Big Endian Hash Result Word 24 (RAMDB_
24)

32 RW 0000_0000

6264 RTIC Memory Block A Big Endian Hash Result Word 25 (RAMDB_
25)

32 RW 0000_0000

6268 RTIC Memory Block A Big Endian Hash Result Word 26 (RAMDB_
26)

32 RW 0000_0000

626C RTIC Memory Block A Big Endian Hash Result Word 27 (RAMDB_
27)

32 RW 0000_0000

6270 RTIC Memory Block A Big Endian Hash Result Word 28 (RAMDB_
28)

32 RW 0000_0000

6274 RTIC Memory Block A Big Endian Hash Result Word 29 (RAMDB_
29)

32 RW 0000_0000

6278 RTIC Memory Block A Big Endian Hash Result Word 30 (RAMDB_
30)

32 RW 0000_0000

627C RTIC Memory Block A Big Endian Hash Result Word 31 (RAMDB_
31)

32 RW 0000_0000

6280 RTIC Memory Block A Little Endian Hash Result Word 0 (RAMDL_0) 32 RW 0000_0000

6284 RTIC Memory Block A Little Endian Hash Result Word 1 (RAMDL_1) 32 RW 0000_0000

6288 RTIC Memory Block A Little Endian Hash Result Word 2 (RAMDL_2) 32 RW 0000_0000

628C RTIC Memory Block A Little Endian Hash Result Word 3 (RAMDL_3) 32 RW 0000_0000

6290 RTIC Memory Block A Little Endian Hash Result Word 4 (RAMDL_4) 32 RW 0000_0000

6294 RTIC Memory Block A Little Endian Hash Result Word 5 (RAMDL_5) 32 RW 0000_0000

6298 RTIC Memory Block A Little Endian Hash Result Word 6 (RAMDL_6) 32 RW 0000_0000

629C RTIC Memory Block A Little Endian Hash Result Word 7 (RAMDL_7) 32 RW 0000_0000

62A0 RTIC Memory Block A Little Endian Hash Result Word 8 (RAMDL_8) 32 RW 0000_0000

62A4 RTIC Memory Block A Little Endian Hash Result Word 9 (RAMDL_9) 32 RW 0000_0000

62A8 RTIC Memory Block A Little Endian Hash Result Word 10 (RAMDL_
10)

32 RW 0000_0000

62AC RTIC Memory Block A Little Endian Hash Result Word 11 (RAMDL_
11)

32 RW 0000_0000

62B0 RTIC Memory Block A Little Endian Hash Result Word 12 (RAMDL_
12)

32 RW 0000_0000

62B4 RTIC Memory Block A Little Endian Hash Result Word 13 (RAMDL_
13)

32 RW 0000_0000

62B8 RTIC Memory Block A Little Endian Hash Result Word 14 (RAMDL_
14)

32 RW 0000_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 661
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

62BC RTIC Memory Block A Little Endian Hash Result Word 15 (RAMDL_
15)

32 RW 0000_0000

62C0 RTIC Memory Block A Little Endian Hash Result Word 16 (RAMDL_
16)

32 RW 0000_0000

62C4 RTIC Memory Block A Little Endian Hash Result Word 17 (RAMDL_
17)

32 RW 0000_0000

62C8 RTIC Memory Block A Little Endian Hash Result Word 18 (RAMDL_
18)

32 RW 0000_0000

62CC RTIC Memory Block A Little Endian Hash Result Word 19 (RAMDL_
19)

32 RW 0000_0000

62D0 RTIC Memory Block A Little Endian Hash Result Word 20 (RAMDL_
20)

32 RW 0000_0000

62D4 RTIC Memory Block A Little Endian Hash Result Word 21 (RAMDL_
21)

32 RW 0000_0000

62D8 RTIC Memory Block A Little Endian Hash Result Word 22 (RAMDL_
22)

32 RW 0000_0000

62DC RTIC Memory Block A Little Endian Hash Result Word 23 (RAMDL_
23)

32 RW 0000_0000

62E0 RTIC Memory Block A Little Endian Hash Result Word 24 (RAMDL_
24)

32 RW 0000_0000

62E4 RTIC Memory Block A Little Endian Hash Result Word 25 (RAMDL_
25)

32 RW 0000_0000

62E8 RTIC Memory Block A Little Endian Hash Result Word 26 (RAMDL_
26)

32 RW 0000_0000

62EC RTIC Memory Block A Little Endian Hash Result Word 27 (RAMDL_
27)

32 RW 0000_0000

62F0 RTIC Memory Block A Little Endian Hash Result Word 28 (RAMDL_
28)

32 RW 0000_0000

62F4 RTIC Memory Block A Little Endian Hash Result Word 29 (RAMDL_
29)

32 RW 0000_0000

62F8 RTIC Memory Block A Little Endian Hash Result Word 30 (RAMDL_
30)

32 RW 0000_0000

62FC RTIC Memory Block A Little Endian Hash Result Word 31 (RAMDL_
31)

32 RW 0000_0000

6300 RTIC Memory Block B Big Endian Hash Result Word 0 (RBMDB_0) 32 RW 0000_0000

6304 RTIC Memory Block B Big Endian Hash Result Word 1 (RBMDB_1) 32 RW 0000_0000

6308 RTIC Memory Block B Big Endian Hash Result Word 2 (RBMDB_2) 32 RW 0000_0000

630C RTIC Memory Block B Big Endian Hash Result Word 3 (RBMDB_3) 32 RW 0000_0000

6310 RTIC Memory Block B Big Endian Hash Result Word 4 (RBMDB_4) 32 RW 0000_0000

6314 RTIC Memory Block B Big Endian Hash Result Word 5 (RBMDB_5) 32 RW 0000_0000

6318 RTIC Memory Block B Big Endian Hash Result Word 6 (RBMDB_6) 32 RW 0000_0000

631C RTIC Memory Block B Big Endian Hash Result Word 7 (RBMDB_7) 32 RW 0000_0000

6320 RTIC Memory Block B Big Endian Hash Result Word 8 (RBMDB_8) 32 RW 0000_0000

6324 RTIC Memory Block B Big Endian Hash Result Word 9 (RBMDB_9) 32 RW 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

662 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

6328 RTIC Memory Block B Big Endian Hash Result Word 10 (RBMDB_
10)

32 RW 0000_0000

632C RTIC Memory Block B Big Endian Hash Result Word 11 (RBMDB_
11)

32 RW 0000_0000

6330 RTIC Memory Block B Big Endian Hash Result Word 12 (RBMDB_
12)

32 RW 0000_0000

6334 RTIC Memory Block B Big Endian Hash Result Word 13 (RBMDB_
13)

32 RW 0000_0000

6338 RTIC Memory Block B Big Endian Hash Result Word 14 (RBMDB_
14)

32 RW 0000_0000

633C RTIC Memory Block B Big Endian Hash Result Word 15 (RBMDB_
15)

32 RW 0000_0000

6340 RTIC Memory Block B Big Endian Hash Result Word 16 (RBMDB_
16)

32 RW 0000_0000

6344 RTIC Memory Block B Big Endian Hash Result Word 17 (RBMDB_
17)

32 RW 0000_0000

6348 RTIC Memory Block B Big Endian Hash Result Word 18 (RBMDB_
18)

32 RW 0000_0000

634C RTIC Memory Block B Big Endian Hash Result Word 19 (RBMDB_
19)

32 RW 0000_0000

6350 RTIC Memory Block B Big Endian Hash Result Word 20 (RBMDB_
20)

32 RW 0000_0000

6354 RTIC Memory Block B Big Endian Hash Result Word 21 (RBMDB_
21)

32 RW 0000_0000

6358 RTIC Memory Block B Big Endian Hash Result Word 22 (RBMDB_
22)

32 RW 0000_0000

635C RTIC Memory Block B Big Endian Hash Result Word 23 (RBMDB_
23)

32 RW 0000_0000

6360 RTIC Memory Block B Big Endian Hash Result Word 24 (RBMDB_
24)

32 RW 0000_0000

6364 RTIC Memory Block B Big Endian Hash Result Word 25 (RBMDB_
25)

32 RW 0000_0000

6368 RTIC Memory Block B Big Endian Hash Result Word 26 (RBMDB_
26)

32 RW 0000_0000

636C RTIC Memory Block B Big Endian Hash Result Word 27 (RBMDB_
27)

32 RW 0000_0000

6370 RTIC Memory Block B Big Endian Hash Result Word 28 (RBMDB_
28)

32 RW 0000_0000

6374 RTIC Memory Block B Big Endian Hash Result Word 29 (RBMDB_
29)

32 RW 0000_0000

6378 RTIC Memory Block B Big Endian Hash Result Word 30 (RBMDB_
30)

32 RW 0000_0000

637C RTIC Memory Block B Big Endian Hash Result Word 31 (RBMDB_
31)

32 RW 0000_0000

6380 RTIC Memory Block B Little Endian Hash Result Word 0 (RBMDL_0) 32 RW 0000_0000

6384 RTIC Memory Block B Little Endian Hash Result Word 1 (RBMDL_1) 32 RW 0000_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 663
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

6388 RTIC Memory Block B Little Endian Hash Result Word 2 (RBMDL_2) 32 RW 0000_0000

638C RTIC Memory Block B Little Endian Hash Result Word 3 (RBMDL_3) 32 RW 0000_0000

6390 RTIC Memory Block B Little Endian Hash Result Word 4 (RBMDL_4) 32 RW 0000_0000

6394 RTIC Memory Block B Little Endian Hash Result Word 5 (RBMDL_5) 32 RW 0000_0000

6398 RTIC Memory Block B Little Endian Hash Result Word 6 (RBMDL_6) 32 RW 0000_0000

639C RTIC Memory Block B Little Endian Hash Result Word 7 (RBMDL_7) 32 RW 0000_0000

63A0 RTIC Memory Block B Little Endian Hash Result Word 8 (RBMDL_8) 32 RW 0000_0000

63A4 RTIC Memory Block B Little Endian Hash Result Word 9 (RBMDL_9) 32 RW 0000_0000

63A8 RTIC Memory Block B Little Endian Hash Result Word 10 (RBMDL_
10)

32 RW 0000_0000

63AC RTIC Memory Block B Little Endian Hash Result Word 11 (RBMDL_
11)

32 RW 0000_0000

63B0 RTIC Memory Block B Little Endian Hash Result Word 12 (RBMDL_
12)

32 RW 0000_0000

63B4 RTIC Memory Block B Little Endian Hash Result Word 13 (RBMDL_
13)

32 RW 0000_0000

63B8 RTIC Memory Block B Little Endian Hash Result Word 14 (RBMDL_
14)

32 RW 0000_0000

63BC RTIC Memory Block B Little Endian Hash Result Word 15 (RBMDL_
15)

32 RW 0000_0000

63C0 RTIC Memory Block B Little Endian Hash Result Word 16 (RBMDL_
16)

32 RW 0000_0000

63C4 RTIC Memory Block B Little Endian Hash Result Word 17 (RBMDL_
17)

32 RW 0000_0000

63C8 RTIC Memory Block B Little Endian Hash Result Word 18 (RBMDL_
18)

32 RW 0000_0000

63CC RTIC Memory Block B Little Endian Hash Result Word 19 (RBMDL_
19)

32 RW 0000_0000

63D0 RTIC Memory Block B Little Endian Hash Result Word 20 (RBMDL_
20)

32 RW 0000_0000

63D4 RTIC Memory Block B Little Endian Hash Result Word 21 (RBMDL_
21)

32 RW 0000_0000

63D8 RTIC Memory Block B Little Endian Hash Result Word 22 (RBMDL_
22)

32 RW 0000_0000

63DC RTIC Memory Block B Little Endian Hash Result Word 23 (RBMDL_
23)

32 RW 0000_0000

63E0 RTIC Memory Block B Little Endian Hash Result Word 24 (RBMDL_
24)

32 RW 0000_0000

63E4 RTIC Memory Block B Little Endian Hash Result Word 25 (RBMDL_
25)

32 RW 0000_0000

63E8 RTIC Memory Block B Little Endian Hash Result Word 26 (RBMDL_
26)

32 RW 0000_0000

63EC RTIC Memory Block B Little Endian Hash Result Word 27 (RBMDL_
27)

32 RW 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

664 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

63F0 RTIC Memory Block B Little Endian Hash Result Word 28 (RBMDL_
28)

32 RW 0000_0000

63F4 RTIC Memory Block B Little Endian Hash Result Word 29 (RBMDL_
29)

32 RW 0000_0000

63F8 RTIC Memory Block B Little Endian Hash Result Word 30 (RBMDL_
30)

32 RW 0000_0000

63FC RTIC Memory Block B Little Endian Hash Result Word 31 (RBMDL_
31)

32 RW 0000_0000

6400 RTIC Memory Block C Big Endian Hash Result Word 0 (RCMDB_0) 32 RW 0000_0000

6404 RTIC Memory Block C Big Endian Hash Result Word 1 (RCMDB_1) 32 RW 0000_0000

6408 RTIC Memory Block C Big Endian Hash Result Word 2 (RCMDB_2) 32 RW 0000_0000

640C RTIC Memory Block C Big Endian Hash Result Word 3 (RCMDB_3) 32 RW 0000_0000

6410 RTIC Memory Block C Big Endian Hash Result Word 4 (RCMDB_4) 32 RW 0000_0000

6414 RTIC Memory Block C Big Endian Hash Result Word 5 (RCMDB_5) 32 RW 0000_0000

6418 RTIC Memory Block C Big Endian Hash Result Word 6 (RCMDB_6) 32 RW 0000_0000

641C RTIC Memory Block C Big Endian Hash Result Word 7 (RCMDB_7) 32 RW 0000_0000

6420 RTIC Memory Block C Big Endian Hash Result Word 8 (RCMDB_8) 32 RW 0000_0000

6424 RTIC Memory Block C Big Endian Hash Result Word 9 (RCMDB_9) 32 RW 0000_0000

6428 RTIC Memory Block C Big Endian Hash Result Word 10 (RCMDB_
10)

32 RW 0000_0000

642C RTIC Memory Block C Big Endian Hash Result Word 11 (RCMDB_
11)

32 RW 0000_0000

6430 RTIC Memory Block C Big Endian Hash Result Word 12 (RCMDB_
12)

32 RW 0000_0000

6434 RTIC Memory Block C Big Endian Hash Result Word 13 (RCMDB_
13)

32 RW 0000_0000

6438 RTIC Memory Block C Big Endian Hash Result Word 14 (RCMDB_
14)

32 RW 0000_0000

643C RTIC Memory Block C Big Endian Hash Result Word 15 (RCMDB_
15)

32 RW 0000_0000

6440 RTIC Memory Block C Big Endian Hash Result Word 16 (RCMDB_
16)

32 RW 0000_0000

6444 RTIC Memory Block C Big Endian Hash Result Word 17 (RCMDB_
17)

32 RW 0000_0000

6448 RTIC Memory Block C Big Endian Hash Result Word 18 (RCMDB_
18)

32 RW 0000_0000

644C RTIC Memory Block C Big Endian Hash Result Word 19 (RCMDB_
19)

32 RW 0000_0000

6450 RTIC Memory Block C Big Endian Hash Result Word 20 (RCMDB_
20)

32 RW 0000_0000

6454 RTIC Memory Block C Big Endian Hash Result Word 21 (RCMDB_
21)

32 RW 0000_0000

6458 RTIC Memory Block C Big Endian Hash Result Word 22 (RCMDB_
22)

32 RW 0000_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 665
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

645C RTIC Memory Block C Big Endian Hash Result Word 23 (RCMDB_
23)

32 RW 0000_0000

6460 RTIC Memory Block C Big Endian Hash Result Word 24 (RCMDB_
24)

32 RW 0000_0000

6464 RTIC Memory Block C Big Endian Hash Result Word 25 (RCMDB_
25)

32 RW 0000_0000

6468 RTIC Memory Block C Big Endian Hash Result Word 26 (RCMDB_
26)

32 RW 0000_0000

646C RTIC Memory Block C Big Endian Hash Result Word 27 (RCMDB_
27)

32 RW 0000_0000

6470 RTIC Memory Block C Big Endian Hash Result Word 28 (RCMDB_
28)

32 RW 0000_0000

6474 RTIC Memory Block C Big Endian Hash Result Word 29 (RCMDB_
29)

32 RW 0000_0000

6478 RTIC Memory Block C Big Endian Hash Result Word 30 (RCMDB_
30)

32 RW 0000_0000

647C RTIC Memory Block C Big Endian Hash Result Word 31 (RCMDB_
31)

32 RW 0000_0000

6480 RTIC Memory Block C Little Endian Hash Result Word 0 (RCMDL_0) 32 RW 0000_0000

6484 RTIC Memory Block C Little Endian Hash Result Word 1 (RCMDL_1) 32 RW 0000_0000

6488 RTIC Memory Block C Little Endian Hash Result Word 2 (RCMDL_2) 32 RW 0000_0000

648C RTIC Memory Block C Little Endian Hash Result Word 3 (RCMDL_3) 32 RW 0000_0000

6490 RTIC Memory Block C Little Endian Hash Result Word 4 (RCMDL_4) 32 RW 0000_0000

6494 RTIC Memory Block C Little Endian Hash Result Word 5 (RCMDL_5) 32 RW 0000_0000

6498 RTIC Memory Block C Little Endian Hash Result Word 6 (RCMDL_6) 32 RW 0000_0000

649C RTIC Memory Block C Little Endian Hash Result Word 7 (RCMDL_7) 32 RW 0000_0000

64A0 RTIC Memory Block C Little Endian Hash Result Word 8 (RCMDL_8) 32 RW 0000_0000

64A4 RTIC Memory Block C Little Endian Hash Result Word 9 (RCMDL_9) 32 RW 0000_0000

64A8 RTIC Memory Block C Little Endian Hash Result Word 10 (RCMDL_
10)

32 RW 0000_0000

64AC RTIC Memory Block C Little Endian Hash Result Word 11 (RCMDL_
11)

32 RW 0000_0000

64B0 RTIC Memory Block C Little Endian Hash Result Word 12 (RCMDL_
12)

32 RW 0000_0000

64B4 RTIC Memory Block C Little Endian Hash Result Word 13 (RCMDL_
13)

32 RW 0000_0000

64B8 RTIC Memory Block C Little Endian Hash Result Word 14 (RCMDL_
14)

32 RW 0000_0000

64BC RTIC Memory Block C Little Endian Hash Result Word 15 (RCMDL_
15)

32 RW 0000_0000

64C0 RTIC Memory Block C Little Endian Hash Result Word 16 (RCMDL_
16)

32 RW 0000_0000

64C4 RTIC Memory Block C Little Endian Hash Result Word 17 (RCMDL_
17)

32 RW 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

666 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

64C8 RTIC Memory Block C Little Endian Hash Result Word 18 (RCMDL_
18)

32 RW 0000_0000

64CC RTIC Memory Block C Little Endian Hash Result Word 19 (RCMDL_
19)

32 RW 0000_0000

64D0 RTIC Memory Block C Little Endian Hash Result Word 20 (RCMDL_
20)

32 RW 0000_0000

64D4 RTIC Memory Block C Little Endian Hash Result Word 21 (RCMDL_
21)

32 RW 0000_0000

64D8 RTIC Memory Block C Little Endian Hash Result Word 22 (RCMDL_
22)

32 RW 0000_0000

64DC RTIC Memory Block C Little Endian Hash Result Word 23 (RCMDL_
23)

32 RW 0000_0000

64E0 RTIC Memory Block C Little Endian Hash Result Word 24 (RCMDL_
24)

32 RW 0000_0000

64E4 RTIC Memory Block C Little Endian Hash Result Word 25 (RCMDL_
25)

32 RW 0000_0000

64E8 RTIC Memory Block C Little Endian Hash Result Word 26 (RCMDL_
26)

32 RW 0000_0000

64EC RTIC Memory Block C Little Endian Hash Result Word 27 (RCMDL_
27)

32 RW 0000_0000

64F0 RTIC Memory Block C Little Endian Hash Result Word 28 (RCMDL_
28)

32 RW 0000_0000

64F4 RTIC Memory Block C Little Endian Hash Result Word 29 (RCMDL_
29)

32 RW 0000_0000

64F8 RTIC Memory Block C Little Endian Hash Result Word 30 (RCMDL_
30)

32 RW 0000_0000

64FC RTIC Memory Block C Little Endian Hash Result Word 31 (RCMDL_
31)

32 RW 0000_0000

6500 RTIC Memory Block D Big Endian Hash Result Word 0 (RDMDB_0) 32 RW 0000_0000

6504 RTIC Memory Block D Big Endian Hash Result Word 1 (RDMDB_1) 32 RW 0000_0000

6508 RTIC Memory Block D Big Endian Hash Result Word 2 (RDMDB_2) 32 RW 0000_0000

650C RTIC Memory Block D Big Endian Hash Result Word 3 (RDMDB_3) 32 RW 0000_0000

6510 RTIC Memory Block D Big Endian Hash Result Word 4 (RDMDB_4) 32 RW 0000_0000

6514 RTIC Memory Block D Big Endian Hash Result Word 5 (RDMDB_5) 32 RW 0000_0000

6518 RTIC Memory Block D Big Endian Hash Result Word 6 (RDMDB_6) 32 RW 0000_0000

651C RTIC Memory Block D Big Endian Hash Result Word 7 (RDMDB_7) 32 RW 0000_0000

6520 RTIC Memory Block D Big Endian Hash Result Word 8 (RDMDB_8) 32 RW 0000_0000

6524 RTIC Memory Block D Big Endian Hash Result Word 9 (RDMDB_9) 32 RW 0000_0000

6528 RTIC Memory Block D Big Endian Hash Result Word 10 (RDMDB_
10)

32 RW 0000_0000

652C RTIC Memory Block D Big Endian Hash Result Word 11 (RDMDB_
11)

32 RW 0000_0000

6530 RTIC Memory Block D Big Endian Hash Result Word 12 (RDMDB_
12)

32 RW 0000_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 667
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

6534 RTIC Memory Block D Big Endian Hash Result Word 13 (RDMDB_
13)

32 RW 0000_0000

6538 RTIC Memory Block D Big Endian Hash Result Word 14 (RDMDB_
14)

32 RW 0000_0000

653C RTIC Memory Block D Big Endian Hash Result Word 15 (RDMDB_
15)

32 RW 0000_0000

6540 RTIC Memory Block D Big Endian Hash Result Word 16 (RDMDB_
16)

32 RW 0000_0000

6544 RTIC Memory Block D Big Endian Hash Result Word 17 (RDMDB_
17)

32 RW 0000_0000

6548 RTIC Memory Block D Big Endian Hash Result Word 18 (RDMDB_
18)

32 RW 0000_0000

654C RTIC Memory Block D Big Endian Hash Result Word 19 (RDMDB_
19)

32 RW 0000_0000

6550 RTIC Memory Block D Big Endian Hash Result Word 20 (RDMDB_
20)

32 RW 0000_0000

6554 RTIC Memory Block D Big Endian Hash Result Word 21 (RDMDB_
21)

32 RW 0000_0000

6558 RTIC Memory Block D Big Endian Hash Result Word 22 (RDMDB_
22)

32 RW 0000_0000

655C RTIC Memory Block D Big Endian Hash Result Word 23 (RDMDB_
23)

32 RW 0000_0000

6560 RTIC Memory Block D Big Endian Hash Result Word 24 (RDMDB_
24)

32 RW 0000_0000

6564 RTIC Memory Block D Big Endian Hash Result Word 25 (RDMDB_
25)

32 RW 0000_0000

6568 RTIC Memory Block D Big Endian Hash Result Word 26 (RDMDB_
26)

32 RW 0000_0000

656C RTIC Memory Block D Big Endian Hash Result Word 27 (RDMDB_
27)

32 RW 0000_0000

6570 RTIC Memory Block D Big Endian Hash Result Word 28 (RDMDB_
28)

32 RW 0000_0000

6574 RTIC Memory Block D Big Endian Hash Result Word 29 (RDMDB_
29)

32 RW 0000_0000

6578 RTIC Memory Block D Big Endian Hash Result Word 30 (RDMDB_
30)

32 RW 0000_0000

657C RTIC Memory Block D Big Endian Hash Result Word 31 (RDMDB_
31)

32 RW 0000_0000

6580 RTIC Memory Block D Little Endian Hash Result Word 0 (RDMDL_0) 32 RW 0000_0000

6584 RTIC Memory Block D Little Endian Hash Result Word 1 (RDMDL_1) 32 RW 0000_0000

6588 RTIC Memory Block D Little Endian Hash Result Word 2 (RDMDL_2) 32 RW 0000_0000

658C RTIC Memory Block D Little Endian Hash Result Word 3 (RDMDL_3) 32 RW 0000_0000

6590 RTIC Memory Block D Little Endian Hash Result Word 4 (RDMDL_4) 32 RW 0000_0000

6594 RTIC Memory Block D Little Endian Hash Result Word 5 (RDMDL_5) 32 RW 0000_0000

6598 RTIC Memory Block D Little Endian Hash Result Word 6 (RDMDL_6) 32 RW 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

668 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

659C RTIC Memory Block D Little Endian Hash Result Word 7 (RDMDL_7) 32 RW 0000_0000

65A0 RTIC Memory Block D Little Endian Hash Result Word 8 (RDMDL_8) 32 RW 0000_0000

65A4 RTIC Memory Block D Little Endian Hash Result Word 9 (RDMDL_9) 32 RW 0000_0000

65A8 RTIC Memory Block D Little Endian Hash Result Word 10 (RDMDL_
10)

32 RW 0000_0000

65AC RTIC Memory Block D Little Endian Hash Result Word 11 (RDMDL_
11)

32 RW 0000_0000

65B0 RTIC Memory Block D Little Endian Hash Result Word 12 (RDMDL_
12)

32 RW 0000_0000

65B4 RTIC Memory Block D Little Endian Hash Result Word 13 (RDMDL_
13)

32 RW 0000_0000

65B8 RTIC Memory Block D Little Endian Hash Result Word 14 (RDMDL_
14)

32 RW 0000_0000

65BC RTIC Memory Block D Little Endian Hash Result Word 15 (RDMDL_
15)

32 RW 0000_0000

65C0 RTIC Memory Block D Little Endian Hash Result Word 16 (RDMDL_
16)

32 RW 0000_0000

65C4 RTIC Memory Block D Little Endian Hash Result Word 17 (RDMDL_
17)

32 RW 0000_0000

65C8 RTIC Memory Block D Little Endian Hash Result Word 18 (RDMDL_
18)

32 RW 0000_0000

65CC RTIC Memory Block D Little Endian Hash Result Word 19 (RDMDL_
19)

32 RW 0000_0000

65D0 RTIC Memory Block D Little Endian Hash Result Word 20 (RDMDL_
20)

32 RW 0000_0000

65D4 RTIC Memory Block D Little Endian Hash Result Word 21 (RDMDL_
21)

32 RW 0000_0000

65D8 RTIC Memory Block D Little Endian Hash Result Word 22 (RDMDL_
22)

32 RW 0000_0000

65DC RTIC Memory Block D Little Endian Hash Result Word 23 (RDMDL_
23)

32 RW 0000_0000

65E0 RTIC Memory Block D Little Endian Hash Result Word 24 (RDMDL_
24)

32 RW 0000_0000

65E4 RTIC Memory Block D Little Endian Hash Result Word 25 (RDMDL_
25)

32 RW 0000_0000

65E8 RTIC Memory Block D Little Endian Hash Result Word 26 (RDMDL_
26)

32 RW 0000_0000

65EC RTIC Memory Block D Little Endian Hash Result Word 27 (RDMDL_
27)

32 RW 0000_0000

65F0 RTIC Memory Block D Little Endian Hash Result Word 28 (RDMDL_
28)

32 RW 0000_0000

65F4 RTIC Memory Block D Little Endian Hash Result Word 29 (RDMDL_
29)

32 RW 0000_0000

65F8 RTIC Memory Block D Little Endian Hash Result Word 30 (RDMDL_
30)

32 RW 0000_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 669
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

65FC RTIC Memory Block D Little Endian Hash Result Word 31 (RDMDL_
31)

32 RW 0000_0000

6E00 Recoverable Error Indication Record 0 for RTIC (REIR0RTIC) 32 RO 0000_0000

6E08 Recoverable Error Indication Record 2 for RTIC (REIR2RTIC) 64 RO 0000_0000_00
00_0000

6E10 Recoverable Error Indication Record 4 for RTIC (REIR4RTIC) 32 RO 0000_0000

6E14 Recoverable Error Indication Record 5 for RTIC (REIR5RTIC) 32 RO 0000_0000

6FA0 (alias) CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 0000_0000

6FA4 (alias) CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 6003_411A

6FA8 (alias) Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0191_4201

6FAC (alias) Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_6403

6FB4 (alias) Secure Memory Status Register (SMSTA) 32 RO 0000_0000

6FC0 (alias) Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000

6FC8 (alias) Fault Address DID Register (FADID) 32 RO 0000_0000

6FCC (alias) Fault Address Detail Register (FADR) 32 RO 0000_0000

6FD4 (alias) CAAM Status Register (CSTA) 32 RO 0000_0002

6FD8 (alias) Secure Memory Version ID Register, most-significant half (SMVID_
MS)

32 RO 000F_7007

6FDC (alias) Secure Memory Version ID Register, least-significant half (SMVID_
LS)

32 RO 0002_0300

6FE0 (alias) RTIC Version ID Register (RVID) 32 RO 0F02_0004

6FE4 (alias) CHA Cluster Block Version ID Register (CCBVID) 32 RO 0900_0005

6FE8 (alias) CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 4500_0000

6FEC (alias) CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1004_0133

6FF0 (alias) CHA Number Register, most-significant half (CHANUM_MS) 32 RO 3100_0000

6FF4 (alias) CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1001_1111

6FF8 (alias) CAAM Version ID Register, most-significant half (CAAMVID_MS) 32 RO 0A16_0401

6FFC (alias) CAAM Version ID Register, least-significant half (CAAMVID_LS) 32 RO 0000_0000

8004 CCB 0 Class 1 Mode Register Format for Non-Public Key Algorithms
(C0C1MR)

32 RW 0000_0000

8004 CCB 0 Class 1 Mode Register Format for Public Key Algorithms
(C0C1MR_PK)

32 RW 0000_0000

8004 CCB 0 Class 1 Mode Register Format for RNG4 (C0C1MR_RNG) 32 RW 0000_0000

800C CCB 0 Class 1 Key Size Register (C0C1KSR) 32 RW 0000_0000

8010 CCB 0 Class 1 Data Size Register (C0C1DSR) 64 RW 0000_0000_00
00_0000

801C CCB 0 Class 1 ICV Size Register (C0C1ICVSR) 32 RW 0000_0000

8034 CCB 0 CHA Control Register (C0CCTRL) 32 WO 0000_0000

803C CCB 0 Interrupt Control Register (C0ICTL) 32 W1C 0000_0000

8044 CCB 0 Clear Written Register (C0CWR) 32 WO 0000_0000

8048 CCB 0 Status and Error Register, most-significant half (C0CSTA_MS) 32 RO 0000_0000

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

670 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

804C CCB 0 Status and Error Register, least-significant half (C0CSTA_LS) 32 RO 0000_0000

805C CCB 0 Class 1 AAD Size Register (C0C1AADSZR) 32 RW 0000_0000

8064 CCB 0 Class 1 IV Size Register (C0C1IVSZR) 32 RW 0000_0000

8084 PKHA A Size Register (C0PKASZR) 32 RW 0000_0000

808C PKHA B Size Register (C0PKBSZR) 32 RW 0000_0000

8094 PKHA N Size Register (C0PKNSZR) 32 RW 0000_0000

809C PKHA E Size Register (C0PKESZR) 32 RW 0000_0000

8100 - 813C CCB 0 Class 1 Context Register Word a (C0C1CTXR0 - C0C1CTXR
15)

32 RW 0000_0000

8200 - 821C CCB 0 Class 1 Key Registers Word a (C0C1KR0 - C0C1KR7) 32 RW 0000_0000

8404 CCB 0 Class 2 Mode Register (C0C2MR) 32 RW 0000_0000

840C CCB 0 Class 2 Key Size Register (C0C2KSR) 32 RW 0000_0000

8410 CCB 0 Class 2 Data Size Register (C0C2DSR) 64 RW 0000_0000_00
00_0000

841C CCB 0 Class 2 ICV Size Register (C0C2ICVSZR) 32 RW 0000_0000

8500 - 8524 CCB 0 Class 2 Context Register Word a (C0C2CTXR0 - C0C2CTXR
9)

32 RW 0000_0000

8600 - 863C CCB 0 Class 2 Key Register Word a (C0C2KEYR0 - C0C2KEYR15) 32 RW 0000_0000

87C0 CCB 0 FIFO Status Register (C0FIFOSTA) 32 RO 0000_0000

87D0 CCB 0 iNformation FIFO When STYPE != 10b (C0NFIFO) 32 WO 0000_0000

87D0 CCB 0 iNformation FIFO When STYPE == 10b (C0NFIFO_2) 32 WO 0000_0000

87E0 CCB 0 Input Data FIFO (C0IFIFO) 32 WO 0000_0000

87F0 CCB 0 Output Data FIFO (C0OFIFO) 64 RO 0000_0000_00
00_0000

8800 DECO0 Job Queue Control Register, most-significant half (D0JQCR_
MS)

32 RW 0000_0000

8804 DECO0 Job Queue Control Register, least-significant half (D0JQCR_
LS)

32 RO 0000_0000

8808 DECO0 Descriptor Address Register (D0DAR) 64 RO 0000_0000_00
00_0000

8810 DECO0 Operation Status Register, most-significant half (D0OPSTA_
MS)

32 RO 0000_0000

8814 DECO0 Operation Status Register, least-significant half (D0OPSTA_
LS)

32 RO 0000_0000

8820 DECO0 Primary DID Status Register (D0PDIDSR) 32 RO 0000_0000

8824 DECO0 Output DID Status Register (D0ODIDSR) 32 RO 0000_0000

8840 DECO0 Math Register 0_MS (D0MTH0_MS) 32 RW 0000_0000

8844 DECO0 Math Register 0_LS (D0MTH0_LS) 32 RW 0000_0000

8848 DECO0 Math Register 1_MS (D0MTH1_MS) 32 RW 0000_0000

884C DECO0 Math Register 1_LS (D0MTH1_LS) 32 RW 0000_0000

8850 DECO0 Math Register 2_MS (D0MTH2_MS) 32 RW 0000_0000

8854 DECO0 Math Register 2_LS (D0MTH2_LS) 32 RW 0000_0000

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 671
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

8858 DECO0 Math Register 3_MS (D0MTH3_MS) 32 RW 0000_0000

885C DECO0 Math Register 3_LS (D0MTH3_LS) 32 RW 0000_0000

8880 DECO0 Gather Table Register 0 Word 0 (D0GTR0_0) 32 RU 0000_0000

8884 DECO0 Gather Table Register 0 Word 1 (D0GTR0_1) 32 RW 0000_0000

8888 DECO0 Gather Table Register 0 Word 2 (D0GTR0_2) 32 RW 0000_0000

888C DECO0 Gather Table Register 0 Word 3 (D0GTR0_3) 32 RW 0000_0000

8900 DECO0 Scatter Table Register 0 Word 0 (D0STR0_0) 32 RU 0000_0000

8904 DECO0 Scatter Table Register 0 Word 1 (D0STR0_1) 32 RW 0000_0000

8908 DECO0 Scatter Table Register 0 Word 2 (D0STR0_2) 32 RW 0000_0000

890C DECO0 Scatter Table Register 0 Word 3 (D0STR0_3) 32 RW 0000_0000

8A00 - 8AFC DECO0 Descriptor Buffer Word a (D0DESB0 - D0DESB63) 32 RW 0000_0000

8E00 DECO0 Debug Job Register (D0DJR) 32 RO 0000_0000

8E04 DECO0 Debug DECO Register (D0DDR) 32 RO 0000_0000

8E08 DECO0 Debug Job Pointer (D0DJP) 64 RO 0000_0000_00
00_0000

8E10 DECO0 Debug Shared Pointer (D0SDP) 64 RO 0000_0000_00
00_0000

8E18 DECO0 Debug DID, most-significant half (D0DDR_MS) 32 RO 0000_0000

8E1C DECO0 Debug DID, least-significant half (D0DDR_LS) 32 RO 0000_0000

8E20 Sequence Output Length Register (SOL0) 32 RW 0000_0000

8E24 Variable Sequence Output Length Register (VSOL0) 32 RW 0000_0000

8E28 Sequence Input Length Register (SIL0) 32 RW 0000_0000

8E2C Variable Sequence Input Length Register (VSIL0) 32 RW 0000_0000

8E30 Protocol Override Register (D0POVRD) 32 RW 0000_0000

8E34 Variable Sequence Output Length Register; Upper 32 bits (UVSOL0) 32 RW 0000_0000

8E38 Variable Sequence Input Length Register; Upper 32 bits (UVSIL0) 32 RW 0000_0000

8FA0 (alias) CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 0000_0000

8FA4 (alias) CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 6003_411A

8FA8 (alias) Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0191_4201

8FAC (alias) Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_6403

8FB4 (alias) Secure Memory Status Register (SMSTA) 32 RO 0000_0000

8FC0 (alias) Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000

8FC8 (alias) Fault Address DID Register (FADID) 32 RO 0000_0000

8FCC (alias) Fault Address Detail Register (FADR) 32 RO 0000_0000

8FD4 (alias) CAAM Status Register (CSTA) 32 RO 0000_0002

8FD8 (alias) Secure Memory Version ID Register, most-significant half (SMVID_
MS)

32 RO 000F_7007

8FDC (alias) Secure Memory Version ID Register, least-significant half (SMVID_
LS)

32 RO 0002_0300

8FE0 (alias) RTIC Version ID Register (RVID) 32 RO 0F02_0004

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

672 NXP Semiconductors
Confidential Proprietary

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

8FE4 (alias) CHA Cluster Block Version ID Register (CCBVID) 32 RO 0900_0005

8FE8 (alias) CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 4500_0000

8FEC (alias) CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1004_0133

8FF0 (alias) CHA Number Register, most-significant half (CHANUM_MS) 32 RO 3100_0000

8FF4 (alias) CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1001_1111

8FF8 (alias) CAAM Version ID Register, most-significant half (CAAMVID_MS) 32 RO 0A16_0401

8FFC (alias) CAAM Version ID Register, least-significant half (CAAMVID_LS) 32 RO 0000_0000

10.13.2 Master Configuration Register (MCFGR)

The Master Configuration Register is used to set some bus master configurations. This
register is typically written at boot time, and in some debug scenarios.

10.13.2.1 Offset

Register Offset

MCFGR 4h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 673
Confidential Proprietary

10.13.2.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
W

R
S

T W
D

E

W
D

F

W
R

H
D

R
es

er
ve

d

R
es

er
ve

d

D
W

T

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W

D
M

A
_R

S
T

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
R

C
A

C
H

E

A
W

C
A

C
H

E

A
X

IP
IP

E

R
es

er
ve

d

LA
R

G
E

_B
U

R
S

T

R
es

er
ve

d

N
O

R
M

A
L_

B
U

R
S

T

W

Reset 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0

10.13.2.3 Fields

Field Description

31

SWRST

Software Reset. Writing a 1 to this bit will cause most registers and state machines in CAAM to reset. The
following CAAM registers are not reset: MCFGR, PAGE0_SDID, SCFGR, JR0DID_MS, JR0DID_LS,
JR1DID_MS, JR1DID_LS, JR2DID_MS, JR2DID_LS, JRSTARTR, RTIC_OWN, RTICADID_MS,
RTICADID_LS, RTICBDID_MS, RTICBDID_LS, RTICCDID_MS, RTICCDID_LS, RTICDDID_MS,
RTICDDID_LS, DAR, PBSL, JDKEKR_0 - JDKEKR_7, TDKEKR_0 - TDKEKR_7, TDSKR_0 - TDSKR_7,
SKNR, RTMCTL, RTSCMISC, RTPKRRNG, RTPKRMAX, RTPKRSQ, RTSDCTL, RTTOTSAM,
RTSBLIM, RTFRQMIN, RTFRQCNT, RTFRQMAX, RTSCML, RTSCMC, RTSCR1L, RTSCR1C,
RTSCR2C, RTSCR2L, RTSCR3L, RTSCR3C, RTSCR4L, RTSCR4C, RTSCR5L, RTSCR5C,
RTSCR6PC, RTSCR6PL, RTSTATUS, RTENT0 - RTENT11, RTPKRCNT10, RTPKRCNT32,
RTPKRCNT54, RTPKRCNT76, RTPKRCNT98, RTPKRCNTBA, RTPKRCNTDC, RTPKRCNTFE,
RDSTA, RDINT0, RDINT1, RDHCNTL, RDHDIG, RDHBUF, JR0SMVBA, JR1SMVBA, JR2SMVBA,
SMWPJR0R, SMWPJR1R, SMWPJR2R, but the remaining registers in CAAM register page 0 are reset
by SWRST. The Job Ring registers in CAAM register pages 1 .. 3 are reset by SWRST. However the
following Secure Memory registers in CAAM register pages 1 .. 3 are not reset by SWRST: SMSTA,
SMPO, SMCR, SMCSR, PxSDIDR_JRy for Secure Memory Partitions x= 0 .. 7 and JRs y= 0 .. 2,
PxSMAPR_JRy, PxSMAG2_JRy, PxSMAG1_JRy, SMCR_JRy and SMCSR_JRy and JRs y= 0 .. 2,The
RTIC registers in CAAM register page 6are not reset by SWRST. (If an RTIC descriptor is in execution or
is waiting for execution when SWRST is requested, RTIC will abandon the current sweep through all the
hash blocks and restart hashing at the first hash block.) The DECO and CCB registers in CAAM register
page 8 are reset by SWRST.

Note that SWRST will remain 1 (and the registers will be held in reset) until any outstanding CAAM DMA
transactions complete. Writing a 1 to SWRST will not cause a reset of the CAAM DMA unless SWRST is
already 1 and a 1 is also written to DMARST. Note that writing to MCFGR will overwrite the values in
LARGE_BURST, AXIPIPE, AWCACHE and ARCACHE, so to avoid disrupting outstanding DMA
transactions when initiating a SWRST, these fields should be written with their current values.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

674 NXP Semiconductors
Confidential Proprietary

Field Description

30

WDE

DECO Watchdog Enable. Enables the DECO Watchdog Timer to run. The Timer is used to detect and
flush a job that has caused a DECO to hang. If the DECO Watchdog Timer expires, the hung job is
usually flushed from the DECO with an error status indication. In those cases in which a hung job is not
flushed automatically, software can reset the DECO via the DECO Reset Register.

NOTE: The watchdog expiration period is extended for certain DECO operations and for RNG
reseeding, because these can take longer than the normal watchdog expiration period.

29

WDF

Watchdog Fast. Causes the DECO Watchdog Timer to expire prematurely for testing purposes.

To facilitate testing the upper bytes of the encrypted byte count logic, when WDF is 1 the encrypted byte
count increments by 216 per byte that is encrypted. When WDF is 0 the encrypted byte count increments
by 1 per byte that is encrypted.

28

DMA_RST

DMA Reset. If SWRST is already 1, writing a 1 to DMARST and SWRST on the same cycle will cause the
DMA to be reset. The DMA will not be reset if SWRST is not already a 1 (i.e. a 1 was previously written to
SWRST but DMA transactions have not completed). Following a DMA reset, system software should
delay long enough for outstanding AXI transaction responses to finish. These orphaned responses will be
ignored.

27

WRHD

Write Handoff Disable. If WRHD=0, when DECO has initiated the last write transaction of the current job
DECO will go idle without waiting for the bus slave's response to that write transaction. This allows DECO
to start another job while awaiting the slave's response. If an error response is eventually received CAAM
will update the transaction status appropriately. If WRHD=1 DECO will wait for the bus slave's response
to the last write transaction before DECO goes to the idle state. Setting WRHD=1 is intended for product
testing, so WRHD should normally be left at its PO reset value.

26-22

—

Reserved

21-20

—

Reserved

19

DWT

Double Word Transpose. Setting this bit affects whether the two words within a Dword are transposed
when a double-word register is accessed, or when DMA performs a Dword memory transaction or when
MOVEDW commands or certain MATH commands are executed.

When a double-word CAAM register is read or written by software, the two words are transposed when

! (SSTAR[PLEND] XOR MCFGR[DWT]). That is,

• for a Little-Endian platform (PLEND=0), the two words will be transposed if DWT=1.
• for a Big-Endian platform (PLEND=1), the two words will be transposed if DWT=0.

When CAAM DMA performs a DWord memory access, the two words are transposed when

! (SSTAR[PLEND] XOR MCFGR[DWT] XOR PEO XOR DWSO), where PEO and DWSO are from the
appropriate Job Ring Configuration Register (JRCFGR_JR).

That is,

• for a Little-Endian platform (PLEND=0), the two words will be transposed if DWT=0 and PEO =
DWSO.

• for a Big-Endian platform (PLEND=1), the two words will be transposed if DWT=1 and PEO =
DWSO.

For this chip PLEND=0 and DWT=1, so the most-significant half of 64-bit address registers will appear at
the lower address (the address given in the register description), unless the endianness has been
changed by setting the PEO or DWSO bits.

For an explanation of how DWT affects the MOVEDW command, see the MOVE, MOVEB, MOVEDW
and MOVE_LEN commands section.

For an explanation of how DWT affects the MATH command, see the MATH and MATHI command
section.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 675
Confidential Proprietary

Field Description

18

—

Reserved

17

—

Reserved

16

—

Reserved

15-12

ARCACHE

AXI Read Transaction Attributes. This field provides default values for the generation of the
ARCACHE[3:0] interface signals for read transactions. For a general description of ARCACHE signals
refer to the AXI3/4 protocol specification.

The following functionality, limitations, and extensions exist in this version of CAAM:

• ARCACHE[0] (Bufferable):

This bit is intended to indicate whether read data may be fetched from an intermediate point in the
interconnect or must be fetched from the transaction target (for details see AXI4 specification).

• ARCACHE[1] (Cacheable/Modifiable):

A setting of 1 indicates the transaction attributes may be modified, e.g., to improve performance.

• ARCACHE[3:2] (Cache check and allocate controls):

This setting and associated signal assertions are irrelevant because this SoC does not have a
downstream cache.

11-8

AWCACHE

AXI Write Transaction Attributes. This field provides default values for the generation of the
AWCACHE[3:0] interface signals for write transactions. For a general description of AWCACHE signals
refer to the AXI3/4 protocol specifications.

The following functionality, limitations, and extensions exist for this version of CAAM:

• AWCACHE[0] (Bufferable):

A setting of 1 indicates the transaction response may be generated from an intermediate point and
the transaction may be delayed reaching its final destination (this setting is intended to reduce
transaction latency and improve performance).

NOTE: CAAM always issues non-bufferable writes when it needs to ensure that
previously written data using the same AWID has been made visible to other
masters after the associated non-bufferable write response is received. For
such writes the AWCACHE[0] signal will be forced to 0, independent of the
AWCACHE[0] configuration.

• AWCACHE[1] (Cacheable/Modifiable):

A setting of 1 indicates the transaction attributes may be modified, e.g., to improve performance.

• AWCACHE[3:2] (Cache check and allocate controls):

This setting and associated signal assertions are irrelevant because this SoC does not have a
downstream cache.

7-4

AXIPIPE

AXI Pipeline Depth. The AXIPIPE field is a debug field used to adjust the maximum number of
outstanding DMA transactions that CAAM is able to queue. Optimal performance will be achieved by
retaining the default value of this field.

0000b - Maximum value (since an actual value of zero would effectively disable DMA transactions)

0001b .. 1111b - Upper limit for number of outstanding AXI transactions

3

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

676 NXP Semiconductors
Confidential Proprietary

Field Description

2

LARGE_BURST

Enable Large Bursts. When LARGE_BURST=1, Job Descriptor reads, Shared Descriptor reads and
reads of data for the Data FIFO can use transactions as large as the maximum AXI interface transaction
size, which equals 16 times the width of the AXI data buses (i.e. 64 bytes for 32-bit data buses). When
LARGE_BURST=0, all master bus transactions use the normal burst size.

NOTE: Changes to LARGE_BURST should be made only when CAAM is not processing jobs.

1

—

Reserved

0

NORMAL_BUR
ST

Normal Burst Size. This field defines the normal burst size for aligned read and write transactions. The
normal burst size represents an objective. As needed, CAAM reduces the size by adjusting the actual
start and/or end address to meet the functional requirements imposed by the encountered read/write
buffer address and size. In addition, CAAM adjusts the end address to enable the use of normal burst
aligned addresses in subsequent transactions to maximize performance and lower transaction bandwidth
requirements.

NOTE: NORMAL_BURST was writable in earlier versions of CAAM, but this capability is now obsolete.

0 - Aligned 32 byte burst size target

1 - Aligned 64 byte burst size target

10.13.3 Page 0 SDID Register (PAGE0_SDID)

CAAM enforces control over access to the Secure Memory registers by means of
Security Domain Identifier (SDID) values. The owner of a Secure Memory partition is
identified by the SDID value stored in the partition's PSDID register. Software can claim
an unowned Secure Memory partition by writing into the partition's SMAPR register via
a Job Ring register page or via register page 0. At the time the partition is claimed the
partition's new owner is recorded by updating the partition's PSDID register.

When claiming a partition via a Job Ring register page, the SDID value from the Job
Ring's JRaDID register is copied into the partition's PSDID register. When claiming a
partition via register page 0, the SDID value from the Page 0 SDID register is copied into
the partition's PSDID register. Note that only the CAAM manager (typically the
hypervisor and/or TrustZone SecureWorld) can access CAAM register page 0, so only
the CAAM manager will be able to claim a Secure Memory partition via a SMAPR
address alias in register page 0.

When a Secure Memory partition is claimed by writing into one of the page 0 SMAP
register aliases, the SDID value from the PAGE0_SDID register is copied into the
partition's PSDID register. Note that bit 4 of the register receives special treatment. See
Secure Memory Access Control.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 677
Confidential Proprietary

10.13.3.1 Offset

Register Offset

PAGE0_SDID 8h

10.13.3.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

S
D

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.3.3 Fields

Field Description

31-15

—

Reserved

14-0

SDID

Security Domain Identifier.

When the system software claims a Secure Memory partition by writing (with ns=1) into a partition's
Access Permission register via register page 0, hardware indicates the SDID of the nonSecureWorld
owner by copying PAGE0_DID[SDID] into the partition's PSDID register but forcing bit 4 to 0 in the
partition's PSDID register. (This ensures that the partition is owned by TrustZone non-SecureWorld.)

When Trust_Zone Secure_World claims a secure memory partition by writing (with ns=0) into a partition's
Access Permission register via register page 0, hardware indicates the partition owner by copying
PAGE0_DID[SDID] into the partition's PSDID register. (If bit 4 is 1, the partition will be owned by
TrustZone SecureWorld. But SecureWorld can claim a partition for nonSecureWorld by setting bit 4 to 0.)

Note that the value 7FFFh should not be written to this bit field.

10.13.4 Security Configuration Register (SCFGR)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

678 NXP Semiconductors
Confidential Proprietary

The Security Configuration Register is primarily used to set security-related mode bits
enabling the controlled transition from special boot-time to normal run-time operating
modes. At POR, the SCFGR is reset to 0.

When RNGSH0 is 0, RNG DRNG State Handle 0 can be instantiated in deterministic
mode. This allows the secure boot software to run deterministic tests on the RNG and its
State Handle 0 logic. Once the tests have been completed, the secure boot software can
write a 1 to RNGSH0 to prevent State Handle 0 from being instantiated in deterministic
mode. This ensures that random data, rather than deterministic data, is always used.

The PRIBLOB field is used to select a private blob type during Trusted Mode. When a
General Memory Blob or Secure Memory Blob is encapsulated or decapsulated during
Trusted Mode, the PRIBLOB bits are used to modify the derivation of the Blob Key
Encryption Key (see Blob encapsulation). This is used to enforce cryptographic
separation of private blob types during the boot process (and thereafter). These bits reset
to 0 at POR, but when a PRIBLOB bit is written to a 1, it remains a 1 until the next POR.

The PRIBLOB=00 setting allows secure boot software to have its own private blobs that
cannot be decapsulated or encapsulated by other software, even software that later runs in
Trusted Mode. This feature can be used to safeguard boot reference metrics (e.g. hash
values over software). In this use case, the reference metrics might be initially verified
via a public key signature and then encapsulated in a private secure boot blob. On
subsequent boot cycles the protected reference metrics would be obtained by
decapsulating the private secure boot blob, obviating the time-consuming public key
signature verification process.

The PRIBLOB=01 and PRIBLOB=10 settings allow trusted provisioning software (e.g.
software that handles DRM keys) to have private blobs that cannot be decapsulated or
encapsulated by software that runs later in the boot process, even if that software runs in
Trusted Mode.

To prevent later stages of software from decrypting blobs used by boot software or key
provisioning software, and to prevent later stages of software from generating counterfeit
blobs that would be accepted as genuine by boot software or provisioning software on
later boot cycles, the boot software or provisioning software or the initial boot image
should set one or both of the PRIBLOB bits before passing control to later software. As
illustrated in Figure 10-23, typically the secure boot software would enter Trusted Mode,
then encapsulate or decapsulate all of its private blobs, and then would write either a 01,
10 or 11 to PRIBLOB. For the remainder of the current power-on session, private secure
boot blobs could no longer be encapsulated or decapsulated. The secure boot software
would then either run provisioning software with the 10 or 01 setting, or would skip the
provisioning software and run the normal boot software with the 11 setting. If the
provisioning software runs, it would encapsulate or decapsulate its own private blobs and

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 679
Confidential Proprietary

then write 11 to PRIBLOB. At this point PRIBLOB=11 for the remainder of the current
power on session, and no software can encapsulate or decapsulate private secure boot
software blobs or either type of private provisioning blobs.

When deploying an encrypted boot environment the cryptographic separation of private
blob types should be applied. The Data Encryption Key (DEK) must be initially
encapsulated as a private provisioning type blob (PRIBLOB=01 or PRIBLOB=10) and
the run time software should only be able to create normal operation blobs
(PRIBLOB=11). This separation of private blob types avoids any undetected
modification or replacement of Data Encryption Key (DEK) blobs.

PRIBLOB=00

PRIBLOB=01 PRIBLOB=10

PRIBLOB=11

Secure Boot Software (SBS)
uses private SBS blobs

Provisioning software
uses private provisioning
type 2 blobs

Provisioning software
uses private provisioning
type 1 blobs

Normal boot and runtime software
 uses normal operation blobs

 SBS transitions
to Trusted Mode

SBS writes 10 to PRIBLOB and transitions
 to trusted provisioning software

 Provisioning software writes 11
 to PRIBLOB and transitions to
the normal boot software

Provisioning software writes 11
 to PRIBLOB and transitions to
 the normal boot software

SBS writes 11 to PRIBLOB
 and transitions to the
 normal boot software

SBS writes 01 to PRIBLOB and transitions
 to trusted provisioning software

Figure 10-23. Process for Managing Private Blobs

10.13.4.1 Offset

Register Offset

SCFGR Ch

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

680 NXP Semiconductors
Confidential Proprietary

10.13.4.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

M
P

C
U

R
V

E

M
P

M
R

L

R
es

er
ve

d

W

M
P

P
K

R
C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

V
IR

T
_E

N

R
es

er
ve

d

LC
K

_T
R

N
G

R
es

er
ve

d

R
N

G
S

H
0

R
es

er
ve

d

R
es

er
ve

d

P
R

IB
LO

B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.4.3 Fields

Field Description

31-28

MPCURVE

Manufacturing Protection Curve. This shows the elliptic curve that was selected when the MPPrivK
Generation protocol was run.

27

MPPKRC

Manufacturing Protection Private Key Register Clear. Writing a 1 to this bit clears the Manufacturing
Protection Private Key Register.

26

MPMRL

Manufacturing Protection Message Register Lock. Writing a 1 to this bit locks the Manufacturing
Protection Message Register for writing. The register remains locked until the next POR.

25-16

—

Reserved

15

VIRT_EN

Virtualization enable. Virtualization is disabled by default. Writing a 1 to this bit enables Job Ring
virtualization. When Job Ring virtualization in enabled, the Start_JRa bits in the JRSTART register must
be used to switch between writing the Job Ring registers in register page 0 and writing the Job Ring
registers in register pages 1....3.

NOTE: The LAMTD bit in the JRaDID register cannot be written unless VIRT_EN is 1.

0 - Disable job ring virtualization

1 - Enable job ring virtualization

14-12

—

Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 681
Confidential Proprietary

Field Description

11

LCK_TRNG

Lock TRNG Program Mode. Writing a 1 to this bit locks the TRNG. That is, when this bit is set TRNG
can't go into program mode. If it is in program mode when this bit is set, the TRNG will immediately leave
program mode. Once this bit has been written to a 1, it cannot be changed to a 0 until the next power on
reset.

10

—

Reserved

9

RNGSH0

Random Number Generator State Handle 0.

0 - When RNGSH0 is 0, RNG DRNG State Handle 0 can be instantiated in any mode. RNGSH0 is set to
0 only for testing.

1 - When RNGSH0 is 1, RNG DRNG State Handle 0 cannot be instantiated in deterministic (test) mode.
RNGSHO should be set to 1 before the RNG is instantiated. If it is currently instantiated in a deterministic
mode, it will be un-instantiated. Once this bit has been written to a 1, it cannot be changed to a 0 until the
next power on reset.

8

—

Reserved

7-2

—

Reserved

1-0

PRIBLOB

Private Blob. This field selects one of four different types of private blobs during Trusted Mode. All blobs
encapsulated or decapsulated during Trusted Mode will be of the type specified in this field, until a 1 is
written to any or the bits, or until the next POR. The bits of this field are "sticky", i.e. once a bit has been
written to a 1, it cannot be changed to a 0 until the next power on reset.

00 - Private secure boot software blobs

01 - Private provisioning type 1 blobs

10 - Private provisioning type 2 blobs

11 - Normal operation blobs

10.13.5 Job Ring a DID Register - most significant half (JR0DID_
MS - JR2DID_MS)

There is one JRaDID_MS register per Job Ring. This Register is used to indicate the
Security Domain (SDID) that currently owns the Job Ring and to specify the TrustZone
SecureWorld, DID and ICID values that the CAAM DMA asserts when reading or
writing memory on behalf of descriptors fetched from a particular Job Ring.

TrustZone SecureWorld can reserve a Job Ring for itself by setting the TZ_OWN bit to 1.
Note that TZ_OWN can be set to 1 only if the register is written using a SecureWorld bus
transaction. If TZ_OWN=1, the JRaDID_MS and JRaDID_LS registers can be written
only via a SecureWorld bus transaction. PRIM_TZ can be set to 1 only if TZ_OWN=1
and the register is written using a SecureWorld bus transaction. That is, only a

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

682 NXP Semiconductors
Confidential Proprietary

SecureWorld-owned Job Ring can cause CAAM to assert a SecureWorld bus transaction,
but a SecureWorld-owned Job Ring can be set to assert either SecureWorld or Non-
SecureWorld transactions.

The Job Ring register pages (pages 1 .. 3) can be accessed only via bus transactions using
TrustZone and DID values that match the values in the PRIM_TZ and PRIM_DID fields
in that Job Ring's JRaDID_MS register. Bus transactions that use other TrustZone or DID
values will be ignored.

JRaDID_MS contains a USE_OUT field that enables a second set of ICID and DID
values. When USE_OUT=1, this Job Ring's data write transactions will assert TrustZone
Non-SecureWorld, along with the OUT_DID and OUT_ICID values from JRSDID_LS.
All other bus transactions, including all reads, descriptor write-backs and job completion
status writes will assert the PRIM_ICID, PRIM_ICID and not PRIM_TZ values from
JRaDID_MS. When USE_OUT=0, all bus transactions performed on behalf of this Job
Ring will use the PRIM_ICID, PRIM_ICID and not PRIM_TZ values from
JRSDID_MS.

This register also contains a bit (AMTD) that grants permission for Trusted Descriptors
to be created in this Job Ring. Note that there is a lock bit (LAMTD) specifically for the
AMTD field. Once LAMTD is set to 1 the LAMTD and AMTD bits cannot be modified
until the next POR. If the Job Ring is owned by TrustZone SecureWorld (TZ_OWN=1),
any Trusted Descriptor created in this Job Ring is marked as a TrustZone Trusted
Descriptor (see TDES field in HEADER command. If the Job Ring is not owned by
TrustZone SecureWorld, any Trusted Descriptor created in the job ring is marked as a
nonTrustZone Trusted Descriptor.

The Security Domain Identifer (SDID) bits are mixed into
• the JDKEK or TDKEK to encrypt SDID-specific black keys
• the TDSK to sign SDID-specific Trusted Descriptors
• the BKEK to encrypt/decrypt SDID-specific blobs

When USE_OUT=0 and PRIM_TZ=0, the SDID consists of the concatenation of the
SDID_MS, PRIM_TZ and PRIM_DID fields. When USE_OUT=0 and PRIM_TZ=1, all
bits of the SDID_MS field are forced to zeros, so SDID consists of the concatenation of
0000000000b, and the PRIM_TZ and PRIM_DID fields. Therefore, the only
SecureWorld Black Keys, Blobs, and Trusted Descriptors that are accessible within this
DID-specific SecureWorld are those corresponding to this single SDID value. When
USE_OUT=1, the SDID consists of the concatenation of the SDID_MS field, 0b (non-
SecureWorld) and the OUT_DID field.

The PRIM_TZ, PRIM_DID and OUT_DID fields are typically written at boot time and
then locked by setting LDID to 1. Once LDID is set to 1, LDID, PRIM_TZ, PRIM_DID
and OUT_DID cannot be modified until the next POR.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 683
Confidential Proprietary

10.13.5.1 Offset

Register Offset Description

JR0DID_MS 10h used with Job Ring 0

JR1DID_MS 18h used with Job Ring 1

JR2DID_MS 20h used with Job Ring 2

10.13.5.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

LD
ID

U
S

E
_O

U
T

P
R

IM
_I

C
ID

R
es

er
ve

d

LA
M

T
D

A
M

T
D

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

T
Z

_O
W

N

S
D

ID
_M

S

P
R

IM
_T

Z

P
R

IM
_D

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.5.3 Fields

Field Description

31

LDID

Lock DIDs. Once LDID has been set to 1, no further changes can be made to the LDID, PRIM_DID,
PRIM_TZ, or OUT_DID fields until reset. The SDID_MS field is not locked, and the AMTD is locked only if
LAMTD=1.

30

USE_OUT

USE_OUT. When USE_OUT=0, all CAAM DMA transactions performed on behalf of this Job Ring assert
the PRIM_ICID, PRIM_TZ and PRIM_DID values. When USE_OUT=1, data output DMA transactions
(i.e. writing data to memory) performed on behalf of this Job Ring assert the OUT_ICID and OUT_DID
values, and assert ns as 1 (i.e. TrustZone non-SecureWorld). All other CAAM DMA transactions
performed on behalf of this Job Ring (including job completion status writes and writes back to job
descriptors) assert the PRIM_ICID, PRIM_TZ and PRIM_DID values.

29-19

PRIM_ICID

Primary ICID. This ICID value is asserted during certain CAAM DMA transactions. (See
JRaDID_MS[USE_OUT].)

18

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

684 NXP Semiconductors
Confidential Proprietary

Field Description

17

LAMTD

Lock AMTD. Once LAMTD has been set, no further changes can be made to the AMTD field. Note that
the LAMTD bit cannot be written unless virtualization mode is enabled (SCFGR[VIRT_EN]=1).

16

AMTD

Allow Make Trusted Descriptor. If AMTD is set, the Job Ring associated with this register is permitted to
issue jobs that create Trusted Descriptors. When DECO encounters a descriptor header with the MTD bit
set, the options specified in the SIGNATURE command at the end of the descriptor determine whether
DECO will execute the commands in the descriptor, or append a signature to the descriptor, or both. If
the Job Ring is owned by TrustZone SecureWorld, the descriptor will be treated as a TrustZone Trusted
Descriptor, otherwise the descriptor will be treated as a non-SecureWorld Trusted Descriptor.

If AMTD is not set, then executing a descriptor with the MTD bit set in the descriptor's header will result in
an error, and no signature will be generated.

15

TZ_OWN

TrustZone SecureWorld. This bit can be written only by TrustZone SecureWorld (i.e. a bus transaction
with ns=0). If TZ_OWN=1, this Job Ring is owned by TrustZone SecureWorld. If TZ_OWN=0 this Job
Ring is owned by non-SecureWorld.

14-5

SDID_MS

Security Domain Identifier most significant bits. When USE_OUT=0 and PRIM_TZ=0, these bits are
prepended to the PRIM_TZ and PRIM_DID fields to form a 15-bit Security Domain Identifier (SDID). Note
that there is only one TrustZone SecureWord security domain per DID, so when USE_OUT=0 and
PRIM_TZ=1 the SDID_MS is forced to all 0s so there is only one SDID value per DID. When
USE_OUT=1 the value in the SDID_MS field is concatenated with a 0 bit and the OUT_DID field to form
the SDID. The 15-bit SDID value is used to tag Black Keys, Blobs, and Trusted Descriptors so they can
be used only by this security domain. When claiming a Secure Memory partition, the SDID value is
copied into the partition's PSDID register to indicate that the partition is owned by this Security Domain.

4

PRIM_TZ

Primary TZ. This field specifies the TrustZone SecureWorld/non-SecureWorld value asserted during
certain CAAM DMA transactions (see field JRaDID_MS[USE_OUT]). This field also specifies whether the
registers that are specific to a particular Job Ring can be read or written only by a bus master operating in
TrustZone SecureWorld. These registers include the Job Ring configuration registers, the interrupt
registers, the CAAM Secure Memory Access Permissions and Secure Memory Access Group registers
and the ring buffer registers. Note that PRIM_TZ = 1 means TrustZone SecureWorld and PRIM_TZ = 0
means TrustZone non-SecureWorld. PRIM_TZ can be written to 1 only via a TrustZone SecureWorld
transaction and only if TZ_OWN = 1. Consequently, only TrustZone SecureWorld can cause a CAAM Job
Ring DMA transaction to assert TrustZone SecureWorld.

3-0

PRIM_DID

Job Ring Owner's DID. This field defines the DID of the bus master that is permitted to read or write the
registers that are specific to a particular Job Ring. These registers include the Job Ring configuration
registers, the interrupt registers, the CAAM Secure Memory Access Permissions and Secure Memory
Access Group registers and the ring buffer registers. This field also specifies the DID value asserted
during certain CAAM DMA transactions (see field JRaDID_MS[USE_OUT]).

10.13.6 Job Ring a DID Register - least significant half (JR0DID_L
S - JR2DID_LS)

There is one JRaDID_LS register per Job Ring. This register contains the OUT_ICID and
OUT_DID values that are enabled when JRaDID_MS[USE_OUT]=1. When
USE_OUT=1 this Job Ring's data write transactions will assert the OUT_DID and
OUT_ICID values from JRaDID_LS but ignore JRaDID_MS[PRIM_TZ] and instead
always assert TrustZone NonSecure World (ns=1). All other bus transactions, including
all read transactions and descriptor write-back and job completion status writes will assert

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 685
Confidential Proprietary

the PRIM_ICID value and ns = not PRIM_TZ value from JRaDID_MS. When
USE_OUT=0 all bus transactions performed on behalf of this Job Ring, including input
data reads, will use the PRIM_ICID and ns = not PRIM_TZ value from JRaDID_MS. If
JRaDID_MS[TZ_OWN]=1, the JRaDID_MS and JRaDID_LS registers can be written
only via a SecureWorld bus transaction.

10.13.6.1 Offset

Register Offset Description

JR0DID_LS 14h used with Job Ring 0

JR1DID_LS 1Ch used with Job Ring 1

JR2DID_LS 24h used with Job Ring 2

10.13.6.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

O
U

T
_I

C
ID

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved OUT_DID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.6.3 Fields

Field Description

31-30

—

Reserved

29-19

OUT_ICID

Job Ring Output ICID. This field defines the ICID value that, if JRaDID_MS[USE_OUT]=1, will be
asserted for data write DMA transactions performed on behalf of this Job Ring. All read transactions,
including input data, keys, scatter/gather tables and descriptors and job completion status write
transactions will assert JRaDID_MS[PRIM_ICID]. If USE_OUT=0, all bus transactions performed on
behalf of this Job Ring will assert PRIM_ICID.

18-4 Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

686 NXP Semiconductors
Confidential Proprietary

Field Description

—

3-0

OUT_DID

Output DID. This field defines the DID value that, if JRaDID_MS[USE_OUT]=1, will be asserted for data
write DMA transactions performed on behalf of this Job Ring. Descriptor write-back and job completion
status write transactions will assert JRaDID_MS[PRIM_DID]. All read transactions, including input data,
keys, scatter/gather tables and descriptors and job completion status write transactions will assert
JRaDID_MS[PRIM_DID]. If USE_OUT=0, all bus transactions performed on behalf of this Job Ring will
assert PRIM_DID. Once the LDID bit in the JRaDID_MS register has been set to 1, until reset no further
changes can be made to the OUT_DID field.

10.13.7 Debug Control Register (DEBUGCTL)

The DEBUGCTL Register is used to stop CAAM from processing jobs so that a
consistent read of the debug registers can be performed.

10.13.7.1 Offset

Register Offset

DEBUGCTL 58h

10.13.7.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

S
T

O
P

_A
C

K

S
T

O
P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 687
Confidential Proprietary

10.13.7.3 Fields

Field Description

31-18

—

Reserved

17

STOP_ACK

STOP_ACK will assert when the job queue controller acknowledges that it is stopped.

16

STOP

STOP is written to 1 to request that CAAM stop processing jobs. This is intended to be a graceful halt.
CAAM will shut down in such a way that it will be able to resume processing where it left off once
software has finished reading the debug registers. Note that the RTIC watchdog timer will continue to run
during the halt. It is recommended that the DECO watchdog timer be turned off (see Master Config
Register) prior to stopping CAAM in order to prevent a possible watchdog error from a job in a stopped
DECO. When STOP is asserted, the DECO Availability register can be used to monitor which DECOs are
stopped or are available.

15-0

—

Reserved

10.13.8 Job Ring Start Register (JRSTARTR)

The Job Ring Start register is used by the system software or TrustZone SecureWorld
when configuring a Job Ring for a new user. Before the Job Ring is configured for a new
user, the Job Ring must be in stop mode. Before the new user can set up the Job Ring and
begin using it, the Job Ring must be in start mode.

The Job Ring Start register is not used and is not writable when virtualization mode is
disabled in the Security Configuration register. All bits in this register will remain at the
default 0 value when virtualization mode is disabled.

10.13.8.1 Offset

Register Offset

JRSTARTR 5Ch

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

688 NXP Semiconductors
Confidential Proprietary

10.13.8.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

S
ta

rt
_J

R
2

S
ta

rt
_J

R
1

S
ta

rt
_J

R
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.8.3 Fields

Field Description

31-3

—

Reserved

2

Start_JR2

Start Job Ring 2. This bit is not writable if virtualization mode is disabled (SCFGR[VIRT_EN]=0).If Job
Ring 2 is allocated to TrustZone SecureWorld (JR2DID[TZ]=1), Start_JR2 can be changed only by writing
to JRSTARTR via a bus transaction that has ns=0.

0 - Stop Mode. The JR2DID register and the SMVBA register for Job Ring 2 can be written but the
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 2 are NOT
accessible. If Job Ring 2 is allocated to TrustZone SecureWorld (JR2DID[TZ]=1), the JR2DID and
SMVBA register can be written only via a bus transaction that has ns=0.

1 - Start Mode. The JR2DID register and the SMVBA register for Job Ring 2 CANNOT be written but the
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 2 ARE
accessible. If Job Ring 2 is allocated to TrustZone SecureWorld (JR2DID[TZ]=1), then the SMVBA,
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR registers for Job Ring 2
can be written only via a bus transaction that has ns=0.

1

Start_JR1

Start Job Ring 1. This bit is not writable if virtualization mode is disabled (SCFGR[VIRT_EN]=0).If Job
Ring 1 is allocated to TrustZone SecureWorld (JR1DID[TZ]=1), Start_JR1 can be changed only by writing
to JRSTARTR via a bus transaction that has ns=0.

0 - Stop Mode. The JR1DID register and the SMVBA register for Job Ring 1 can be written but the
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 1 are NOT
accessible. If Job Ring 1 is allocated to TrustZone SecureWorld (JR1DID[TZ]=1), the JR1DID and
SMVBA register can be written only via a bus transaction that has ns=0.

1 - Start Mode. The JR1DID register and the SMVBA register for Job Ring 1 CANNOT be written but the
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 1 ARE
accessible. If Job Ring 1 is allocated to TrustZone SecureWorld (JR1DID[TZ]=1), then the SMVBA,
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR registers for Job Ring 1
can be written only via a bus transaction that has ns=0.

0

Start_JR0

Start Job Ring 0. This bit is not writable if virtualization mode is disabled (SCFGR[VIRT_EN]=0).If Job
Ring 0 is allocated to TrustZone SecureWorld (JR0DID[TZ]=1), Start_JR0 can be changed only by writing
to JRSTARTR via a bus transaction that has ns=0.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 689
Confidential Proprietary

Field Description

0 - Stop Mode. The JR0DID register and the SMVBA register for Job Ring 0 can be written but the
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 0 are NOT
accessible. If Job Ring 0 is allocated to TrustZone SecureWorld (JR0DID[TZ]=1), the JR0DID and
SMVBA register can be written only via a bus transaction that has ns=0.

1 - Start Mode. The JR0DID register and the SMVBA register for Job Ring 0 CANNOT be written but the
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 0 ARE
accessible. If Job Ring 0 is allocated to TrustZone SecureWorld (JR0DID[TZ]=1), then the SMVBA,
IRBAR, IRSR, IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR registers for Job Ring 0
can be written only via a bus transaction that has ns=0.

10.13.9 RTIC OWN Register (RTIC_OWN)

This register is used to specify the IP Register Bus DID and TrustZone World that must
be asserted by the processor in order to read or write the Real Time Integrity Checker
(RTIC) registers (excluding the RTIC DID registers, which are accessible only to the
Manager Processor). This register is typically written at boot time and then locked.

10.13.9.1 Offset

Register Offset Description

RTIC_OWN 60h controls access to the RTIC register page

10.13.9.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
LCK Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
O

W
N

_T
Z

R
O

W
N

_D
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

690 NXP Semiconductors
Confidential Proprietary

10.13.9.3 Fields

Field Description

31

LCK

RTIC OWN Lock. Once LCK has been set, no further changes can be made to the RTIC_OWN register
(including changes to LCK) or the four RTIC DID registers until the next POR.

30-5

—

Reserved

4

ROWN_TZ

RTIC Owner's TZ. This field defines the TrustZone World (SecureWorld = 1) of the bus master that is
permitted to read or write the register in the RTIC page. The ROWN_TZ bit cannot be written with a non-
SecureWorld bus transaction. When the RTIC_OWN register is written with a SecureWorld bus
transaction the ROWN_TZ bit can be written to either 0 or 1.

3-0

ROWN_DID

RTIC Owner's DID

RTIC Owner's DID. This field defines the DID of the bus master that is permitted to read or write the
registers in the RTIC page.

10.13.10 RTIC DID Register for Block a (RTICA_DID - RTICD_DID)

There is one RTIC_DID register per RTIC hash block. The RTIC DID Register is used to
specify the AXI bus DID and ICID values that the CAAM DMA asserts when reading a
particular RTIC hash block from memory external to CAAM.

10.13.10.1 Offset

Register Offset Description

RTICA_DID 64h used with Block A

RTICB_DID 6Ch used with Block B

RTICC_DID 74h used with Block C

RTICD_DID 7Ch used with Block D

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 691
Confidential Proprietary

10.13.10.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
T

IC
_I

C
ID

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
T

IC
_T

Z

R
T

IC
_D

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.10.3 Fields

Field Description

31-30

—

Reserved

29-19

RTIC_ICID

RTIC ICID. This field defines the ICID value asserted when RTIC accesses the memory addresses in
hash region a.

18-5

—

Reserved

4

RTIC_TZ

RTIC_TZ. This field defines the TrustZone TZ value (SecureWorld = 1) asserted when RTIC accesses
memory. The RTIC_TZ bit cannot be set to 1 using a non-SecureWorld bus transaction or if RTIC is
under control of non-SecureWorld (RTIC_OWN[ROWN_TZ]=0). When RTIC_OWN[ROWN_TZ]=1 and
the RTIC_DID register is written with a SecureWorld bus transaction the RTIC_TZ bit can be written to
either 0 or 1.

3-0

RTIC_DID

RTIC DID. This field defines the DID value asserted when RTIC accesses the memory addresses in hash
region a.

10.13.11 DECO Request Source Register (DECORSR)

The DECO Request Source Register is used to indicate a particular Job Ring whose
JRaDID register will be used to supply the DID, ICID, TZ_OWN and SDID values and
whose JRSMBA register will be used to supply the Secure Memory base address when
descriptor commands are executed under direct software control. The selected Job Ring

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

692 NXP Semiconductors
Confidential Proprietary

will be used for all DECOs that are presently under direct software control regardless of
whether those DECOs were requested via a single write or via multiple writes to the
DECO Request Register. The DECO Request Source Register is writable only when all
bits in the DECO Request Register are 0 (i.e. no DECOs are requested or already under
direct software control). If the Job Ring selected via the DECORSR is later changed to
stop mode, all DECOs that are under direct software control are reset and returned to the
pool of DECOs available for processing normal jobs.

10.13.11.1 Offset

Register Offset

DECORSR 94h

10.13.11.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

V
A

LI
D

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved JR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.11.3 Fields

Field Description

31

VALID

Valid. This bit will be set to 1 to indicate that the JR field contains a valid Job Ring number. If an invalid
Job Ring number is written to JR, the VALID bit will be 0. The VALID bit will always remain 0 if
virtualization mode is disabled.

30-2

—

Reserved

1-0

JR

Job Ring number. This Job Ring's JRaDID register will be used to supply the DID, ICID, TZ_OWN and
SDID values and this Job Ring's JRSMBA register will be used to supply the Secure Memory base
address when descriptor commands are executed under direct software control. If the specified Job Ring

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 693
Confidential Proprietary

Field Description

is not implemented or if virtualization is enabled and the specified Job Ring is not in start mode, the JR
field will not be changed and the VALID bit will remain 0. Note that it is not possible to select a job ring
that has PRIM_TZ=1. Regardless of whether ns=1 or 0, if the write to DECORSR specifies such a Job
Ring the VALID bit will remain 0.

10.13.12 DECO Request Register (DECORR)

This register is used when software wants to bypass the normal job queue controller
mechanism and directly access the DECO/CCB block. This interface would normally be
used only for debugging and testing purposes since it is not as efficient as the Job Ring
Interface. The procedure for directly accessing the DECO/CCB block is described in
detail in Register-based service interface.

Note that, unless virtualization mode is disabled in the Security Configuration register, a
Job Ring that is in the start mode must be selected via the DECO Request Source
Register prior to requesting a DECO via DECORR. If the DECO Request Source
Register's VALID bit is not set, or if the selected Job Ring is not in start mode, the DECO
Request Register cannot be written. The DID, TZ and SDID value from the selected job
ring's JRaDID register and the Secure Memory base address from the Job Ring's
JRSMBA register will be used when descriptor commands are executed under direct
software control. If the Job Ring selected via the DECORSR is later changed to stop
mode, all DECOs that are under direct software control are reset and returned to the pool
of DECOs available for processing normal jobs.

If virtualization mode is disabled the DECO DID registers supply the DID values used
when descriptor commands are executed under direct software control, and an all-zero
SDID is used. The DECO Request Source register is not used when virtualization is
disabled.

10.13.12.1 Offset

Register Offset

DECORR 9Ch

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

694 NXP Semiconductors
Confidential Proprietary

10.13.12.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

D
E

N
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
Q

D
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.12.3 Fields

Field Description

31-17

—

Reserved

16

DEN0

The job queue controller asserts this bit when permission is granted for the software to directly access
DECO 0/CCB 0.

15-1

—

Reserved

0

RQD0

This bit is set by software to request direct access to DECO 0/CCB 0. It cannot be cleared until the direct
access operation is complete or CAAM gets a software reset.

10.13.13 DECO Availability Register (DAR)

The DECO Availability Register can be used to determine whether the DECO is hung. If
software writes a 1 to the DECO's NYA field, the DECO will clear that bit whenever the
DECO is, or becomes, available. The bit can be polled to determine if the DECO is
completing jobs. If STOP is asserted in the DEBUG Control register, the DECO
Availability Register cannot be written. While STOP is asserted DECO Availability
provides a status for whether each DECO is stopped or available. Any bit that is zero in
this case indicates a DECO that is still running and needs to stop before the Debug
Control Register can assert STOP_ACK.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 695
Confidential Proprietary

10.13.13.1 Offset

Register Offset

DAR 120h

10.13.13.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

N
Y

A
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.13.3 Fields

Field Description

31-1

—

Reserved

0

NYA0

This bit is set by software to start polling for the availability of DECO 0. This bit will be reset when DECO
0 is or becomes, available.

10.13.14 DECO Reset Register (DRR)

The DECO Reset Register can be used to force a soft reset of the DECO with appropriate
status write back (error code 20h). Note that using this can result in lost DMA
transactions and/or memory leaks. In some cases a soft reset of a DECO will not result in
a status write back, or may not free a hung DECO. If a hung DECO cannot be freed via a
soft DECO reset, then a software CAAM reset or a POR will be required.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

696 NXP Semiconductors
Confidential Proprietary

10.13.14.1 Offset

Register Offset

DRR 124h

10.13.14.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

W

R
S

T
0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.14.3 Fields

Field Description

31-1

—

Reserved

0

RST0

Software writes a 1 to this bit to initiate a soft reset of DECO 0. This bit is self-clearing after one clock
cycle.

10.13.15 Job Ring a Secure Memory Virtual Base Address
Register (JR0SMVBAR - JR2SMVBAR)

The Job Ring Secure Memory Virtual Base Address Register is used by the system
software to specify the base address of Secure Memory within the virtual address space
used by a particular Job Ring. There is one copy of the register per Job Ring. All pages of
Secure Memory are expected to be mapped contiguously starting at the specified virtual

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 697
Confidential Proprietary

base address. CAAM's DMA uses this base address, together with the size of Secure
Memory, to determine whether to steer accesses to Secure Memory or to external
memory.

10.13.15.1 Offset

Register Offset Description

JR0SMVBAR 184h used with Job Ring 0

JR1SMVBAR 18Ch used with Job Ring 1

JR2SMVBAR 194h used with Job Ring 2

10.13.15.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SMVBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SMVBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.15.3 Fields

Field Description

31-0

SMVBA

Secure Memory Virtual Base Address. This field contains the upper bits of the base address of Secure
Memory in this Job Ring's virtual address space. Since the base address of Secure Memory must be on a
64 kbyte boundary, the least significant 16 bits are omitted. That is, the full address is SMVBA followed
by 0000h.

10.13.16 Peak Bandwidth Smoothing Limit Register (PBSL)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

698 NXP Semiconductors
Confidential Proprietary

The Peak Bandwidth Smoothing Limit Register is used to limit the maximum bus
bandwidth consumed by CAAM.

10.13.16.1 Offset

Register Offset

PBSL 220h

10.13.16.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PBSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.16.3 Fields

Field Description

31-7

—

Reserved

6-0

PBSL

Whenever the number of outstanding AXI read bursts exceeds the value programmed in this field, the
Job Rings will be prevented from issuing additional AXI reads. While the number of outstanding AXI read
burst exceeds the PBSL, DECOs may continue to issue additional AXI read requests. The Job Rings will
be allowed to issue additional AXI reads only when the number of outstanding AXI read bursts drops to,
or below, the PBSL. Throttling the AXI reads reduces the CAAM peak bandwidth on the AXI bus, and
giving priority to DECOs improves CAAM performance when CAAM is heavily loaded with jobs. A limit of
PBSL=0 indicates that no AXI read smoothing will be performed.

10.13.17 DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 699
Confidential Proprietary

The four registers DMAn_AIDL_MAP_MS, DMAn_AIDL_MAP_LS,
DMAn_AIDM_MAP_MS and DMAn_AIDM_MAP_LS show the mapping of AXI
transaction IDs to CAAM internal blocks. These assignments are made via hardwired
signals and are SoC-specific. The value of each 8-bit field indicates the internal ID of the
CAAM block that will use the AXI ID corresponding to the field. For example,
AID2BID=00001000 means that AXI ID 2 (0010) will be used for all AXI transactions
by DECO0 (internal block ID 00001000). (Note that the DMAn AXI ID Enable Register
shows which of the 16 possible AXI transaction IDs are available for use by the DMA. If
a particular AXI transaction ID is disabled, then the corresponding AIDxBID field will
read as 00000000.)

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

The CAAM internal block IDs are encoded as follows:

Internal Block
ID

Internal Logic Block

00000001b Job Rings (The block ID for Job Ring 0 is used to represent all of the Job
Rings.)

00001000b DECO0

All other values are reserved.

NOTE
For backward compatibility the same registers are readable at
two different addresses. The preferred addresses are in the
range 00500..005FF. The addresses in the range 00240..002CF
are deprecated.

10.13.17.1 Offset

Register Offset Description

DMA0_AIDL_MAP_MS 240h Mapping for DMA AXI IDs 7 ... 4

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

700 NXP Semiconductors
Confidential Proprietary

10.13.17.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID7_BID AID6_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID5_BID AID4_BID

W

Reset u u u u u u u u u u u u u u u u

10.13.17.3 Fields

Field Description

31-24

AID7_BID

This field shows the CAAM Block ID that uses AXI ID 7.

23-16

AID6_BID

This field shows the CAAM Block ID that uses AXI ID 6.

15-8

AID5_BID

This field shows the CAAM Block ID that uses AXI ID 5.

7-0

AID4_BID

This field shows the CAAM Block ID that uses AXI ID 4.

10.13.18 DMA0_AIDL_MAP_LS (DMA0_AIDL_MAP_LS)

The four registers DMAn_AIDL_MAP_MS, DMAn_AIDL_MAP_LS,
DMAn_AIDM_MAP_MS and DMAn_AIDM_MAP_LS show the mapping of AXI
transaction IDs to CAAM internal blocks. See the description for register
DMAn_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 701
Confidential Proprietary

10.13.18.1 Offset

Register Offset Description

DMA0_AIDL_MAP_LS 244h Mapping for DMA AXI IDs 3 ... 0

10.13.18.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID3_BID AID2_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID1_BID AID0_BID

W

Reset u u u u u u u u u u u u u u u u

10.13.18.3 Fields

Field Description

31-24

AID3_BID

This field shows the CAAM Block ID that uses AXI ID 3.

23-16

AID2_BID

This field shows the CAAM Block ID that uses AXI ID 2.

15-8

AID1_BID

This field shows the CAAM Block ID that uses AXI ID 1.

7-0

AID0_BID

This field shows the CAAM Block ID that uses AXI ID 0.

10.13.19 DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

702 NXP Semiconductors
Confidential Proprietary

The four registers DMAn_AIDL_MAP_MS, DMAn_AIDL_MAP_LS,
DMAn_AIDM_MAP_MS and DMAn_AIDM_MAP_LS show the mapping of AXI
transaction IDs to CAAM internal blocks. See the description for register
DMAn_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

10.13.19.1 Offset

Register Offset Description

DMA0_AIDM_MAP_MS 248h Mapping for DMA AXI IDs 15 ... 12

10.13.19.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID15_BID AID14_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID13_BID AID12_BID

W

Reset u u u u u u u u u u u u u u u u

10.13.19.3 Fields

Field Description

31-24

AID15_BID

This field shows the CAAM Block ID that uses AXI ID 15.

23-16

AID14_BID

This field shows the CAAM Block ID that uses AXI ID 14.

15-8

AID13_BID

This field shows the CAAM Block ID that uses AXI ID 13.

7-0

AID12_BID

This field shows the CAAM Block ID that uses AXI ID 12.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 703
Confidential Proprietary

10.13.20 DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS)

The four registers DMAn_AIDL_MAP_MS, DMAn_AIDL_MAP_LS,
DMAn_AIDM_MAP_MS and DMAn_AIDM_MAP_LS show the mapping of AXI
transaction IDs to CAAM internal blocks. See the description for register
DMAn_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

10.13.20.1 Offset

Register Offset Description

DMA0_AIDM_MAP_LS 24Ch Mapping for DMA AXI IDs 11 ... 8

10.13.20.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID11_BID AID10_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID9_BID AID8_BID

W

Reset u u u u u u u u u u u u u u u u

10.13.20.3 Fields

Field Description

31-24

AID11_BID

This field shows the CAAM Block ID that uses AXI ID 11.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

704 NXP Semiconductors
Confidential Proprietary

Field Description

23-16

AID10_BID

This field shows the CAAM Block ID that uses AXI ID 10.

15-8

AID9_BID

This field shows the CAAM Block ID that uses AXI ID 9.

7-0

AID8_BID

This field shows the CAAM Block ID that uses AXI ID 8.

10.13.21 DMA0 AXI ID Enable Register (DMA0_AID_ENB)

The DMA AXI ID Enable register can be read to determine which AXI transaction IDs
are available for use by the DMAs. These enables are configured via hardwired signals
and are SOC-specific. The DMA will use a unique AXI ID for each CAAM internal
connected to it. The assignments are made using the lowest-numbered, available IDs.

NOTE
Note that for backward compatibility the same register is
readable at two different addresses.

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

10.13.21.1 Offset

Register Offset Description

DMA0_AID_ENB 250h Use of this register alias is deprecated. Instead, use
the register alias DMA_X_AID_15_0_EN

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 705
Confidential Proprietary

10.13.21.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
ID

15
E

A
ID

14
E

A
ID

13
E

A
ID

12
E

A
ID

11
E

A
ID

10
E

A
ID

9E

A
ID

8E

A
ID

7E

A
ID

6E

A
ID

5E

A
ID

4E

A
ID

3E

A
ID

2E

A
ID

1E

A
ID

0E

W

Reset u u u u u u u u u u u u u u u u

10.13.21.3 Fields

Field Description

31-16

—

Reserved

15

AID15E

If AID15E=1 then AXI ID 15 is enabled for this DMA engine.

14

AID14E

If AID14E=1 then AXI ID 14 is enabled for this DMA engine.

13

AID13E

If AID13E=1 then AXI ID 13 is enabled for this DMA engine.

12

AID12E

If AID12E=1 then AXI ID 12 is enabled for this DMA engine.

11

AID11E

If AID11E=1 then AXI ID 11 is enabled for this DMA engine.

10

AID10E

If AID10E=1 then AXI ID 10 is enabled for this DMA engine.

9

AID9E

If AID9E=1 then AXI ID 9 is enabled for this DMA engine.

8

AID8E

If AID8E=1 then AXI ID 8 is enabled for this DMA engine.

7

AID7E

If AID7E=1 then AXI ID 7 is enabled for this DMA engine.

6

AID6E

If AID6E=1 then AXI ID 6 is enabled for this DMA engine.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

706 NXP Semiconductors
Confidential Proprietary

Field Description

5

AID5E

If AID5E=1 then AXI ID 5 is enabled for this DMA engine.

4

AID4E

If AID4E=1 then AXI ID 4 is enabled for this DMA engine.

3

AID3E

If AID3E=1 then AXI ID 3 is enabled for this DMA engine.

2

AID2E

If AID2E=1 then AXI ID 2 is enabled for this DMA engine.

1

AID1E

If AID1E=1 then AXI ID 1 is enabled for this DMA engine.

0

AID0E

If AID0E=1 then AXI ID 0 is enabled for this DMA engine.

10.13.22 DMA0 AXI Read Timing Check Register (DMA0_ARD_
TC)

When AXI Read Timing Checks are enabled, the DMA measures the latencies of selected
AXI read transactions. A timer measures the latency by counting the number of AXI
clock cycles from the read address transaction to the beginning of the corresponding read
data transaction. The sample count is incremented and, if the latency equals or exceeds
the programmed limit, the late count is incremented. This count can optionally be
modified to count until the last beat of data by setting the ARTL (AXI Read Timer Last)
bit. The latency value is added to the running total of latencies. After completion of each
timing check, the process is repeated for the next AXI read. Timing checks are suspended
when:

• the AXI read sample count value reaches FFFFFh, or
• the AXI read latency total reaches FFFFFFFFh, or
• the AXI Read Timing Check Register is read

After the AXI Read Latency Register is read, the sample count, late count, and latency
total are cleared and read timing checks resume with the next AXI read.

NOTE
Note that the DMA_X_ARTC_CTL register located in the
address range 00530..005DF provides functionality similar to
the DMAn_ARD_TC register located in the address range
00260..002EF. Writing to either register affects the

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 707
Confidential Proprietary

corresponding fields in the other register. But note that some
fields in the DMAn_ARD_TC register have been rearranged in
the DMA_X_ARTC_CTL register or moved to the new
DMA_X_ARTC_LC register or DMA_X_ARTC_SC register.
The preferred registers are located in the address range
00530..005DF. The use of the DMAn_ARD_TC register
located in the address range 00260..002EF is deprecated.

10.13.22.1 Offset

Register Offset Description

DMA0_ARD_TC 260h The addresses of the two halves of the register are
unaffected by the endianness configuration.

10.13.22.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R

A
R

T
C

E

A
R

C
T

A
R

T
T

A
R

T
L

A
R

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved ARLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ARLC Reserved ARSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ARSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

708 NXP Semiconductors
Confidential Proprietary

10.13.22.3 Fields

Field Description

63

ARTCE

AXI Read Timing Check Enable. When ARTCE=0, ARL, ARLC, and ARSC in DMAn_ARD_TC and SARL
in DMAn_SARL and ARL in DMA_X_ARTC_CTL, ARLC in DMA_X_ARTC_LC, ARSC in
DMA_X_ARTC_SC and SARL in DMA_X_ARTC_LC are writeable. When ARTCE=1, AXI read timing
checks are enabled and these fields are read-only. Note that writing ARTCE in either DMAn_ARD_TC or
DMA_X_ARTC_CTL has the same effect.

62

ARCT

AXI Read Counter Test. When ARCT=1, ARLC and ARSC in DMAn_ARD_TC, ARLC in
DMA_X_ARTC_LC, ARSC in DMA_X_ARTC_SC, and SARL in DMAn_SARL and DMA_X_ARTC_LC,
are not cleared when timing checks are enabled and when timing checks resume after reading
DMAn_ARD_TC and DMAn_SARL or DMA_X_ARTC_LC, DMA_X_ARTC_SC and DMA_X_SARL. This
bit is used only for manufacturing test. It allows the counters to be initialized to non-zero values for the
start of timing checks. This shortens the counting range so that terminal count behavior can be tested.

61

ARTT

AXI Read Timer Test. When ARTT=1, the 12-bit timer used for each timing measurement is initialized to
FF0h instead of 000h. This bit is used only for manufacturing test. The timer counts the number of AXI
clock cycles from the AXI read address transaction to the beginning of the corresponding read data
transaction. The count can optionally be modified to count until the last beat of data instead of the first by
setting the ARTL (AXI Read Timer Last) bit. The test bit shortens the number of cycles to reach the
terminal value FFFh. The timer stops at the terminal value until the next timing check starts. Note that bit
field ARTT in the DMAn_ARD_TC register is aliased to bit field ARTT in the DMA_X_ARTC_CTL register,
i.e. writing to either ARTT bit field alters the ARTT value in the other register.

60

ARTL

AXI Read Timer Last. This bit controls whether the last or first beat of data signals the end of a
transaction's counter measurement.

0b - A read transaction counter measurement is stopped when the first beat of data arrives

1b - A read transaction counter measurement is stopped when the last beat of data arrives

59-48

ARL

AXI Read Limit. The AXI Read Timer measures latency by counting the number of AXI clock cycles from
the AXI read address transaction to the beginning of the corresponding read data transaction. If the
latency equals or exceeds the AXI Read Limit, the read response is considered late and the AXI Read
Late Count (ARLC) is incremented along with the AXI Read Sample Count (ARSC). The latency is added
to the Sum of AXI Read Latencies (SARL) in DMAn_SARL /DMA_X_ARTC_LAT. This field is writeable
only when ARTCE=0.Note that bit field ARL in the DMAn_ARD_TC register is aliased to bit field ARL in
the DMA_X_ARTC_CTL register, i.e. writing to either ARL bit field alters the ARL value in the other
register.

47-44

—

Reserved

43-24

ARLC

AXI Read Late Count. This field is incremented whenever the AXI Read Timer equals or exceeds the AXI
Read Limit. AXI read timing checks are suspended when ARLC=FFFFFh. This field is writeable only
when ARTCE=0.

23-20

—

Reserved

19-0

ARSC

AXI Read Sample Count. This field is incremented after each read timing check. AXI read timing checks
are suspended when ARSC=FFFFFh. This field is writeable only when ARTCE=0.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 709
Confidential Proprietary

10.13.23 DMA0 Read Timing Check Latency Register (DMA0_
ARD_LAT)

While AXI Read Timing Checks are enabled and not suspended, this register maintains a
running total of AXI read latencies.

NOTE
Note that the DMAn_ARTC_LAT register located in the
address range 0053C..005DF is identical to the DMAn_SARL
register located in the address range 00260..002EF. The register
has simply been given two different addresses in order to
consolidate legacy registers and new registers into two different
continuous address ranges. Some registers in the 00500 address
range have been reorganized to facilitate operation in both big-
endian and little-endian SoCs.

10.13.23.1 Offset

Register Offset

DMA0_ARD_LAT 26Ch

10.13.23.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SARL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SARL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

710 NXP Semiconductors
Confidential Proprietary

10.13.23.3 Fields

Field Description

31-0

SARL

Sum of the AXI Read Latencies. After each AXI read timing check, the latency is added to the Sum of AXI
Read Latencies (SARL) in DMAn_SARL. This field is writeable only when ARTCE=0.

10.13.24 DMA0 AXI Write Timing Check Register (DMA0_AWR_
TC)

When AXI Write Timing Checks are enabled, the DMA measures the latencies of
selected AXI write transactions. A timer measures the latency by counting the number of
AXI clock cycles from the write address transaction to the write response. The sample
count is incremented and, if the latency equals or exceeds the programmed limit, the late
count is incremented. The latency value is added to the running total of latencies. After
completion of each timing check, the process is repeated for the next AXI write. Timing
checks are suspended when:

• the AXI write sample count value reaches FFFFFh, or
• the AXI write latency total reaches FFFFFFFFh, or
• the AXI Write Timing Check Register is read

After the AXI Write Latency Register is read, the sample count, late count, and latency
total are cleared and write timing checks resume with the next AXI write.

NOTE
Note that the DMA_X_AWTC_CTL register located in the
address range 00540..005DF provides functionality similar to
the DMAn_AWR_TC register located in the address range
00270..002EF. Writing to either register affects the
corresponding fields in the other register. But note that some
fields in the DMAn_AWR_TC register have been rearranged in
the DMA_X_AWTC_CTL register or moved to the new
DMA_X_TC_SAWL register or DMA_X_AWTC_SC register.
The preferred registers are located in the address range
00540..005DF. The use of the DMAn_AWR_TC register
located in the address range 00270..002EF is deprecated.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 711
Confidential Proprietary

10.13.24.1 Offset

Register Offset Description

DMA0_AWR_TC 270h The addresses of the two halves of the register are
unaffected by the endianness configuration.

10.13.24.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R

A
W

T
C

E

A
W

C
T

A
W

T
T

R
es

er
ve

d

A
W

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved AWLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
AWLC Reserved AWSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
AWSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.24.3 Fields

Field Description

63

AWTCE

AXI Write Timing Check Enable. When AWTCE=0, AWL, AWLC, and AWSC in DMAn_AWR_TC and
SAWL in DMAn_AWL and AWL in DMA_X_AWTC_CTL, AWLC in DMA_X_TC_SAWL, AWSC in
DMA_X_AWTC_SC and SAWL in DMA_X_TC_SAWL are writeable. When AWTCE=1, AXI write timing
checks are enabled and these fields are read-only. Note that writing AWTCE in either DMAn_AWR_TC or
DMA_X_AWTC_CTL has the same effect.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

712 NXP Semiconductors
Confidential Proprietary

Field Description

62

AWCT

AXI Write Counter Test. When AWCT=1, AWLC and AWSC in DMAn_AWR_TC, AWLC in
DMA_X_TC_SAWL, AWSC in DMA_X_AWTC_SC, and SAWL in DMAn_AWL and DMA_X_TC_SAWL,
are not cleared when timing checks are enabled and when timing checks resume after writing
DMAn_AWR_TC and DMAn_AWL or DMA_X_TC_SAWL, DMA_X_AWTC_SC and DMA_X_AWL. This
bit is used only for manufacturing test. It allows the counters to be initialized to non-zero values for the
start of timing checks. This shortens the counting range so that terminal count behavior can be tested.

61

AWTT

AXI Write Timer Test. When AWTT=1, the 12-bit timer used for each timing measurement is initialized to
FF0h instead of 000h. This bit is used only for manufacturing test. The timer counts the number of AXI
clock cycles from the AXI Write address transaction to the beginning of the corresponding Write data
transaction. The test bit shortens the number of cycles to reach the terminal value FFFh. The timer stops
at the terminal value until the next timing check starts. Note that bit field AWTT in the DMAn_AWR_TC
register is aliased to bit field AWTT in the DMA_X_AWTC_CTL register, i.e. writing to either AWTT bit
field alters the AWTT value in the other register.

60

—

Reserved

59-48

AWL

AXI Write Limit. The AXI Write Timer measures latency by counting the number of AXI clock cycles from
the AXI Write address transaction to the beginning of the corresponding Write data transaction. If the
latency equals or exceeds the AXI Write Limit, the Write response is considered late and the AXI Write
Late Count (AWLC) is incremented along with the AXI Write Sample Count (AWSC). The latency is
added to the Sum of AXI Write Latencies (SAWL) in DMAn_AWL /DMA_X_AWTC_LAT. This field is
writeable only when ARTCE=0.Note that bit field AWL in the DMAn_AWR_TC register is aliased to bit
field AWL in the DMA_X_AWTC_CTL register, i.e. writing to either AWL bit field alters the AWL value in
the other register.

47-44

—

Reserved

43-24

AWLC

AXI Write Late Count. This field is incremented whenever the AXI Write Timer equals or exceeds the AXI
Write Limit. AXI write timing checks are suspended when AWLC=FFFFFh. This field is writeable only
when AWTCE=0.

23-20

—

Reserved

19-0

AWSC

AXI Write Sample Count. This field is incremented after each write timing check. AXI write timing checks
are suspended when AWSC=FFFFFh. This field is writeable only when AWTCE=0.

10.13.25 DMA0 Write Timing Check Latency Register (DMA0_
AWR_LAT)

While AXI Write Timing Checks are enabled and not suspended, this register maintains a
running total of AXI write latencies.

NOTE
Note that the DMAn_AWTC_LAT register located in the
address range 0053C..005DF is identical to the DMAn_AWL
register located in the address range 00260..002EF. The register
has simply been given two different addresses in order to

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 713
Confidential Proprietary

consolidate legacy registers and new registers into two different
continuous address ranges. Some registers in the 00500 address
range have been reorganized to facilitate operation in both big-
endian and little-endian SoCs.

10.13.25.1 Offset

Register Offset

DMA0_AWR_LAT 27Ch

10.13.25.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SAWL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAWL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.25.3 Fields

Field Description

31-0

SAWL

Sum of the AXI Write Latencies. After each AXI read timing check, the latency is added to the Sum of AXI
Write Latencies (SAWL) in DMAn_AWL. This field is writeable only when AWTCE=0.

10.13.26 Manufacturing Protection Private Key Register (MPPK
R0 - MPPKR63)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

714 NXP Semiconductors
Confidential Proprietary

The Manufacturing Protection Private Key register (MPPKR) is used when authenticating
the SOC to the OEM's server. This authentication process can be used to ensure that the
SOC is a genuine NXP part, is the correct part type, has been properly configured via
fuses, is running authenticated OEM software, and is currently in the Secure or Trusted
mode. The SOC attests to all this by signing a Manufacturing Protection message using
the private key stored in the MPPKR. Software running on the SOC then sends this MP
attestation message to the OEM's server. The OEM's server can verify that the MP
message is genuine by verifying the signature over the signed message using the
corresponding ECDSA public key. The public key was previously generated in the
OEM's trusted facility by executing the MPPubKey Gen command on an SoC of known
provenance, and an integrity-protected copy of the public key was stored on the OEM
server for use in verifying Manufacturing Protection attestation messages.

During the SoC's secure boot process, the boot firmware uses the Super Root Key Hash
(SRKH) stored in the fuse bank to verify the public key that is then used to verify the
public key signature over the device's boot image. Thus successful completion of secure
boot verifies that the booted image was signed by a private key whose matching public
key was included in the SRKH value. The private key is derived, in part, from the Super
Root Key Hash (SRKH), which is used to derive the proper Manufacturing Protection
Private Key. The private key in the MPPKR will match the public key held by the OEM's
server only if the OEM's trusted manufacturing provisioning software, run at the bulk
manufacturing site, signs with all the same source message strings and with the same
MPPKR as used by the OEM on the device of known provenance at the OEM's trusted
facility. The server can then be assured that it is safe to download proprietary data to the
SOC over a secured connection.

10.13.26.1 Offset

For a = 0 to 63:

Register Offset

MPPKRa 300h + (a × 1h)

10.13.26.2 Diagram

Bits 7 6 5 4 3 2 1 0

R
MPPrivK

W

Reset 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 715
Confidential Proprietary

10.13.26.3 Fields

Field Description

7-0

MPPrivK

MPPrivK. The 512-bit Manufacturing Protection Private Key.

10.13.27 Manufacturing Protection Message Register (MPMR0 -
MPMR31)

The Manufacturing Protection Message register is used when authenticating the SOC to
the OEM's server. This authentication process can be used to ensure that the SOC is a
genuine NXP part, is the correct part type, has been properly configured via fuses, is
running authenticated OEM software, and is currently in the Secure or Trusted mode. The
SOC attests to this by signing a message using the private key stored in the MPPKR. The
message is composed, in part, of the content of the MPMR. The value in the MPMR is
written by trusted software. The value normally includes the hash of the public key used
to verify the signature over the signed code image. Software running on the SOC then
sends this signed message to the OEM’s server. The OEM’s server can confirm that all
this information is correct by verifying the signature over the signed message. The server
can then be assured that it is safe to download proprietary data to the SOC over a secured
connection.

10.13.27.1 Offset

For a = 0 to 31:

Register Offset

MPMRa 380h + (a × 1h)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

716 NXP Semiconductors
Confidential Proprietary

10.13.27.2 Diagram

Bits 7 6 5 4 3 2 1 0

R
MPMSG

W

Reset 0 0 0 0 0 0 0 0

10.13.27.3 Fields

Field Description

7-0

MPMSG

Holds 256 bits of message data that will be prepended to the input data to the MPSIGN operation. When
accessed via the register bus this should be treated as a byte array (although it must be accessed as
eight 32-bit words).

10.13.28 Manufacturing Protection Test Register (MPTESTR0 -
MPTESTR31)

The Manufacturing Protection TEST register is used only for hardware verification.

10.13.28.1 Offset

For a = 0 to 31:

Register Offset

MPTESTRa 3C0h + (a × 1h)

10.13.28.2 Diagram

Bits 7 6 5 4 3 2 1 0

R TEST_VALUE

W

Reset 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 717
Confidential Proprietary

10.13.28.3 Fields

Field Description

7-0

TEST_VALUE

TEST_VALUE. When accessed via the register bus this should be treated as a byte array with the first
byte in offset 3C0h (although it must be accessed as eight 32-bit words).(

10.13.29 Manufacturing Protection ECC Register (MPECC)

The Manufacturing Protection ECC Register is a read-only register used by software to
verify that the Manufacturing Protection Key in the Security Fuse Processor has a valid
value. The register will return all zeros if the key is valid.

10.13.29.1 Offset

Register Offset

MPECC 3F8h

10.13.29.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

M
P

_Z
E

R
O

R
es

er
ve

d

M
P

_S
Y

N
D

R
O

M
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

718 NXP Semiconductors
Confidential Proprietary

10.13.29.3 Fields

Field Description

31-28

—

Reserved

27

MP_ZERO

This bit indicates if the Manufacturing Protection Key that is programmed in the Security Fuse Processor
has an all-zero value.

0 - The MP Key in the SFP has a non-zero value.

1 - The MP Key in the SFP is all zeros (unprogrammed).

26-25

—

Reserved

24-16

MP_SYNDROM
E

This is the syndrome produced by the ECC check on the Manufacturing Protection Key that is
programmed in the Security Fuse Processor. An all-zero value indicates that no bits of the key have been
corrupted.

000000000 - The MP Key in the SFP passes the ECC check.

000000001-111111111 - The MP Key in the SFP fails the ECC check, and this is the ECC failure
syndrome.

15-0

—

Reserved

10.13.30 Job Descriptor Key Encryption Key Register (JDKEKR0
- JDKEKR7)

The Job Descriptor Key Encryption Key Register contains the Job Descriptor Key
Encryption Key (JDKEK), which can be used when encrypting or decrypting Black Keys
(see Black keys). Since Black Keys are not intended for storage of keys across SOC
power cycles (CAAM's Blob mechanism is intended for this purpose), the value in the
JDKEKR is not preserved at SOC power-down. Instead, a new 256-bit secret value is
loaded into the JDKEKR from the RNG for use during the new power-on session. The
JDKEK is loaded by executing a special descriptor, which can be run in any security
mode. (see RNG functional description)

Note that the Secure Mode/Trusted Mode value in JDKEKR is not available when
CAAM is in Non-secure Mode because the only possible transitions between Trusted
Mode or Secure Mode that lead to Non-secure Mode cause CAAM to pass through Fail
Mode, and JDKEKR is cleared whenever CAAM enters Fail Mode.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 719
Confidential Proprietary

The Job Descriptor Key Encryption Key is 256 bits, so it is read or written via eight 32-
bit word addresses. The first byte is in offset 400h.

NOTE
The register resets to all 0 at POR, but then is immediately
loaded with a random value obtained from the RNG. The
JDKEKR cannot be read (i.e. reading returns all zeros) or
written from the register bus while CAAM is in Secure Mode or
Trusted Mode, but JDKEKR can be read and written while
CAAM is in Non-secure Mode.

10.13.30.1 Offset

For a = 0 to 7:

Register Offset

JDKEKRa 400h + (a × 4h)

10.13.30.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
JDKEK

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
JDKEK

W

Reset u u u u u u u u u u u u u u u u

10.13.30.3 Fields

Field Description

31-0

JDKEK

The 256-bit Job Descriptor Key Encryption Key used to encrypt and decrypt Black Keys.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

720 NXP Semiconductors
Confidential Proprietary

10.13.31 Trusted Descriptor Key Encryption Key Register (TDKE
KR0 - TDKEKR7)

The Trusted Descriptor Key Encryption Key Register contains the Trusted Descriptor
Key Encryption Key (TDKEK), which can be used when encrypting or decrypting Black
Keys (see Black keys. The TDKEKR operates exactly like the JDKEKR, except that the
TDKEKR is usable only by Trusted Descriptors. This allows Trusted Descriptors to
protect particularly sensitive keys from access by Job Descriptors. Trusted Descriptors
can use either the JDKEKR or the TDKEKR, so Trusted Descriptors can be used to
derive non-Trusted Black keys for use by Job Descriptors from Trusted Black Keys that
contain master secrets. The Trusted Descriptor Key Encryption Key is 256 bits, so it is
read or written via eight 32-bit word addresses. The first byte is in offset 420h.

A new 256-bit secret value is loaded into the TDKEKR from the RNG for use during the
new power-on session. The TDKEK is loaded by executing a special descriptor, which
can be run in any security mode. (see RNG functional description)

NOTE
The register resets to all 0 at POR, but then is immediately
loaded with a random value obtained from the RNG. The
TDKEKR cannot be read (i.e. reading returns all zeros) or
written from the register bus while CAAM is in Secure Mode or
Trusted Mode, but TDKEKR can be read and written while
CAAM is in Non-secure Mode.

10.13.31.1 Offset

For a = 0 to 7:

Register Offset

TDKEKRa 420h + (a × 4h)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 721
Confidential Proprietary

10.13.31.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TDKEK

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TDKEK

W

Reset u u u u u u u u u u u u u u u u

10.13.31.3 Fields

Field Description

31-0

TDKEK

The 256-bit Trusted Descriptor Key Encryption Key used to encrypt and decrypt Black Keys.

10.13.32 Trusted Descriptor Signing Key Register (TDSKR0 -
TDSKR7)

The Trusted Descriptor Signing Key Register contains the TDSK, which is used to
generate and verify signatures on Trusted Descriptors. The TDSKR is loaded in the same
fashion as the JDKEK. The TDSK is 256 bits, so it is read or written via eight 32-bit
word addresses. The first byte is in offset 440h.

NOTE
The register resets to all 0 at POR, but then is immediately
loaded with a random value obtained from the RNG.The
TDSKR cannot be read (i.e. reading returns all zeros) or written
from the register bus while CAAM is in Secure Mode or
Trusted Mode, but TDSKR can be read and written while
CAAM is in Non-secure Mode.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

722 NXP Semiconductors
Confidential Proprietary

10.13.32.1 Offset

For a = 0 to 7:

Register Offset

TDSKRa 440h + (a × 4h)

10.13.32.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TDSK

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TDSK

W

Reset u u u u u u u u u u u u u u u u

10.13.32.3 Fields

Field Description

31-0

TDSK

The 256-bit Trusted Descriptor Signing Key used to sign and verify Trusted Descriptors.

10.13.33 Secure Key Nonce Register (SKNR)

The Secure Key Nonce Register holds a nonce value that is used for Black Key
encryption. To ensure that a nonce is never reused during a power-on session, the nonce
is used and incremented whenever a Black Key is encrypted using AES-CCM encryption
(i.e., a FIFO STORE with EKT=1 of the PKHA E Memory, the AFHA S-Box, the Class
1 Key Register, or the Class 2 Key Register.) The SKNR is reset to all 0 at power on reset

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 723
Confidential Proprietary

or when CAAM enters Fail mode, but it is not reset at software-initiated CAAM reset.
Since the SKNR holds more than 32 bits, it is accessed over the IP bus as two 32-bit
words.

NOTE
This register is writable only when CAAM is in NonSecure
mode.

10.13.33.1 Offset

Register Offset Description

SKNR 4E0h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

10.13.33.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R

R
es

er
ve

d

S
K

_N
O

N
C

E
_M

S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SK_NONCE_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SK_NONCE_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

724 NXP Semiconductors
Confidential Proprietary

10.13.33.3 Fields

Field Description

63-47

—

Reserved

46-32

SK_NONCE_M
S

Secure Key Nonce - Most Significant Bits. This field holds the 15 most-significant bits of the auto-
incrementing secure key nonce field. See the description of the SK_NONCE_LS field for more
information.

31-0

SK_NONCE_LS

Secure Key Nonce - Least Significant Bits. This field holds the 32 least-significant bits of the auto-
incrementing secure key nonce field. The actual nonce value that is used during AES-CCM encryption of
Black Keys consists of the SK_NONCE_MS and the SK_NONCE_LS.

10.13.34 DMA Status Register (DMA_STA)

DMA Status Register

10.13.34.1 Offset

Register Offset

DMA_STA 50Ch

10.13.34.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

D
M

A
0_

ID
LE

R
es

er
ve

d

D
M

A
0_

IT
IF

D
M

A
0_

E
T

IF

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 725
Confidential Proprietary

10.13.34.3 Fields

Field Description

31-8

—

Reserved

7

DMA0_IDLE

DMA0 is idle. DMA0’s command queue is empty.

6

—

Reserved

5

DMA0_ITIF

DMA0 Internal Transactions in Flight. DMA0_ITIF indicates the number of transactions the DMA0 engine
currently has in flight on CAAM’s internal bus to Secure Memory.

4-0

DMA0_ETIF

DMA0 External Transactions in Flight. DMA0_ETIF indicates the number of transactions the DMA0
engine currently has in flight on CAAM’s external AXI bus.

10.13.35 DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP)

The four registers DMA_X_AID_7_4_MAP, DMA_X_AID_3_0_MAP,
DMA_X_AID_15_12_MAP and DMA_X_AID_11_8_MAP show the mapping of AXI
transaction IDs to CAAM internal blocks. These assignments are made via hardwired
signals and are SOC-specific. The value of each 8-bit field indicates the internal ID of the
CAAM block that will use the AXI ID corresponding to the field. For example,
AID2BID=00001000 means that AXI ID 2 (0010) will be used for all AXI transactions
by DECO0 (internal block ID 00001000). (Note that the DMA_X_ AXI ID Enable
Register shows which of the 16 possible AXI transaction IDs are available for use by the
DMA. If a particular AXI transaction ID is disabled, then the corresponding AIDxBID
field will read as 00000000.)

The CAAM internal block IDs are encoded as follows:

Internal Block
ID

Internal Logic Block

00000001b Job Rings (The block ID for Job Ring 0 is used to represent all of the Job
Rings.)

00000100b Burst Buffer

00001000b DECO0

All other values are reserved.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

726 NXP Semiconductors
Confidential Proprietary

NOTE
For backward compatibility the same registers are readable at
two different addresses. The preferred addresses are in the
range 00500..005FF. The addresses in the range 00240..002CF
are deprecated.

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

10.13.35.1 Offset

Register Offset Description

DMA_X_AID_7_4_MAP 510h Mapping for DMA AXI IDs 7 ... 4

10.13.35.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID7_BID AID6_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID5_BID AID4_BID

W

Reset u u u u u u u u u u u u u u u u

10.13.35.3 Fields

Field Description

31-24

AID7_BID

This field shows the CAAM Block ID that uses AXI ID 7.

23-16

AID6_BID

This field shows the CAAM Block ID that uses AXI ID 6.

15-8

AID5_BID

This field shows the CAAM Block ID that uses AXI ID 5.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 727
Confidential Proprietary

Field Description

7-0

AID4_BID

This field shows the CAAM Block ID that uses AXI ID 4.

10.13.36 DMA_X_AID_3_0_MAP (DMA_X_AID_3_0_MAP)

The four registers DMA_X_AID_7_4_MAP, DMA_X_AID_3_0_MAP,
DMA_X_AID_15_12_MAP and DMA_X_AID_11_8_MAP show the mapping of AXI
transaction IDs to CAAM internal blocks. See the description for register
DMA_X_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

10.13.36.1 Offset

Register Offset Description

DMA_X_AID_3_0_MAP 514h Mapping for DMA AXI IDs 3 ... 0

10.13.36.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID3_BID AID2_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID1_BID AID0_BID

W

Reset u u u u u u u u u u u u u u u u

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

728 NXP Semiconductors
Confidential Proprietary

10.13.36.3 Fields

Field Description

31-24

AID3_BID

This field shows the CAAM Block ID that uses AXI ID 3.

23-16

AID2_BID

This field shows the CAAM Block ID that uses AXI ID 2.

15-8

AID1_BID

This field shows the CAAM Block ID that uses AXI ID 1.

7-0

AID0_BID

This field shows the CAAM Block ID that uses AXI ID 0.

10.13.37 DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP)

The four registers DMA_X_AID_7_4_MAP, DMA_X_AID_3_0_MAP,
DMA_X_AID_15_12_MAP and DMA_X_AID_11_8_MAP show the mapping of AXI
transaction IDs to CAAM internal blocks. See the description for register
DMA_X_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

10.13.37.1 Offset

Register Offset Description

DMA_X_AID_15_12_
MAP

518h Mapping for DMA AXI IDs 15 ... 12

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 729
Confidential Proprietary

10.13.37.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID15_BID AID14_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID13_BID AID12_BID

W

Reset u u u u u u u u u u u u u u u u

10.13.37.3 Fields

Field Description

31-24

AID15_BID

This field shows the CAAM Block ID that uses AXI ID 15.

23-16

AID14_BID

This field shows the CAAM Block ID that uses AXI ID 14.

15-8

AID13_BID

This field shows the CAAM Block ID that uses AXI ID 13.

7-0

AID12_BID

This field shows the CAAM Block ID that uses AXI ID 12.

10.13.38 DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP)

The four registers DMA_X_AID_7_4_MAP, DMA_X_AID_3_0_MAP,
DMA_X_AID_15_12_MAP and DMA_X_AID_11_8_MAP show the mapping of AXI
transaction IDs to CAAM internal blocks. See the description for register
DMA_X_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to CAAM and are SoC-specific.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

730 NXP Semiconductors
Confidential Proprietary

10.13.38.1 Offset

Register Offset Description

DMA_X_AID_11_8_MAP 51Ch Mapping for DMA AXI IDs 11 ... 8

10.13.38.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID11_BID AID10_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID9_BID AID8_BID

W

Reset u u u u u u u u u u u u u u u u

10.13.38.3 Fields

Field Description

31-24

AID11_BID

This field shows the CAAM Block ID that uses AXI ID 11.

23-16

AID10_BID

This field shows the CAAM Block ID that uses AXI ID 10.

15-8

AID9_BID

This field shows the CAAM Block ID that uses AXI ID 9.

7-0

AID8_BID

This field shows the CAAM Block ID that uses AXI ID 8.

10.13.39 DMA_X AXI ID Map Enable Register (DMA_X_AID_15_0_
EN)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 731
Confidential Proprietary

The DMA_X_AID_15_0_EN register can be read to determine which AXI transaction
IDs are available for use by the DMAs. These enables are configured via hardwired
signals and are SOC-specific. The DMA will use a unique AXI ID for each CAAM
internal connected to it. The assignments are made using the lowest-numbered, available
IDs.

NOTE
Note that for backward compatibility the same information is
readable at two different addresses, 250h and 524h. The 250h
address is deprecated.

10.13.39.1 Offset

Register Offset Description

DMA_X_AID_15_0_EN 524h For new software DMA_X_AID_15_0_EN (address
510h) should be used rather than DMA_0_AID_ENB
(address 250h).

NOTE: The values read from this register are
determined by hardwired inputs to CAAM
and are SoC-specific.

10.13.39.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
ID

15
E

A
ID

14
E

A
ID

13
E

A
ID

12
E

A
ID

11
E

A
ID

10
E

A
ID

9E

A
ID

8E

A
ID

7E

A
ID

6E

A
ID

5E

A
ID

4E

A
ID

3E

A
ID

2E

A
ID

1E

A
ID

0E

W

Reset u u u u u u u u u u u u u u u u

10.13.39.3 Fields

Field Description

31-16 Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

732 NXP Semiconductors
Confidential Proprietary

Field Description

—

15

AID15E

If AID15E=1 then AXI ID 15 is enabled for this DMA engine.

14

AID14E

If AID14E=1 then AXI ID 14 is enabled for this DMA engine.

13

AID13E

If AID13E=1 then AXI ID 13 is enabled for this DMA engine.

12

AID12E

If AID12E=1 then AXI ID 12 is enabled for this DMA engine.

11

AID11E

If AID11E=1 then AXI ID 11 is enabled for this DMA engine.

10

AID10E

If AID10E=1 then AXI ID 10 is enabled for this DMA engine.

9

AID9E

If AID9E=1 then AXI ID 9 is enabled for this DMA engine.

8

AID8E

If AID8E=1 then AXI ID 8 is enabled for this DMA engine.

7

AID7E

If AID7E=1 then AXI ID 7 is enabled for this DMA engine.

6

AID6E

If AID6E=1 then AXI ID 6 is enabled for this DMA engine.

5

AID5E

If AID5E=1 then AXI ID 5 is enabled for this DMA engine.

4

AID4E

If AID4E=1 then AXI ID 4 is enabled for this DMA engine.

3

AID3E

If AID3E=1 then AXI ID 3 is enabled for this DMA engine.

2

AID2E

If AID2E=1 then AXI ID 2 is enabled for this DMA engine.

1

AID1E

If AID1E=1 then AXI ID 1 is enabled for this DMA engine.

0

AID0E

If AID0E=1 then AXI ID 0 is enabled for this DMA engine.

10.13.40 DMA_X AXI Read Timing Check Control Register (DMA_
X_ARTC_CTL)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 733
Confidential Proprietary

When AXI Read Timing Checks are enabled, the DMA measures the latencies of selected
AXI read transactions. A timer measures the latency by counting the number of AXI
clock cycles from the read address transaction to the beginning of the corresponding read
data transaction. This count can optionally be modified to count until the last beat of data
by setting the ARTL (AXI Read Timer Last) bit. The sample count is incremented and, if
the latency equals or exceeds the programmed limit, the late count is incremented. The
latency value is added to the running total of latencies. After completion of each timing
check, the process is repeated for the next AXI read. Timing checks are suspended when:

• the AXI read sample count value reaches FFFFFh, or
• the AXI read latency total reaches FFFFFFFFh, or
• the AXI Read Timing Check Register is read

After the DMA_X AXI Read Latency Register or DMA_X Read Timing Check Latency
Register is read, the sample count, late count, and latency total are cleared and read
timing checks resume with the next AXI read.

NOTE
Note that the DMA_X_ARTC_CTL register located in the
address range 00530..005DF provides functionality similar to
the DMAn_ARD_TC register located in the address range
00260..002EF. Some of the fields are aliased, i.e. writing to
these fields in either register affects the corresponding fields in
the other register. But note that some fields in the
DMAn_ARD_TC register have been rearranged in the
DMA_X_ARTC_CTL register or moved to the new
DMA_X_ARTC_LC register or the DMA_X_ARTC_SC
register.

10.13.40.1 Offset

Register Offset

DMA_X_ARTC_CTL 530h

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

734 NXP Semiconductors
Confidential Proprietary

10.13.40.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

A
R

T
C

E

A
R

C
T

A
R

T
T

A
R

T
L

A
R

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ART

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.40.3 Fields

Field Description

31

ARTCE

AXI Read Timing Check Enable. When ARTCE=0, ARL, ARLC, and ARSC in DMA_X_ARTC and SARL
in DMAn_ARD_LAT and ARL in DMA_X_ARTC_CTL, ARLC in DMA0_ARTC_LC, ARSC in
DMA0ARTC_SC and SARL in DMA0ARL_LAT are writeable. When ARTCE=1, AXI read timing checks
are enabled and these fields are read-only.

NOTE: Note that writing ARTCE in either DMA_X_ARTC_B or DMA_X_ARTC_CTL has the same
effect.

30

ARCT

AXI Read Counter Test. When ARCT=1, ARLC and ARSC in DMA_X_ARTC_CTL, ARLC in
DMA_X_ARTC_LC, ARSC in DMA_X_ARTC_SC, and SARL in DMAn_ARD_LAT and
DMA_X_ARTC_LC, are not cleared when timing checks are enabled and when timing checks resume
after reading DMAn_ARD_TC and DMAn_ARD_LAT or DMA_X_ARTC_LC, DMA_X_ARTC_SC and
DMAn_ARD_LAT. This bit is used only for manufacturing test. It allows the counters to be initialized to
non-zero values for the start of timing checks. This shortens the counting range so that terminal count
behavior can be tested.

29

ARTT

AXI Read Timer Test. When ARTT=1, the 12-bit timer used for each timing measurement is initialized to
FF0h instead of 000h. This bit is used only for manufacturing test. The timer counts the number of AXI
clock cycles from the AXI read address transaction to the beginning of the corresponding read data
transaction. The test bit shortens the number of cycles to reach the terminal value FFFh. The timer stops
at the terminal value until the next timing check starts. Note that bit field ARTT in the DMA_X_ARTC_CTL
register is aliased to bit field ARTT in the DMAn_ARD_TC register, i.e. writing to either ARTT bit field
alters the ARTT value in the other register.

28

ARTL

AXI Read Timer Last. This bit controls whether the last or first beat of data signals the end of a
transaction's counter measurement.

0b - A read transaction counter measurement is stopped when the first beat of data arrives

1b - A read transaction counter measurement is stopped when the last beat of data arrives

27-16

ARL

AXI Read Limit. The AXI Read Timer measures latency by counting the number of AXI clock cycles from
the AXI read address transaction to the beginning of the corresponding read data transaction. If the
latency equals or exceeds the AXI Read Limit, the read response is considered late and the AXI Read
Late Count (ARLC) is incremented along with the AXI Read Sample Count (ARSC). The latency is added
to the Sum of AXI Read Latencies (SARL) in DMAn_ARD_LAT/DMA_X_ARTC_LAT. This field is

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 735
Confidential Proprietary

Field Description

writeable only when ARTCE=0. Note that bit field ARL in the DMA_X_ARTC_CTL register is aliased to bit
field ARL in the DMAn_ARD_TC register, i.e. writing to either ARL bit field alters the ARL value in the
other register.

15-12

—

Reserved

11-0

ART

AXI Read Timer. The number of AXI clock cycles from the latest external AXI read address transaction
initiated by this DMA to the beginning of the corresponding read data transaction. This field is writeable
only when ARTCE=0.

10.13.41 DMA_X AXI Read Timing Check Late Count Register
(DMA_X_ARTC_LC)

When AXI Read Timing Checks are enabled, the DMA measures the latencies of selected
AXI read transactions. A timer measures the latency by counting the number of AXI
clock cycles from the read address transaction to the beginning of the corresponding read
data transaction. The sample count is incremented and, if the latency equals or exceeds
the programmed limit, the ARTC_LC register is incremented. The latency value is added
to the running total of latencies. After completion of each timing check, the process is
repeated for the next AXI read. Timing checks are suspended when:

• the AXI read sample count value reaches FFFFFh, or
• the AXI read latency total reaches FFFFFFFFh, or
• the AXI Read Timing Check Register is read

NOTE
Note that the DMA_X_ARTC_LC register provides
functionality similar to the AXI Read Timing Late Check fields
in the DMAn_ARD_TC register located in the address range
00260..002EF, but the fields have been rearranged. Usage of
the DMAn_ARD_TC register is deprecated.

10.13.41.1 Offset

Register Offset

DMA_X_ARTC_LC 534h

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

736 NXP Semiconductors
Confidential Proprietary

10.13.41.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ARLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ARLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.41.3 Fields

Field Description

31-20

—

Reserved

19-0

ARLC

AXI Read Late Count. This field is incremented each time that the ART field exceeds the ARL field in the
DMA_X AXI Read Timing Check Control Register. AXI read timing checks are suspended when
ARLC=FFFFFh. Note that this field is an alias of the ARLC field in the DMAn_ARD_TC Register. Reading
or writing the ARLC field in either the 00200 address block or the 00500 address block will yield identical
results, and the value written can be read from the other register. When DMAn_ARD_TC/
DMA_X_ARTC_TC[ARTCE]=0, the ARLC bit field in DMAn_ARD_TC and the DMA_X_ARTC_LC
register are writeable. When ARTCE=1, AXI read timing checks are enabled and the ARLC bit fields are
read-only.

10.13.42 DMA_X AXI Read Timing Check Sample Count Register
(DMA_X_ARTC_SC)

When AXI Read Timing Checks are enabled, the DMA measures the latencies of selected
AXI read transactions. A timer measures the latency by counting the number of AXI
clock cycles from the read address transaction to the beginning of the corresponding read
data transaction. The sample count is incremented and, if the latency equals or exceeds
the programmed limit, the late count is incremented. The latency value is added to the
running total of latencies. After completion of each timing check, the process is repeated
for the next AXI read. Timing checks are suspended when:

• the AXI read sample count value reaches FFFFFh, or

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 737
Confidential Proprietary

• the AXI read latency total reaches FFFFFFFFh, or
• the AXI Read Timing Check Register is read

After the AXI Read Latency Register is read, the sample count, late count, and latency
total are cleared and read timing checks resume with the next AXI read.

NOTE
Note that the ARSC field in the DMA_X_ARTC_SC register
located in the address range 00530..005DF provides
functionality equivalent to the ARSC field in the
DMAn_ARD_TC register located in the address range
00260..002EF. Writing to the ARSC bit field in either register
affects the ARSC bit field in the other register.

10.13.42.1 Offset

Register Offset

DMA_X_ARTC_SC 538h

10.13.42.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ARSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ARSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.42.3 Fields

Field Description

31-20

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

738 NXP Semiconductors
Confidential Proprietary

Field Description

19-0

ARSC

AXI Read Sample Count. This field is incremented after each read timing check. AXI read timing checks
are suspended when ARSC=FFFFFh. This field is writeable only when ARTCE=0.

10.13.43 DMA_X Read Timing Check Latency Register (DMA_X_
ARTC_LAT)

While AXI Read Timing Checks are enabled and not suspended, this register maintains a
running total of AXI read latencies.

NOTE
Note that the DMA_X_ARTC_LAT register located in the
address range 0053C..005DF is identical to the DMAn_SARL
register located in the address range 00260..002EF. The register
has simply been given two different addresses in order to
consolidate legacy registers and new registers into two different
continuous address ranges. Some registers in the 00500 address
range have been reorganized to facilitate operation in both big-
endian and little-endian SoCs.

10.13.43.1 Offset

Register Offset

DMA_X_ARTC_LAT 53Ch

10.13.43.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SARL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SARL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 739
Confidential Proprietary

10.13.43.3 Fields

Field Description

31-0

SARL

Sum of the AXI Read Latencies. After each AXI read timing check, the latency is added to the Sum of AXI
Read Latencies (SARL) in DMAn_SARL. This field is writeable only when ARTCE=0.

10.13.44 DMA_X AXI Write Timing Check Control Register (DMA_
X_AWTC_CTL)

When AXI Write Timing Checks are enabled, the DMA measures the latencies of
selected AXI write transactions. A timer measures the latency by counting the number of
AXI clock cycles from the write address transaction to the beginning of the
corresponding write data transaction. The sample count is incremented and, if the latency
equals or exceeds the programmed limit, the late count is incremented. The latency value
is added to the running total of latencies. After completion of each timing check, the
process is repeated for the next AXI write. Timing checks are suspended when:

• the AXI write sample count value reaches FFFFFh, or
• the AXI write latency total reaches FFFFFFFFh, or
• the AXI Write Timing Check Register is read

After the DMA_X AXI Write Latency Register or DMA_X Write Timing Check Latency
Register is read, the sample count, late count, and latency total are cleared and write
timing checks resume with the next AXI write.

NOTE
Note that the DMA_X_AWTC_CTL register located in the
address range 00540..005DF provides functionality similar to
the DMAn_AWR_TC register located in the address range
00270..002EF. Some of the fields are aliased, i.e. writing to
these fields in either register affects the corresponding fields in
the other register. But note that some fields in the
DMAn_AWR_TC register have been rearranged in the
DMA_X_AWTC_CTL register or moved to the new
DMA_X_AWTC_LC register or the DMA_X_AWTC_SC
register.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

740 NXP Semiconductors
Confidential Proprietary

10.13.44.1 Offset

Register Offset

DMA_X_AWTC_CTL 540h

10.13.44.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

A
W

T
C

E

A
W

C
T

A
W

T
T

R
es

er
ve

d

A
W

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved AWT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.44.3 Fields

Field Description

31

AWTCE

AXI Write Timing Check Enable. When AWTCE=0, AWL, AWLC, and AWSC in DMA_X_AWTC and
SAWL in DMAn_AWR_LAT and AWL in DMA_X_AWTC_CTL, AWLC in DMA0_AWTC_LC, AWSC in
DMA0AWTC_SC and SARL in DMA0AWL_LAT are writeable. When AWTCE=1, AXI Write timing checks
are enabled and these fields are Write-only.

NOTE: Note that writing AWTCE in either DMAn_AWR_TC or DMA_X_AWTC_CTL has the same
effect.

30

AWCT

AXI Write Counter Test. When AWCT=1, AWLC and AWSC in DMA_X_AWTC_CTL, AWLC in
DMA_X_AWTC_LC, ARSC in DMA_X_WRTC_SC, and SAWL in DMAn_AWR_LAT and
DMA_X_ARTC_LC, are not cleared when timing checks are enabled and when timing checks resume
after reading DMAn_AWR_TC and DMAn_AWR_LAT or DMA_X_AWTC_LC, DMA_X_AWTC_SC and
DMA_X_AWTC_LAT. This bit is used only for manufacturing test. It allows the counters to be initialized to
non-zero values for the start of timing checks. This shortens the counting range so that terminal count
behavior can be tested.

29

AWTT

AXI Write Timer Test. When AWTT=1, the 12-bit timer used for each timing measurement is initialized to
FF0h instead of 000h. This bit is used only for manufacturing test. The timer counts the number of AXI
clock cycles from the AXI Write address transaction to the beginning of the corresponding Write data
transaction. The test bit shortens the number of cycles to reach the terminal value FFFh. The timer stops

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 741
Confidential Proprietary

Field Description

at the terminal value until the next timing check starts. Note that bit field AWTT in the
DMA_X_AWTC_CTL register is aliased to bit field AWTT in the DMAn_AWR_TC register, i.e. writing to
either AWTT bit field alters the AWTT value in the other register.

28

—

Reserved

27-16

AWL

AXI Write Limit. The AXI Write Timer measures latency by counting the number of AXI clock cycles from
the AXI Write address transaction to the beginning of the corresponding write data transaction. If the
latency equals or exceeds the AXI Write Limit, the write response is considered late and the AXI Write
Late Count (AWLC) is incremented along with the AXI Write Sample Count (AWSC). The latency is
added to the Sum of AXI Write Latencies (SAWL) in DMAn_AWR_LAT/DMA_X_ARTC_LAT. This field is
writeable only when AWTCE=0. Note that bit field AWL in the DMA_X_AWTC_CTL register is aliased to
bit field AWL in the DMAn_AWR_TC register, i.e. writing to either AWL bit field alters the AWL value in
the other register.

15-12

—

Reserved

11-0

AWT

AXI Write Timer. The number of AXI clock cycles from the latest external AXI write address transaction
initiated by this DMA to the beginning of the corresponding write data transaction. This field is writeable
only when AWTCE=0.

10.13.45 DMA_X AXI Write Timing Check Late Count Register
(DMA_X_AWTC_LC)

When AXI Write Timing Checks are enabled, the DMA measures the latencies of
selected AXI write transactions. A timer measures the latency by counting the number of
AXI clock cycles from the write address transaction to the beginning of the
corresponding write data transaction. The sample count is incremented and, if the latency
equals or exceeds the programmed limit, the AWTC_LC register is incremented. The
latency value is added to the running total of latencies. After completion of each timing
check, the process is repeated for the next AXI write. Timing checks are suspended
when:

• the AXI write sample count value reaches FFFFFh, or
• the AXI write latency total reaches FFFFFFFFh, or
• the AXI Write Timing Check Register is Write

NOTE
Note that the DMA_X_AWTC_LC register provides
functionality similar to the AXI Write Timing Late Check fields
in the DMAn_AWR_TC register located in the address range
00270..002EF, but the fields have been rearranged. Usage of
the DMAn_AWR_TC register is deprecated.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

742 NXP Semiconductors
Confidential Proprietary

10.13.45.1 Offset

Register Offset

DMA_X_AWTC_LC 544h

10.13.45.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved AWLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
AWLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.45.3 Fields

Field Description

31-20

—

Reserved

19-0

AWLC

AXI Write Late Count. This field is incremented each time that the AWT field exceeds the AWL field in the
DMA_X AXI Write Timing Check Control Register. AXI Write timing checks are suspended when
AWLC=FFFFFh. Note that this field is an alias of the AWLC field in the DMAn_AWR_TC Register.
Reading or writing the AWLC field in either the 00200 address block or the 00500 address block will yield
identical results, and the value written can be read from the other register. When DMAn_AWR_TC/
DMA_X_AWTC_TC[AWTCE]=0, the AWLC bit field in DMAn_AWR_TC and the DMA_X_AWTC_LC
register are writeable. When AWTCE=1, AXI write timing checks are enabled and the AWLC bit fields are
read-only.

10.13.46 DMA_X AXI Write Timing Check Sample Count Register
(DMA_X_AWTC_SC)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 743
Confidential Proprietary

When AXI Write Timing Checks are enabled, the DMA measures the latencies of
selected AXI write transactions. A timer measures the latency by counting the number of
AXI clock cycles from the write address transaction to the beginning of the
corresponding write data transaction. The sample count is incremented and, if the latency
equals or exceeds the programmed limit, the late count is incremented. The latency value
is added to the running total of latencies. After completion of each timing check, the
process is repeated for the next AXI write. Timing checks are suspended when:

• the AXI write sample count value reaches FFFFFh, or
• the AXI write latency total reaches FFFFFFFFh, or
• the AXI Write Timing Check Register is read

After the AXI Write Latency Register is read, the sample count, late count, and latency
total are cleared and write timing checks resume with the next AXI write.

NOTE
Note that the AWSC field in the DMA_X_AWTC_SC register
located in the address range 00530..005DF provides
functionality equivalent to the AWSC field in the
DMAn_AWR_TC register located in the address range
00260..002EF. Writing to the AWSC bit field in either register
affects the AWSC bit field in the other register.

10.13.46.1 Offset

Register Offset

DMA_X_AWTC_SC 548h

10.13.46.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved AWSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
AWSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

744 NXP Semiconductors
Confidential Proprietary

10.13.46.3 Fields

Field Description

31-20

—

Reserved

19-0

AWSC

AXI Write Sample Count. This field is incremented after each write timing check. AXI write timing checks
are suspended when AWSC=FFFFFh. This field is writeable only when AWTCE=0.

10.13.47 DMA_X Write Timing Check Latency Register (DMA_X_
AWTC_LAT)

While AXI Write Timing Checks are enabled and not suspended, this register maintains a
running total of AXI write latencies.

NOTE
Note that the DMA_X_AWTC_LAT register located in the
address range 0053C..005DF is identical to the DMAn_AWL
register located in the address range 00260..002EF. The register
has simply been given two different addresses in order to
consolidate legacy registers and new registers into two different
continuous address ranges. Some registers in the 00500 address
range have been reorganized to facilitate operation in both big-
endian and little-endian SoCs.

10.13.47.1 Offset

Register Offset

DMA_X_AWTC_LAT 54Ch

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 745
Confidential Proprietary

10.13.47.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SAWL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAWL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.47.3 Fields

Field Description

31-0

SAWL

Sum of the AXI Write Latencies. After each AXI read timing check, the latency is added to the Sum of AXI
Write Latencies (SAWL) in DMAn_AWL. This field is writeable only when AWTCE=0.

10.13.48 RNG TRNG Miscellaneous Control Register (RTMCTL)

These registers are intended to be used when testing the RNG. They would not be used
during normal operation. During normal operation the RNG is configured and data is
obtained from the RNG via Job Descriptors.

The RNG TRNG Miscellaneous Control Register is a read/write register used to control
the RNG's True Random Number Generator (TRNG) access, operation and test.

NOTE
Note that in many cases two RNG registers share the same
address, and a particular register at the shared address is
selected based upon the value in the PRGM field of the
RTMCTL register.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

746 NXP Semiconductors
Confidential Proprietary

10.13.48.1 Offset

Register Offset

RTMCTL 600h

10.13.48.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

P
R

G
M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

T
S

T
O

P
_O

K

E
R

R

T
S

T
_O

U
T

E
N

T
_V

A
L

F
C

T
_V

A
L

F
C

T
_F

A
IL

F
O

R
C

E
_S

Y
S

C
L

K

T
R

N
G

_A
C

C

C
LK

_O
U

T
_E

N

O
S

C
_D

IV

S
A

M
P

_M
O

D
E

W

W
1C

R
S

T
_D

E
F

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.48.3 Fields

Field Description

31-17

—

Reserved

16

PRGM

Programming Mode Select. When this bit is 1, the TRNG is in Program Mode, otherwise it is in Run
Mode. No Entropy value will be generated while the TRNG is in Program Mode. Note that different RNG
registers are accessible at the same address depending on whether PRGM is set to 1 or 0. This is noted
in the RNG register descriptions.

NOTE: If PRGM is set to 1, then TRNG_ACC should also be set to 1.

15-14

—

Reserved

13

TSTOP_OK

TRNG_OK_TO_STOP. Software should check that this bit is a 1 before transitioning CAAM to low power
mode (CAAM clock stopped). CAAM turns on the TRNG free-running ring oscillator whenever new
entropy is being generated and turns off the ring oscillator when entropy generation is complete. If the

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 747
Confidential Proprietary

Field Description

CAAM clock is stopped while the TRNG ring oscillator is running, the oscillator will continue running even
though the CAAM clock is stopped. TSTOP_OK is asserted when the TRNG ring oscillator is not running.
and therefore it is OK to stop the CAAM clock.

12

ERR

Read: Error status. 1 = error detected. 0 = no error.

Write: Write 1 to clear errors. Writing 0 has no effect.

11

TST_OUT

Read only: Test point inside ring oscillator.

10

ENT_VAL

Read only: Entropy Valid. Will assert only if TRNG ACC bit is set, and then after an entropy value is
generated. Will be cleared when RTENT15 is read. (RTENT0 through RTENT14 should be read before
reading RTENT15).

9

FCT_VAL

Read only: Frequency Count Valid. Indicates that a valid frequency count may be read from RTFRQCNT.

8

FCT_FAIL

Read only: Frequency Count Fail. The frequency counter has detected a failure. This may be due to
improper programming of the RTFRQMAX and/or RTFRQMIN registers, or a hardware failure in the ring
oscillator. This error may be cleared by writing a 1 to the ERR bit.

7

FORCE_SYSCL
K

Force System Clock. If set, the system clock is used to operate the TRNG, instead of the ring oscillator.
This is for test use only, and indeterminate results may occur. This bit is writable only if PRGM bit is 1, or
PRGM bit is being written to 1 simultaneously to writing this bit. This bit is cleared by writing the
RST_DEF bit to 1.

6

RST_DEF

Reset Defaults. Writing a 1 to this bit clears various TRNG registers, and bits within registers, to their
default state. This bit is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously to
writing this bit. Reading this bit always produces a 0.

5

TRNG_ACC

TRNG Access Mode. If this bit is set to 1, the TRNG will generate an Entropy value that can be read via
the RTENT registers. The Entropy value may be read once the ENT VAL bit is asserted. This Entropy
value will never be used by the RNG.

IMPORTANT: If this bit is set, no Entropy value can be generated for the RNG, which can prevent the
RNG from generating data for the CAAM system.

NOTE: If PRGM is set to 1, then TRNG_ACC should also be set to 1.

4

CLK_OUT_EN

Clock Output Enable. If set, the ring oscillator output is gated to an output pad. If this bit is set and PRGM
mode is selected, this allows external viewing of the ring oscillator.

3-2

OSC_DIV

Oscillator Divide. Determines the amount of dividing done to the ring oscillator before it is used by the
TRNG.

This field is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously to writing this
field. This field is cleared to 00 by writing the RST_DEF bit to 1.

00 - use ring oscillator with no divide

01 - use ring oscillator divided-by-2

10 - use ring oscillator divided-by-4

11 - use ring oscillator divided-by-8

1-0

SAMP_MODE

Sample Mode. Determines the method of sampling the ring oscillator while generating the Entropy value:

This field is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously with writing
this field. This field is cleared to 01 by writing the RST_DEF bit to 1.

00 - use Von Neumann data into both Entropy shifter and Statistical Checker

01 - use raw data into both Entropy shifter and Statistical Checker

10 - use Von Neumann data into Entropy shifter. Use raw data into Statistical Checker

11 - undefined/reserved.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

748 NXP Semiconductors
Confidential Proprietary

10.13.49 RNG TRNG Statistical Check Miscellaneous Register
(RTSCMISC)

The RNG TRNG Statistical Check Miscellaneous Register contains the Long Run
Maximum Limit value and the Retry Count value. This register is accessible only when
the RTMCTL[PRGM] bit is 1, otherwise this register will read zeroes, and cannot be
written.

NOTE
Reset occurs at POR, and when RTMCTL[RST_DEF] is
written to 1.

10.13.49.1 Offset

Register Offset

RTSCMISC 604h

10.13.49.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RTY_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved LRUN_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

10.13.49.3 Fields

Field Description

31-20 Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 749
Confidential Proprietary

Field Description

—

19-16

RTY_CNT

RETRY COUNT. If a statistical check fails during the TRNG Entropy Generation, the RTY_CNT value
indicates the number of times a retry should occur before generating an error. This field is writable only if
RTMCTL[PRGM] bit is 1. This field will read zeroes if RTMCTL[PRGM] = 0. This field is cleared to 1h by
writing the RTMCTL[RST_DEF] bit to 1.

15-8

—

Reserved

7-0

LRUN_MAX

LONG RUN MAX LIMIT. This value is the largest allowable number of consecutive samples of all 1, or all
0, that is allowed during the Entropy generation. This field is writable only if RTMCTL[PRGM] bit is 1. This
field will read zeroes if RTMCTL[PRGM] = 0. This field is cleared to 34 by writing the RTMCTL[RST_DEF]
bit to 1.

10.13.50 RNG TRNG Poker Range Register (RTPKRRNG)

The RNG TRNG Poker Range Register defines the difference between the TRNG Poker
Maximum Limit and the minimum limit. These limits are used during the TRNG
Statistical Check Poker Test.

10.13.50.1 Offset

Register Offset

RTPKRRNG 608h

10.13.50.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PKR_RNG

W

Reset 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

750 NXP Semiconductors
Confidential Proprietary

10.13.50.3 Fields

Field Description

31-16

—

Reserved

15-0

PKR_RNG

Poker Range. During the TRNG Statistical Checks, a "Poker Test" is run which requires a maximum and
minimum limit. The maximum is programmed in the RTPKRMAX[PKR_MAX] register, and the minimum is
derived by subtracting the PKR_RNG value from the programmed maximum value. This field is writable
only if RTMCTL[PRGM] bit is 1. This field will read zeroes if RTMCTL[PRGM] = 0. This field is cleared to
09A3h (decimal 2467) by writing the RTMCTL[RST_DEF] bit to 1. Note that the minimum allowable Poker
result is PKR_MAX - PKR_RNG + 1.

10.13.51 RNG TRNG Poker Maximum Limit Register (RTPK
RMAX)

The RNG TRNG Poker Maximum Limit Register defines Maximum Limit allowable
during the TRNG Statistical Check Poker Test.

NOTE
This offset (060Ch) is used as RTPKRMAX only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is
used as RTPKRSQ readback register.

10.13.51.1 Offset

Register Offset Description

RTPKRMAX 60Ch Accessible at this address when RTMCTL[PRGM] =
1]

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 751
Confidential Proprietary

10.13.51.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved PKR_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PKR_MAX

W

Reset 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0

10.13.51.3 Fields

Field Description

31-24

—

Reserved

23-0

PKR_MAX

Poker Maximum Limit. During the TRNG Statistical Checks, a "Poker Test" is run which requires a
maximum and minimum limit. The maximum allowable result is programmed in the
RTPKRMAX[PKR_MAX] register. This field is writable only if RTMCTL[PRGM] bit is 1. This register is
cleared to 006920h (decimal 26912) by writing the RTMCTL[RST_DEF] bit to 1. Note that the
RTPKRMAX and RTPKRRNG registers combined are used to define the minimum allowable Poker
result, which is PKR_MAX - PKR_RNG + 1. Note that if RTMCTL[PRGM] bit is 0, this register address is
used to read the Poker Test Square Calculation result in register RTPKRSQ, as defined in the following
section.

10.13.52 RNG TRNG Poker Square Calculation Result Register
(RTPKRSQ)

The RNG TRNG Poker Square Calculation Result Register is a read-only register used to
read the result of the TRNG Statistical Check Poker Test's Square Calculation. This test
starts with the RTPKRMAX value and decreases towards a final result, which is read
here. For the Poker Test to pass, this final result must be less than the programmed
RTPKRRNG value.

NOTE
This offset (060Ch) is used as RTPKRMAX if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is
used as RTPKRSQ readback register, as described here.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

752 NXP Semiconductors
Confidential Proprietary

10.13.52.1 Offset

Register Offset Description

RTPKRSQ 60Ch Accessible at this address when RTMCTL[PRGM] =
0]

10.13.52.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

PKR_SQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_SQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.52.3 Fields

Field Description

31-24

—

Reserved

23-0

PKR_SQ

Poker Square Calculation Result. During the TRNG Statistical Checks, a "Poker Test" is run which starts
with the value RTPKRMAX[PKR_MAX]. This value decreases according to a "sum of squares" algorithm,
and must remain greater than zero, but less than the RTPKRRNG[PKR_RNG] limit. The resulting value
may be read through this register, if RTMCTL[PRGM] bit is 0. Note that if RTMCTL[PRGM] bit is 1, this
register address is used to access the Poker Test Maximum Limit in register RTPKRMAX, as defined in
the previous section.

10.13.53 RNG TRNG Seed Control Register (RTSDCTL)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 753
Confidential Proprietary

The RNG TRNG Seed Control Register contains two fields. One field defines the length
(in system clocks) of each Entropy sample (ENT_DLY), and the other field indicates the
number of samples that will be taken during each TRNG Entropy generation
(SAMP_SIZE).

10.13.53.1 Offset

Register Offset

RTSDCTL 610h

10.13.53.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ENT_DLY

W

Reset 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAMP_SIZE

W

Reset 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0

10.13.53.3 Fields

Field Description

31-16

ENT_DLY

Entropy Delay. Defines the length (in system clocks) of each Entropy sample taken. This field is writable
only if RTMCTL[PRGM] bit is 1. This field will read zeroes if RTMCTL[PRGM] = 0. This field is cleared to
00C80h (decimal 3200) by writing the RTMCTL[RST_DEF] bit to 1.

15-0

SAMP_SIZE

Sample Size. Defines the total number of Entropy samples that will be taken during Entropy generation.
This field is writable only if RTMCTL[PRGM] bit is 1. This field will read zeroes if RTMCTL[PRGM] = 0.
This field is cleared to 09C4h (decimal 2500) by writing the RTMCTL[RST_DEF] bit to 1.

10.13.54 RNG TRNG Sparse Bit Limit Register (RTSBLIM)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

754 NXP Semiconductors
Confidential Proprietary

The RNG TRNG Sparse Bit Limit Register is used when Von Neumann sampling is
selected during Entropy Generation. It defines the maximum number of consecutive Von
Neumann samples which may be discarded before an error is generated.

NOTE
This address (0614h) is used as RTSBLIM only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this address
is used as RTTOTSAM readback register.

10.13.54.1 Offset

Register Offset Description

RTSBLIM 614h Accessible at this address when RTMCTL[PRGM] =
1]

10.13.54.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved SB_LIM

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

10.13.54.3 Fields

Field Description

31-10

—

Reserved

9-0

SB_LIM

Sparse Bit Limit. During Von Neumann sampling (if enabled by RTMCTL[SAMP_MODE], samples are
discarded if two consecutive raw samples are both 0 or both 1. If this discarding occurs for a long period
of time, it indicates that there is insufficient Entropy. The Sparse Bit Limit defines the maximum number of
consecutive samples that may be discarded before an error is generated. This field is writable only if
RTMCTL[PRGM] bit is 1. This register is cleared to 03hF by writing the RTMCTL[RST_DEF] bit to 1. Note
that if RTMCTL[PRGM] bit is 0, this register address is used to read the Total Samples count in register
RTTOTSAM, as defined in the following section.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 755
Confidential Proprietary

10.13.55 RNG TRNG Total Samples Register (RTTOTSAM)

The RNG TRNG Total Samples Register is a read-only register used to read the total
number of samples taken during Entropy generation. It is used to give an indication of
how often a sample is actually used during Von Neumann sampling.

NOTE
This offset (0614h) is used as RTSBLIM if RTMCTL[PRGM]
is 1. If RTMCTL[PRGM] is 0, this offset is used as
RTTOTSAM readback register, as described here.

10.13.55.1 Offset

Register Offset Description

RTTOTSAM 614h Accessible at this address when RTMCTL[PRGM] =
0]

10.13.55.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

TOT_SAM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TOT_SAM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.55.3 Fields

Field Description

31-20

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

756 NXP Semiconductors
Confidential Proprietary

Field Description

19-0

TOT_SAM

Total Samples. During Entropy generation, the total number of raw samples is counted. This count is
useful in determining how often a sample is used during Von Neumann sampling. The count may be read
through this register, if RTMCTL[PRGM] bit is 0. Note that if RTMCTL[PRGM] bit is 1, this register
address is used to access the Sparse Bit Limit in register RTSBLIM, as defined in the previous section.

10.13.56 RNG TRNG Frequency Count Minimum Limit Register
(RTFRQMIN)

The RNG TRNG Frequency Count Minimum Limit Register defines the minimum
allowable count taken by the Entropy sample counter during each Entropy sample.
During any sample period, if the count is less than this programmed minimum, a
Frequency Count Fail is flagged in RTMCTL[FCT_FAIL] and an error is generated.

10.13.56.1 Offset

Register Offset

RTFRQMIN 618h

10.13.56.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved FRQ_MIN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FRQ_MIN

W

Reset 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 757
Confidential Proprietary

10.13.56.3 Fields

Field Description

31-22

—

Reserved

21-0

FRQ_MIN

Frequency Count Minimum Limit. Defines the minimum allowable count taken during each entropy
sample. This field is writable only if RTMCTL[PRGM] bit is 1. This field will read zeroes if
RTMCTL[PRGM] = 0. This field is cleared to 000190h by writing the RTMCTL[RST_DEF] bit to 1.

10.13.57 RNG TRNG Frequency Count Register (RTFRQCNT)

The RNG TRNG Frequency Count Register is a read-only register used to read the
frequency counter within the TRNG entropy generator. It will read all zeroes unless
RTMCTL[TRNG_ACC] = 1 and OSC2_CTL[TRNG_ENT_CTL] != 10b.

NOTE
This offset (061Ch) is used as RTFRQMAX if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is
used as RTFRQCNT readback register, as described here.

10.13.57.1 Offset

Register Offset Description

RTFRQCNT 61Ch The RNG TRNG Frequency Count register is
accessible at this address when RTMCTL[PRGM] =
0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

758 NXP Semiconductors
Confidential Proprietary

10.13.57.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

FRQ_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FRQ_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.57.3 Fields

Field Description

31-22

—

Reserved

21-0

FRQ_CNT

Frequency Count. If RTMCTL[TRNG_ACC] = 1, reads a sample frequency count taken during entropy
generation. Requires RTMCTL[PRGM] = 0. The value read from FRQ_CNT is valid only if
RTMCTL[FCT_VAL] = 1.

10.13.58 RNG TRNG Frequency Count Maximum Limit Register
(RTFRQMAX)

The RNG TRNG Frequency Count Maximum Limit Register defines the maximum
allowable count taken by the Entropy sample counter during each Entropy sample.
During any sample period, if the count is greater than this programmed maximum, a
Frequency Count Fail is flagged in RTMCTL[FCT_FAIL] and an error is generated.

NOTE
This address (061C) is used as RTFRQMAX only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this address
is used as RTFRQCNT readback register.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 759
Confidential Proprietary

10.13.58.1 Offset

Register Offset Description

RTFRQMAX 61Ch Accessible at this address when RTMCTL[PRGM] =
1]

10.13.58.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved FRQ_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FRQ_MAX

W

Reset 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

10.13.58.3 Fields

Field Description

31-22

—

Reserved

21-0

FRQ_MAX

Frequency Counter Maximum Limit. Defines the maximum allowable count taken during each entropy
sample. This field is writable only if RTMCTL[PRGM] bit is 1. This register is cleared to 00190h by writing
the RTMCTL[RST_DEF] bit to 1. Note that if RTMCTL[PRGM] bit is 0, this register address is used to
read the Frequency Count result in register RTFRQCNT, as defined in the following section.

10.13.59 RNG TRNG Statistical Check Monobit Count Register
(RTSCMC)

The RNG TRNG Statistical Check Monobit Count Register is a read-only register used to
read the final monobit count after entropy generation. This counter starts with the value
in RTSCML[MONO_MAX], and is decremented each time a one is sampled.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

760 NXP Semiconductors
Confidential Proprietary

NOTE
This offset (0620h) is used as RTSCML if RTMCTL[PRGM] is
1. If RTMCTL[PRGM] is 0, this offset is used as RTSCMC
readback register, as described here.

10.13.59.1 Offset

Register Offset Description

RTSCMC 620h Accessible at this address when RTMCTL[PRGM] =
0]

10.13.59.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MONO_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.59.3 Fields

Field Description

31-16

—

Reserved

15-0

MONO_CNT

Monobit Count. Reads the final Monobit count after entropy generation. Requires RTMCTL[PRGM] = 0.
Note that if RTMCTL[PRGM] bit is 1, this register address is used to access the Statistical Check Monobit
Limit in register RTSCML, as defined in the previous section.

10.13.60 RNG TRNG Statistical Check Monobit Limit Register
(RTSCML)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 761
Confidential Proprietary

The RNG TRNG Statistical Check Monobit Limit Register defines the allowable
maximum and minimum number of ones/zero detected during entropy generation. To
pass the test, the number of ones/zeroes generated must be less than the programmed
maximum value, and the number of ones/zeroes generated must be greater than
(maximum - range). If this test fails, the Retry Counter in RTSCMISC will be
decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry
Count has reached zero, an error will be generated.

NOTE
This offset (0620h) is used as RTSCML only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is
used as RTSCMC readback register.

10.13.60.1 Offset

Register Offset Description

RTSCML 620h Accessible at this address when RTMCTL[PRGM] =
1]

10.13.60.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MONO_RNG

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MONO_MAX

W

Reset 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0

10.13.60.3 Fields

Field Description

31-16

MONO_RNG

Monobit Range. The number of ones/zeroes detected during entropy generation must be greater than
MONO_MAX - MONO_RNG, else a retry or error will occur. This register is cleared to 000112h (decimal
274) by writing the RTMCTL[RST_DEF] bit to 1.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

762 NXP Semiconductors
Confidential Proprietary

Field Description

15-0

MONO_MAX

Monobit Maximum Limit. Defines the maximum allowable count taken during entropy generation. The
number of ones/zeroes detected during entropy generation must be less than MONO_MAX, else a retry
or error will occur. This register is cleared to 00056Bh (decimal 1387) by writing the RTMCTL[RST_DEF]
bit to 1.

10.13.61 RNG TRNG Statistical Check Run Length 1 Count
Register (RTSCR1C)

The RNG TRNG Statistical Check Run Length 1 Counters Register is a read-only
register used to read the final Run Length 1 counts after entropy generation. These
counters start with the value in RTSCR1L[RUN1_MAX]. The R1_1_COUNT
decrements each time a single one is sampled (preceded by a zero and followed by a
zero). The R1_0_COUNT decrements each time a single zero is sampled (preceded by a
one and followed by a one).

NOTE
This offset (0624h) is used as RTSCR1L if RTMCTL[PRGM]
is 1. If RTMCTL[PRGM] is 0, this offset is used as RTSCR1C
readback register, as described here.

10.13.61.1 Offset

Register Offset Description

RTSCR1C 624h Accessible at this address when RTMCTL[PRGM] =
0]

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 763
Confidential Proprietary

10.13.61.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
1_

1_
C

O
U

N
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
1_

0_
C

O
U

N
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.61.3 Fields

Field Description

31

—

Reserved

30-16

R1_1_COUNT

Runs of One, Length 1 Count. Reads the final Runs of Ones, length 1 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15

—

Reserved

14-0

R1_0_COUNT

Runs of Zero, Length 1 Count. Reads the final Runs of Zeroes, length 1 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

10.13.62 RNG TRNG Statistical Check Run Length 1 Limit
Register (RTSCR1L)

The RNG TRNG Statistical Check Run Length 1 Limit Register defines the allowable
maximum and minimum number of runs of length 1 detected during entropy generation.
To pass the test, the number of runs of length 1 (for samples of both 0 and 1) must be less

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

764 NXP Semiconductors
Confidential Proprietary

than the programmed maximum value, and the number of runs of length 1 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated.

NOTE
This address (0624h) is used as RTSCR1L only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this address
is used as RTSCR1C readback register.

10.13.62.1 Offset

Register Offset Description

RTSCR1L 624h Accessible at this address when RTMCTL[PRGM] =
1]

10.13.62.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
U

N
1_

R
N

G

W

Reset 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
U

N
1_

M
A

X

W

Reset 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1

10.13.62.3 Fields

Field Description

31

—

Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 765
Confidential Proprietary

Field Description

30-16

RUN1_RNG

Run Length 1 Range. The number of runs of length 1 (for both 0 and 1) detected during entropy
generation must be greater than RUN1_MAX - RUN1_RNG, else a retry or error will occur. This register
is cleared to 0102h (decimal 258) by writing the RTMCTL[RST_DEF] bit to 1.

15

—

Reserved

14-0

RUN1_MAX

Run Length 1 Maximum Limit. Defines the maximum allowable runs of length 1 (for both 0 and 1)
detected during entropy generation. The number of runs of length 1 detected during entropy generation
must be less than RUN1_MAX, else a retry or error will occur. This register is cleared to 01E5h (decimal
485) by writing the RTMCTL[RST_DEF] bit to 1.

10.13.63 RNG TRNG Statistical Check Run Length 2 Count
Register (RTSCR2C)

The RNG TRNG Statistical Check Run Length 2 Counters Register is a read-only
register used to read the final Run Length 2 counts after entropy generation. These
counters start with the value in RTSCR2L[RUN2_MAX]. The R2_1_COUNT
decrements each time two consecutive ones are sampled (preceded by a zero and
followed by a zero). The R2_0_COUNT decrements each time two consecutive zeroes
are sampled (preceded by a one and followed by a one).

NOTE
This offset (0628h) is used as RTSCR2L if RTMCTL[PRGM]
is 1. If RTMCTL[PRGM] is 0, this offset is used as RTSCR2C
readback register, as described here.

10.13.63.1 Offset

Register Offset Description

RTSCR2C 628h Accessible at this address when RTMCTL[PRGM] =
0]

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

766 NXP Semiconductors
Confidential Proprietary

10.13.63.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
2_

1_
C

O
U

N
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
2_

0_
C

O
U

N
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.63.3 Fields

Field Description

31-30

—

Reserved

29-16

R2_1_COUNT

Runs of One, Length 2 Count. Reads the final Runs of Ones, length 2 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-14

—

Reserved

13-0

R2_0_COUNT

Runs of Zero, Length 2 Count. Reads the final Runs of Zeroes, length 2 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

10.13.64 RNG TRNG Statistical Check Run Length 2 Limit
Register (RTSCR2L)

The RNG TRNG Statistical Check Run Length 2 Limit Register defines the allowable
maximum and minimum number of runs of length 2 detected during entropy generation.
To pass the test, the number of runs of length 2 (for samples of both 0 and 1) must be less

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 767
Confidential Proprietary

than the programmed maximum value, and the number of runs of length 2 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated.

NOTE
This address (0628h) is used as RTSCR2L only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this address
is used as RTSCR2C readback register.

10.13.64.1 Offset

Register Offset Description

RTSCR2L 628h Accessible at this address when RTMCTL[PRGM] =
1]

10.13.64.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
U

N
2_

R
N

G

W

Reset 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
U

N
2_

M
A

X

W

Reset 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0

10.13.64.3 Fields

Field Description

31-30

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

768 NXP Semiconductors
Confidential Proprietary

Field Description

29-16

RUN2_RNG

Run Length 2 Range. The number of runs of length 2 (for both 0 and 1) detected during entropy
generation must be greater than RUN2_MAX - RUN2_RNG, else a retry or error will occur. This register
is cleared to 007Ah (decimal 122) by writing the RTMCTL[RST_DEF] bit to 1.

15-14

—

Reserved

13-0

RUN2_MAX

Run Length 2 Maximum Limit. Defines the maximum allowable runs of length 2 (for both 0 and 1)
detected during entropy generation. The number of runs of length 2 detected during entropy generation
must be less than RUN2_MAX, else a retry or error will occur. This register is cleared to 00DCh (decimal
220) by writing the RTMCTL[RST_DEF] bit to 1.

10.13.65 RNG TRNG Statistical Check Run Length 3 Count
Register (RTSCR3C)

The RNG TRNG Statistical Check Run Length 3 Counters Register is a read-only
register used to read the final Run Length 3 counts after entropy generation. These
counters start with the value in RTSCR3L[RUN3_MAX]. The R3_1_COUNT
decrements each time three consecutive ones are sampled (preceded by a zero and
followed by a zero). The R3_0_COUNT decrements each time three consecutive zeroes
are sampled (preceded by a one and followed by a one).

NOTE
This offset (062Ch) is used as RTSCR3L if RTMCTL[PRGM]
is 1. If RTMCTL[PRGM] is 0, this offset is used as RTSCR3C
readback register, as described here.

10.13.65.1 Offset

Register Offset Description

RTSCR3C 62Ch Accessible at this address when RTMCTL[PRGM] =
0]

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 769
Confidential Proprietary

10.13.65.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

R3_1_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

R3_0_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.65.3 Fields

Field Description

31-29

—

Reserved

28-16

R3_1_COUNT

Runs of Ones, Length 3 Count. Reads the final Runs of Ones, length 3 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-13

—

Reserved

12-0

R3_0_COUNT

Runs of Zeroes, Length 3 Count. Reads the final Runs of Zeroes, length 3 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

10.13.66 RNG TRNG Statistical Check Run Length 3 Limit
Register (RTSCR3L)

The RNG TRNG Statistical Check Run Length 3 Limit Register defines the allowable
maximum and minimum number of runs of length 3 detected during entropy generation.
To pass the test, the number of runs of length 3 (for samples of both 0 and 1) must be less
than the programmed maximum value, and the number of runs of length 3 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

770 NXP Semiconductors
Confidential Proprietary

NOTE
This address (062Ch) is used as RTSCR3L only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this address
is used as RTSCR3C readback register.

10.13.66.1 Offset

Register Offset Description

RTSCR3L 62Ch Accessible at this address when RTMCTL[PRGM] =
1]

10.13.66.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RUN3_RNG

W

Reset 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RUN3_MAX

W

Reset 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1

10.13.66.3 Fields

Field Description

31-29

—

Reserved

28-16

RUN3_RNG

Run Length 3 Range. The number of runs of length 3 (for both 0 and 1) detected during entropy
generation must be greater than RUN3_MAX - RUN3_RNG, else a retry or error will occur. This register
is cleared to 0058h (decimal 88) by writing the RTMCTL[RST_DEF] bit to 1.

15-13

—

Reserved

12-0

RUN3_MAX

Run Length 3 Maximum Limit. Defines the maximum allowable runs of length 3 (for both 0 and 1)
detected during entropy generation. The number of runs of length 3 detected during entropy generation
must be less than RUN3_MAX, else a retry or error will occur. This register is cleared to 007Dh (decimal
125) by writing the RTMCTL[RST_DEF] bit to 1.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 771
Confidential Proprietary

10.13.67 RNG TRNG Statistical Check Run Length 4 Count
Register (RTSCR4C)

The RNG TRNG Statistical Check Run Length 4 Counters Register is a read-only
register used to read the final Run Length 4 counts after entropy generation. These
counters start with the value in RTSCR4L[RUN4_MAX]. The R4_1_COUNT
decrements each time four consecutive ones are sampled (preceded by a zero and
followed by a zero). The R4_0_COUNT decrements each time four consecutive zeroes
are sampled (preceded by a one and followed by a one).

NOTE
This offset (0630h) is used as RTSCR4L if RTMCTL[PRGM]
is 1. If RTMCTL[PRGM] is 0, this offset is used as RTSCR4C
readback register, as described here.

10.13.67.1 Offset

Register Offset Description

RTSCR4C 630h Accessible at this address when RTMCTL[PRGM] =
0]

10.13.67.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

R4_1_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

R4_0_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

772 NXP Semiconductors
Confidential Proprietary

10.13.67.3 Fields

Field Description

31-28

—

Reserved

27-16

R4_1_COUNT

Runs of One, Length 4 Count. Reads the final Runs of Ones, length 4 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-12

—

Reserved

11-0

R4_0_COUNT

Runs of Zero, Length 4 Count. Reads the final Runs of Ones, length 4 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

10.13.68 RNG TRNG Statistical Check Run Length 4 Limit
Register (RTSCR4L)

The RNG TRNG Statistical Check Run Length 4 Limit Register defines the allowable
maximum and minimum number of runs of length 4 detected during entropy generation.
To pass the test, the number of runs of length 4 (for samples of both 0 and 1) must be less
than the programmed maximum value, and the number of runs of length 4 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated.

NOTE
This address (0630h) is used as RTSCR4L only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this address
is used as RTSCR4C readback register.

10.13.68.1 Offset

Register Offset Description

RTSCR4L 630h Accessible at this address when RTMCTL[PRGM] =
1]

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 773
Confidential Proprietary

10.13.68.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RUN4_RNG

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RUN4_MAX

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

10.13.68.3 Fields

Field Description

31-28

—

Reserved

27-16

RUN4_RNG

Run Length 4 Range. The number of runs of length 4 (for both 0 and 1) detected during entropy
generation must be greater than RUN4_MAX - RUN4_RNG, else a retry or error will occur. This register
is cleared to 0040h (decimal 64) by writing the RTMCTL[RST_DEF] bit to 1.

15-12

—

Reserved

11-0

RUN4_MAX

Run Length 4 Maximum Limit. Defines the maximum allowable runs of length 4 (for both 0 and 1)
detected during entropy generation. The number of runs of length 4 detected during entropy generation
must be less than RUN4_MAX, else a retry or error will occur. This register is cleared to 004Bh (decimal
75) by writing the RTMCTL[RST_DEF] bit to 1.

10.13.69 RNG TRNG Statistical Check Run Length 5 Count
Register (RTSCR5C)

The RNG TRNG Statistical Check Run Length 5 Counters Register is a read-only
register used to read the final Run Length 5 counts after entropy generation. These
counters start with the value in RTSCR5L[RUN5_MAX]. The R5_1_COUNT
decrements each time five consecutive ones are sampled (preceded by a zero and
followed by a zero). The R5_0_COUNT decrements each time five consecutive zeroes
are sampled (preceded by a one and followed by a one).

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

774 NXP Semiconductors
Confidential Proprietary

NOTE
This offset (0634h) is used as RTSCR5L if RTMCTL[PRGM]
is 1. If RTMCTL[PRGM] is 0, this offset is used as RTSCR5C
readback register, as described here.

10.13.69.1 Offset

Register Offset Description

RTSCR5C 634h Accessible at this address when RTMCTL[PRGM] =
0]

10.13.69.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

R5_1_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

R5_0_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.69.3 Fields

Field Description

31-27

—

Reserved

26-16

R5_1_COUNT

Runs of One, Length 5 Count. Reads the final Runs of Ones, length 5 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-11

—

Reserved

10-0

R5_0_COUNT

Runs of Zero, Length 5 Count. Reads the final Runs of Ones, length 5 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 775
Confidential Proprietary

10.13.70 RNG TRNG Statistical Check Run Length 5 Limit
Register (RTSCR5L)

The RNG TRNG Statistical Check Run Length 5 Limit Register defines the allowable
maximum and minimum number of runs of length 5 detected during entropy generation.
To pass the test, the number of runs of length 5 (for samples of both 0 and 1) must be less
than the programmed maximum value, and the number of runs of length 5 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated.

NOTE
This address (0634h) is used as RTSCR5L only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this address
is used as RTSCR5C readback register.

10.13.70.1 Offset

Register Offset Description

RTSCR5L 634h Accessible at this address when RTMCTL[PRGM] =
1]

10.13.70.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RUN5_RNG

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RUN5_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

776 NXP Semiconductors
Confidential Proprietary

10.13.70.3 Fields

Field Description

31-27

—

Reserved

26-16

RUN5_RNG

Run Length 5 Range. The number of runs of length 5 (for both 0 and 1) detected during entropy
generation must be greater than RUN5_MAX - RUN5_RNG, else a retry or error will occur. This register
is cleared to 002Eh (decimal 46) by writing the RTMCTL[RST_DEF] bit to 1.

15-11

—

Reserved

10-0

RUN5_MAX

Run Length 5 Maximum Limit. Defines the maximum allowable runs of length 5 (for both 0 and 1)
detected during entropy generation. The number of runs of length 5 detected during entropy generation
must be less than RUN5_MAX, else a retry or error will occur. This register is cleared to 002Fh (decimal
47) by writing the RTMCTL[RST_DEF] bit to 1.

10.13.71 RNG TRNG Statistical Check Run Length 6+ Count
Register (RTSCR6PC)

The RNG TRNG Statistical Check Run Length 6+ Counters Register is a read-only
register used to read the final Run Length 6+ counts after entropy generation. These
counters start with the value in RTSCR6PL[RUN6P_MAX]. The R6P_1_COUNT
decrements each time six or more consecutive ones are sampled (preceded by a zero and
followed by a zero). The R6P_0_COUNT decrements each time six or more consecutive
zeroes are sampled (preceded by a one and followed by a one).

NOTE
This offset (0638h) is used as RTSCR6PL if RTMCTL[PRGM]
is 1. If RTMCTL[PRGM] is 0, this offset is used as
RTSCR6PC readback register, as described here.

10.13.71.1 Offset

Register Offset Description

RTSCR6PC 638h Accessible at this address when RTMCTL[PRGM] =
0]

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 777
Confidential Proprietary

10.13.71.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

R6P_1_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

R6P_0_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.71.3 Fields

Field Description

31-27

—

Reserved

26-16

R6P_1_COUNT

Runs of One, Length 6+ Count. Reads the final Runs of Ones, length 6+ count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-11

—

Reserved

10-0

R6P_0_COUNT

Runs of Zero, Length 6+ Count. Reads the final Runs of Ones, length 6+ count after entropy generation.
Requires RTMCTL[PRGM] = 0.

10.13.72 RNG TRNG Statistical Check Run Length 6+ Limit
Register (RTSCR6PL)

The RNG TRNG Statistical Check Run Length 6+ Limit Register defines the allowable
maximum and minimum number of runs of length 6 or more detected during entropy
generation. To pass the test, the number of runs of length 6 or more (for samples of both
0 and 1) must be less than the programmed maximum value, and the number of runs of
length 6 or more must be greater than (maximum - range). If this test fails, the Retry
Counter in RTSCMISC will be decremented, and a retry will occur if the Retry Count has
not reached zero. If the Retry Count has reached zero, an error will be generated.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

778 NXP Semiconductors
Confidential Proprietary

NOTE
This offset (0638h) is used as RTSCR6PL only if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is
used as RTSCR6PC readback register.

10.13.72.1 Offset

Register Offset Description

RTSCR6PL 638h Accessible at this address when RTMCTL[PRGM] =
1]

10.13.72.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RUN6P_RNG

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RUN6P_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

10.13.72.3 Fields

Field Description

31-27

—

Reserved

26-16

RUN6P_RNG

Run Length 6+ Range. The number of runs of length 6 or more (for both 0 and 1) detected during entropy
generation must be greater than RUN6P_MAX - RUN6P_RNG, else a retry or error will occur. This
register is cleared to 002Eh (decimal 46) by writing the RTMCTL[RST_DEF] bit to 1.

15-11

—

Reserved

10-0

RUN6P_MAX

Run Length 6+ Maximum Limit. Defines the maximum allowable runs of length 6 or more (for both 0 and
1) detected during entropy generation. The number of runs of length 6 or more detected during entropy
generation must be less than RUN6P_MAX, else a retry or error will occur. This register is cleared to
002Fh (decimal 47) by writing the RTMCTL[RST_DEF] bit to 1.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 779
Confidential Proprietary

10.13.73 RNG TRNG Status Register (RTSTATUS)

Various statistical tests are run as a normal part of the TRNG's entropy generation
process. If the RNG TRNG Miscellaneous Control Register (RTMCTL) ERR field
indicates an error, the least-significant 16 bits of the RTSTATUS register will indicate
which test(s) have failed. The status of these bits will be valid when the TRNG has
finished its entropy generation process. Software can determine when this occurs by
polling the ENT_VAL bit in RTMCTL. If RTMCTL[ERR] indicates no error, then
RTSTATUS register does not contain valid test status data.

Note that there is a very small probability that a statistical test will fail even though the
TRNG is operating properly. If this happens the TRNG will automatically retry the entire
entropy generation process, including running all the statistical tests. The value in
RETRY_COUNT is decremented each time an entropy generation retry occurs. If a
statistical check fails when the retry count is nonzero, a retry is initiated. But if a
statistical check fails when the retry count is zero, an error is generated by the RNG. By
default RETRY_COUNT is initialized to 1, but software can increase the retry count by
writing to the RTY_CNT field in the RTSCMISC register (see RNG TRNG Statistical
Check Miscellaneous Register (RTSCMISC)).

All 0s will be returned if this register address is read while the RNG is in Program Mode
(see PRGM field in RTMCTL register (see RNG TRNG Miscellaneous Control Register
(RTMCTL)). If this register is read while the RNG is in Run Mode the value returned
will be formatted as follows.

10.13.73.1 Offset

Register Offset

RTSTATUS 63Ch

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

780 NXP Semiconductors
Confidential Proprietary

10.13.73.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

RETRY_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

F
M

B
T

F

F
P

T
F F
LR

T
F F

S
B

T
F

F
6P

B
R

1T
F

F
6P

B
R

0T
F

F
5B

R
1T

F

F
5B

R
0T

F

F
4B

R
1T

F

F
4B

R
0T

F

F
3B

R
1T

F

F
3B

R
01

T
F

F
2B

R
1T

F

F
2B

R
0T

F

F
1B

R
1T

F

F
1B

R
0T

F

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.73.3 Fields

Field Description

31-20

—

Reserved

19-16

RETRY_COUNT

RETRY COUNT. This represents the current number of entropy generation retries left before a statistical
text failure will cause the RNG to generate an error condition.

15

FMBTF

Mono Bit Test Fail. If MBTF=1, the Mono Bit Test has failed.

14

FPTF

Poker Test Fail. If PTF=1, the Poker Test has failed.

13

FLRTF

Long Run Test Fail. If LRTF=1, the Long Run Test has failed.

12

FSBTF

Sparse Bit Test Fail. If SBTF=1, the Sparse Bit Test has failed.

11

F6PBR1TF

6 Plus Bit Run, Sampling 1s, Test Fail. If 6PBR1TF=1, the 6 Plus Bit Run, Sampling 1s Test has failed.

10

F6PBR0TF

6 Plus Bit Run, Sampling 0s, Test Fail. If 6PBR0TF=1, the 6 Plus Bit Run, Sampling 0s Test has failed.

9

F5BR1TF

5-Bit Run, Sampling 1s, Test Fail. If 5BR1TF=1, the 5-Bit Run, Sampling 1s Test has failed.

8

F5BR0TF

5-Bit Run, Sampling 0s, Test Fail. If 5BR0TF=1, the 5-Bit Run, Sampling 0s Test has failed.

7 4-Bit Run, Sampling 1s, Test Fail. If 4BR1TF=1, the 4-Bit Run, Sampling 1s Test has failed.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 781
Confidential Proprietary

Field Description

F4BR1TF

6

F4BR0TF

4-Bit Run, Sampling 0s, Test Fail. If 4BR0TF=1, the 4-Bit Run, Sampling 0s Test has failed.

5

F3BR1TF

3-Bit Run, Sampling 1s, Test Fail. If 3BR1TF=1, the 3-Bit Run, Sampling 1s Test has failed.

4

F3BR01TF

3-Bit Run, Sampling 0s, Test Fail. If 3BR0TF=1, the 3-Bit Run, Sampling 0s Test has failed.

3

F2BR1TF

2-Bit Run, Sampling 1s, Test Fail. If 2BR1TF=1, the 2-Bit Run, Sampling 1s Test has failed.

2

F2BR0TF

2-Bit Run, Sampling 0s, Test Fail. If 2BR0TF=1, the 2-Bit Run, Sampling 0s Test has failed.

1

F1BR1TF

1-Bit Run, Sampling 1s, Test Fail. If 1BR1TF=1, the 1-Bit Run, Sampling 1s Test has failed.

0

F1BR0TF

1-Bit Run, Sampling 0s, Test Fail. If 1BR0TF=1, the 1-Bit Run, Sampling 0s Test has failed.

10.13.74 RNG TRNG Entropy Read Register (RTENT0 - RTENT15)

The RNG TRNG can be programmed to generate an entropy value that is readable via the
SkyBlue bus. To do this, set the RTMCTL[TRNG_ACC] bit to 1. Once the entropy value
has been generated, the RTMCTL[ENT_VAL] bit will be set to 1. At this point, RTENT0
through RTENT15 may be read to retrieve the 512-bit entropy value. Note that once
RTENT15 is read, the entropy value will be cleared and a new value will begin
generation, so it is important that RTENT15 be read last. Also note that the entropy value
read from the RTENT0 - RTENT15 registers will never be used by the CAAM for any
purpose other than to be read via these registers. Any entropy value used for any security
function cannot be read. These registers are readable only when RTMCTL[PRGM] = 0
(Run Mode), RTMCTL[TRNG_ACC] = 1 (TRNG access mode) and
RTMCTL[ENT_VAL] = 1, otherwise zeroes will be read.

10.13.74.1 Offset

For a = 0 to 15:

Register Offset

RTENTa 640h + (a × 4h)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

782 NXP Semiconductors
Confidential Proprietary

10.13.74.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ENT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ENT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.74.3 Fields

Field Description

31-0

ENT

Entropy Value. Will be non-zero only if RTMCTL[PRGM] = 0 (Run Mode) and RTMCTL[ENT_VAL] = 1
(Entropy Valid). The most significant bits of the entropy are read from the lowest offset, and the least
significant bits are read from the highest offset. Note that reading the highest offset also clears the entire
entropy value, and starts a new entropy generation.

10.13.75 RNG TRNG Statistical Check Poker Count 1 and 0
Register (RTPKRCNT10)

The RNG TRNG Statistical Check Poker Count 1 and 0 Register is a read-only register
used to read the final Poker test counts of 1h and 0h patterns. The Poker 0h Count
increments each time a nibble of sample data is found to be 0h. The Poker 1h Count
increments each time a nibble of sample data is found to be 1h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

10.13.75.1 Offset

Register Offset

RTPKRCNT10 680h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 783
Confidential Proprietary

10.13.75.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_1_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_0_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.75.3 Fields

Field Description

31-16

PKR_1_CNT

Poker 1h Count. Total number of nibbles of sample data which were found to be 1h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_0_CNT

Poker 0h Count. Total number of nibbles of sample data which were found to be 0h. Requires
RTMCTL[PRGM] = 0.

10.13.76 RNG TRNG Statistical Check Poker Count 3 and 2
Register (RTPKRCNT32)

The RNG TRNG Statistical Check Poker Count 3 and 2 Register is a read-only register
used to read the final Poker test counts of 3h and 2h patterns. The Poker 2h Count
increments each time a nibble of sample data is found to be 2h. The Poker 3h Count
increments each time a nibble of sample data is found to be 3h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

10.13.76.1 Offset

Register Offset

RTPKRCNT32 684h

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

784 NXP Semiconductors
Confidential Proprietary

10.13.76.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_3_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_2_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.76.3 Fields

Field Description

31-16

PKR_3_CNT

Poker 3h Count. Total number of nibbles of sample data which were found to be 3h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_2_CNT

Poker 2h Count. Total number of nibbles of sample data which were found to be 2h. Requires
RTMCTL[PRGM] = 0.

10.13.77 RNG TRNG Statistical Check Poker Count 5 and 4
Register (RTPKRCNT54)

The RNG TRNG Statistical Check Poker Count 5 and 4 Register is a read-only register
used to read the final Poker test counts of 5h and 4h patterns. The Poker 4h Count
increments each time a nibble of sample data is found to be 4h. The Poker 5h Count
increments each time a nibble of sample data is found to be 5h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

10.13.77.1 Offset

Register Offset

RTPKRCNT54 688h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 785
Confidential Proprietary

10.13.77.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_5_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_4_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.77.3 Fields

Field Description

31-16

PKR_5_CNT

Poker 5h Count. Total number of nibbles of sample data which were found to be 5h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_4_CNT

Poker 4h Count. Total number of nibbles of sample data which were found to be 4h. Requires
RTMCTL[PRGM] = 0.

10.13.78 RNG TRNG Statistical Check Poker Count 7 and 6
Register (RTPKRCNT76)

The RNG TRNG Statistical Check Poker Count 7 and 6 Register is a read-only register
used to read the final Poker test counts of 7h and 6h patterns. The Poker 6h Count
increments each time a nibble of sample data is found to be 6h. The Poker 7h Count
increments each time a nibble of sample data is found to be 7h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

10.13.78.1 Offset

Register Offset

RTPKRCNT76 68Ch

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

786 NXP Semiconductors
Confidential Proprietary

10.13.78.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_7_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_6_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.78.3 Fields

Field Description

31-16

PKR_7_CNT

Poker 7h Count. Total number of nibbles of sample data which were found to be 7h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_6_CNT

Poker 6h Count. Total number of nibbles of sample data which were found to be 6h. Requires
RTMCTL[PRGM] = 0.

10.13.79 RNG TRNG Statistical Check Poker Count 9 and 8
Register (RTPKRCNT98)

The RNG TRNG Statistical Check Poker Count 9 and 8 Register is a read-only register
used to read the final Poker test counts of 9h and 8h patterns. The Poker 8h Count
increments each time a nibble of sample data is found to be 8h. The Poker 9h Count
increments each time a nibble of sample data is found to be 9h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

10.13.79.1 Offset

Register Offset

RTPKRCNT98 690h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 787
Confidential Proprietary

10.13.79.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_9_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_8_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.79.3 Fields

Field Description

31-16

PKR_9_CNT

Poker 9h Count. Total number of nibbles of sample data which were found to be 9h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_8_CNT

Poker 8h Count. Total number of nibbles of sample data which were found to be 8h. Requires
RTMCTL[PRGM] = 0.

10.13.80 RNG TRNG Statistical Check Poker Count B and A
Register (RTPKRCNTBA)

The RNG TRNG Statistical Check Poker Count B and A Register is a read-only register
used to read the final Poker test counts of Bh and Ah patterns. The Poker Ah Count
increments each time a nibble of sample data is found to be Ah. The Poker Bh Count
increments each time a nibble of sample data is found to be Bh. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

10.13.80.1 Offset

Register Offset

RTPKRCNTBA 694h

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

788 NXP Semiconductors
Confidential Proprietary

10.13.80.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_B_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_A_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.80.3 Fields

Field Description

31-16

PKR_B_CNT

Poker Bh Count. Total number of nibbles of sample data which were found to be Bh. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_A_CNT

Poker Ah Count. Total number of nibbles of sample data which were found to be Ah. Requires
RTMCTL[PRGM] = 0.

10.13.81 RNG TRNG Statistical Check Poker Count D and C
Register (RTPKRCNTDC)

The RNG TRNG Statistical Check Poker Count D and C Register is a read-only register
used to read the final Poker test counts of Dh and Ch patterns. The Poker Ch Count
increments each time a nibble of sample data is found to be Ch. The Poker Dh Count
increments each time a nibble of sample data is found to be Dh. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

10.13.81.1 Offset

Register Offset

RTPKRCNTDC 698h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 789
Confidential Proprietary

10.13.81.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_D_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_C_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.81.3 Fields

Field Description

31-16

PKR_D_CNT

Poker Dh Count. Total number of nibbles of sample data which were found to be Dh. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_C_CNT

Poker Ch Count. Total number of nibbles of sample data which were found to be Ch. Requires
RTMCTL[PRGM] = 0.

10.13.82 RNG TRNG Statistical Check Poker Count F and E
Register (RTPKRCNTFE)

The RNG TRNG Statistical Check Poker Count F and E Register is a read-only register
used to read the final Poker test counts of Fh and Eh patterns. The Poker Eh Count
increments each time a nibble of sample data is found to be Eh. The Poker Fh Count
increments each time a nibble of sample data is found to be Fh. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

10.13.82.1 Offset

Register Offset

RTPKRCNTFE 69Ch

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

790 NXP Semiconductors
Confidential Proprietary

10.13.82.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_F_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_E_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.82.3 Fields

Field Description

31-16

PKR_F_CNT

Poker Fh Count. Total number of nibbles of sample data which were found to be Fh. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_E_CNT

Poker Eh Count. Total number of nibbles of sample data which were found to be Eh. Requires
RTMCTL[PRGM] = 0.

10.13.83 RNG DRNG Status Register (RDSTA)

The RNG DRNG Status Register shows the current status of the DRNG portion of the
RNG.

10.13.83.1 Offset

Register Offset Description

RDSTA 6C0h Accessible at this address when RTMCTL[PRGM] =
0]

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 791
Confidential Proprietary

10.13.83.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
K

V
T

S
K

V
N

R
es

er
ve

d

C E

E
R

R
C

O
D

E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

T
F

1

T
F

0

R
es

er
ve

d

P
R

1

P
R

0

R
es

er
ve

d

IF
1

IF
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.83.3 Fields

Field Description

31

SKVT

Secure Key Valid Test. The secure keys (JDKEK, TDKEK and TDSK) were generated by a test
(deterministic) instance.

30

SKVN

Secure Key Valid Non-Test. The secure keys (JDKEK, TDKEK and TDSK) were generated by a non-test
(non-deterministic) instance.

29-21

—

Reserved

20

CE

Catastrophic Error. A catastrophic error will occur when the RNG gets a hardware error while requesting
new entropy and the current State Handle is instantiated as a non-test (non-deterministic) instance.

19-16

ERRCODE

Error Code. These bits represent the current error in the RNG.

15-12

—

Reserved

11-10

—

Reserved

9

TF1

Test Flag State Handle 1. State handle 1 has been instantiated as a test (deterministic) instance.

8

TF0

Test Flag State Handle 0. State handle 0 has been instantiated as a test (deterministic) instance.

7-6

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

792 NXP Semiconductors
Confidential Proprietary

Field Description

5

PR1

Prediction Resistance Flag State Handle 1. State Handle 1 has been instantiated to support prediction
resistance.

4

PR0

Prediction Resistance Flag State Handle 0. State Handle 0 has been instantiated to support prediction
resistance.

3-2

—

Reserved

1

IF1

Instantiated Flag State Handle 1. State Handle 1 has been instantiated.

0

IF0

Instantiated Flag State Handle 0. State Handle 0 has been instantiated.

10.13.84 RNG DRNG State Handle 0 Reseed Interval Register
(RDINT0)

The RNG DRNG State Handle 0 Reseed Interval Register shows the current value of the
reseed interval for State Handle 0. This value represents the number of requests for
random data from this State Handle before this State Handle is automatically reseeded
with entropy from the TRNG. The reset value is zero, but a new reseed interval value is
loaded when the RNG State Handle is instantiated. If the value in the Class 1 Data Size
register is nonzero at the time that the instantiation command is executed, RDINT0 will
be loaded with this value. If the value in the Class 1 Data Size register is 0, the default
reseed interval value (10,000,000) is loaded into RDINT0. Note that the State Handle is
instantiated by executing a descriptor that contains an ALGORITHM OPERATION RNG
Instantiate command (see RNG operations).

10.13.84.1 Offset

Register Offset

RDINT0 6D0h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 793
Confidential Proprietary

10.13.84.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RESINT0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RESINT0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.84.3 Fields

Field Description

31-0

RESINT0

RESINT0. This read-only register holds the Reseed Interval for State Handle 0.

10.13.85 RNG DRNG State Handle 1 Reseed Interval Register
(RDINT1)

The RNG DRNG State Handle 1 Reseed Interval Register shows the current value of the
reseed interval for State Handle 1. This value represents the number of requests for
random data from this State Handle before this State Handle is automatically reseeded
with entropy from the TRNG. The reset value is zero, but a new reseed interval value is
loaded when the RNG State Handle is instantiated. If the value in the Class 1 Data Size
register is nonzero at the time that the instantiation command is executed, RDINT1 will
be loaded with this value. If the value in the Class 1 Data Size register is 0, the default
reseed interval value (10,000,000) is loaded into RDINT1. Note that the State Handle is
instantiated by executing a descriptor that contains an ALGORITHM OPERATION RNG
Instantiate command (see RNG operations).

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

794 NXP Semiconductors
Confidential Proprietary

10.13.85.1 Offset

Register Offset

RDINT1 6D4h

10.13.85.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RESINT1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RESINT1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.85.3 Fields

Field Description

31-0

RESINT1

RESINT1. This read-only register holds the Reseed Interval for State Handle 1.

10.13.86 RNG DRNG Hash Control Register (RDHCNTL)

The RNG DRNG Hash Control Register is used to gain control of the SHA-256 hashing
engine that is internal to the RNG. Once Hashing test mode is initialized then the user can
begin the hashing operation and poll for the done bit.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 795
Confidential Proprietary

10.13.86.1 Offset

Register Offset

RDHCNTL 6E0h

10.13.86.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved HTM

HD

W HTC HI HB

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.86.3 Fields

Field Description

31-5

—

Reserved

4

HTC

Hashing Test Mode Clear. Writing this bit will take the RNG out of hashing test mode.

3

HTM

Hashing Test Mode. Writing this bit will put RNG in Hashing Test Mode.

2

HI

Hashing Initialize. Writing to this bit will initialize the Hashing Engine.

1

HB

Hashing Begin. Writing this bit will causing the Hashing Engine to begin hashing.

0

HD

Hashing Done. This bit asserts when the hashing engine is done.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

796 NXP Semiconductors
Confidential Proprietary

10.13.87 RNG DRNG Hash Digest Register (RDHDIG)

The RNG DRNG Hash Digest Register allows user access to the eight 32-bit message
digest registers of the SHA-256 hashing engine that is internal to the RNG. All eight
registers are read in order from most-significant bits to least-significant bits by reading
this address eight times. These registers are only readable while in Hashing Test Mode
and when the Hashing Engine is done.

10.13.87.1 Offset

Register Offset

RDHDIG 6E4h

10.13.87.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R HASHMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HASHMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.87.3 Fields

Field Description

31-0

HASHMD

HASHMD. Hashing Message Digest Register. This register needs to be read 8 times to retrieve the entire
message digest.

10.13.88 RNG DRNG Hash Buffer Register (RDHBUF)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 797
Confidential Proprietary

The RNG DRNG Hash buffer allows access to the SHA-256 hashing engine that is
internal to the RNG for the purpose of conformance testing. To fill the buffer this register
must be written 16 times at this address. This register is writable only while the RNG is
in Hashing Test mode. This mode can be selected via the RNG DRNG Hash Control
Register.

10.13.88.1 Offset

Register Offset

RDHBUF 6E8h

10.13.88.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W HASHBUF

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W HASHBUF

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.88.3 Fields

Field Description

31-0

HASHBUF

HASHBUF. This write-only register provides access to the internal SHA-256 hashing engine's 64-byte
buffer. This register must be written 16 times to fill the buffer.

10.13.89 Partition c SDID register (P0SDID_PG0 - P7SDID_JR2)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

798 NXP Semiconductors
Confidential Proprietary

There is one Partition SDID (PSDID) register per Secure Memory partition. The PSDID
register indicates the owner of the partition. When an unowned partition is claimed by
writing into the partition's SMAP register, the SDID of the new owner is copied from an
SDID register to the partition's PSDID register. If the SMAP register is written from an
alias in a Job Ring page, the SDID value is copied from the Job Ring's JR(DID). If the
SMAP register is written from register page 0, the SDID value is copied from the
PAGE0_SDID register. Although the PSDID register can be read, the value in the PSDID
register cannot be changed until the partition is released, at which time the PSDID
register is cleared.

10.13.89.1 Offset

Register Offset

P0SDID_PG0 A00h

P1SDID_PG0 A10h

P2SDID_PG0 A20h

P3SDID_PG0 A30h

P4SDID_PG0 A40h

P5SDID_PG0 A50h

P6SDID_PG0 A60h

P7SDID_PG0 A70h

P0SDID_JR0 1A00h

P1SDID_JR0 1A10h

P2SDID_JR0 1A20h

P3SDID_JR0 1A30h

P4SDID_JR0 1A40h

P5SDID_JR0 1A50h

P6SDID_JR0 1A60h

P7SDID_JR0 1A70h

P0SDID_JR1 2A00h

P1SDID_JR1 2A10h

P2SDID_JR1 2A20h

P3SDID_JR1 2A30h

P4SDID_JR1 2A40h

P5SDID_JR1 2A50h

P6SDID_JR1 2A60h

P7SDID_JR1 2A70h

P0SDID_JR2 3A00h

P1SDID_JR2 3A10h

P2SDID_JR2 3A20h

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 799
Confidential Proprietary

Register Offset

P3SDID_JR2 3A30h

P4SDID_JR2 3A40h

P5SDID_JR2 3A50h

P6SDID_JR2 3A60h

P7SDID_JR2 3A70h

10.13.89.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SDID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.89.3 Fields

Field Description

31-16

—

Reserved

15-0

SDID

Security Domain Identifier. When a partition is claimed by a Job Ring owner or by the hypervisor or
TrustZone SecureWorld by writing into the partition's Secure Memory Access Permissions Register, 0b,
SDID_MS, 0b, PRIM_DID (if USE_OUT=0 and PRIM_TZ=0), or 100_0000_0000_1b, PRIM_DID (if
USE_OUT=0 and PRIM_TZ=1), or SDID_MS, 0b, OUT_DID (if USE_OUT=1) is copied from the Job
Ring's JRaDID register and written into the Partition SDID register for that partition. This indicates that the
partition is owned by this particular security domain ID.

10.13.90 Secure Memory Access Permissions register (P0SM
APR_PG0 - P7SMAPR_JR2)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

800 NXP Semiconductors
Confidential Proprietary

There is one Secure Memory Access Permissions (SMAPJR) register for each Secure
Memory partition, and each register is aliased to multiple addresses, one for each Job
Ring and one located in CAAM register page 0. Writing to the SMAPJR register sets the
access permissions for the partition. If the partition is already owned, only the partition's
owner11(or the hypervisor or TrustZone SecureWorld) can write to the partition's SMAP
register. If the partition is not currently owned, the partition can be claimed by writing to
the partition's SMAP register. This records a new owner for the partition as well as
setting the access permissions.

A Job Ring owner writes to the SMAP register using the address alias located in the Job
Ring's register page. That is, the owner of Job Ring 0 would write to the SMAP address
alias in register page 1, but the owner of Job Ring 1 would write to the SMAP address
alias in register page 2. If the partition is unowned, at the time the SMAP register is
written the partition's new owner (an SDID value) is recorded in the partition's PSDID
register. Since a Job Ring is owned by a particular SDID value, when a Job Ring owner
claims a partition the JR owner's SDID is copied from bits 14..0 of the JRDID register
into the corresponding bits of the partition's PSDID register. Bit 4 (PRIM_TZ) of the
JRDID register is copied into 15 of the partition's PSDIDR to indicate ownership by
TrustZone SecureWorld or nonSecureWorld.

Similarly, the CAAM manager can claim an unowned partition by writing to the
partition's SMAP alias in CAAM register page 0. In this case bits 14..0 of the
PAGE0_SDID register are copied into the corresponding bits of the partition's PSDIDR,
but bit 15 of the PSDIDR is set to 1 if the write to the SMAP register is from
SecureWorld, or set to 0 if the write is from nonSecureWorld. This is enforced by
comparing the DID value asserted during the write to the SMAPJR or SMAGJR register
to the PRIM_DID field within the appropriate JRaDID register. If the partition is
released, the partition's SMAPJR and SMAG2/1JR registers once again become
accessible to any Job Ring owner.

The access permissions set in the SMAPJR register apply to accesses to the partition
made by the bus masters specified via the partition's Secure Memory Access Group
(SMAG2/1JR) registers. All bus masters and Job Descriptors acting on behalf of bus
masters not specified via the SMAG2/1JR registers are prohibited from accessing that
partition.

Access permissions for a Secure Memory partition are specified by listing the access
types that a specified group of bus masters is allowed to make when accessing that
partition. There are two separate access groups specified via the SMAG2JR and
SMAG1JR registers, and corresponding to these are two separate access permission fields
in the SMAPJR register.

11. Bit 15 of the PSDIDR is ignored when determining read/write access to the partition's SMAP and SMAG registers or
when reading the SMPO register.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 801
Confidential Proprietary

A particular bus master may belong to either Group 1, or Group 2, or both, or neither. If a
bus master belongs to neither group, then that bus master is prohibited from accessing
that partition. If the bus master belongs to one of the two access groups, that bus master is
allowed to access the partition using the access types permitted for that access group. If
the bus master belongs to both groups, the bus master will be able to use the access types
specified for either access group.

SMAPJR register's "Gx_WRITE" and "Gx_READ" permission bits are straightforward.
Setting these bits allows the members of Group x to write or read (respectively) that
partition either via the AXI Register Interface, or via descriptor commands that access
Secure Memory via CAAM's internal DMA.

CAAM's Secure Memory also enforces access permissions with respect to CAAM-only
access types. The CAAM-only access types include Trusted Descriptor accesses, Secure
Memory Blob accesses, and key-reads. These access types are communicated via internal
CAAM signals, so no external bus transactions can indicate these access types.

When Trusted Descriptors access Secure Memory, these accesses receive special
treatment. If an access from a Trusted Descriptor uses a DID that is a member of the
partition's access group 1 or access group 2, the access is permitted regardless of the
SMAPJR register settings. Since such accesses are always allowed, there is no access
control bit associated with Trusted Descriptor access to Secure Memory. Note that a
TrustZone Trusted Descriptor (i.e. a Trusted Descriptor created in a Job Ring owned by
TrustZone SecureWorld) asserts the TrustZone security identifier, and this identifier is
considered a memory of any access group. Therefore a TrustZone Trusted Descriptor can
access any partition as long as at least one of the partition's Gx_TD bits is 1.

Because Trusted Descriptors can be allowed unrestricted access to any Secure Memory
partition, Trusted Descriptors can be used to create or modify keys in key partitions, or to
reload cryptographic keys from blobs.

Note that most accesses to Secure Memory made by Job Descriptors and Shared
Descriptors are governed by the G1 and G2 READ and WRITE permissions, but "key-
read accesses" initiated by descriptors are not controlled by these permission bits. Key-
read accesses are read transactions initiated by a KEY command with NWB=1, no SGF,
and length greater than or equal to 16 bytes. These accesses receive special treatment
because the data read receives special protection. The only possible destination for the
data read via a KEY command is a key register (Class 1 Key Register, Class 2 Key
Register, AFHA S-Box, or PKHA E Memory). Once data has been loaded into a key
register, CAAM protects the data's confidentiality by either preventing the data from
being transferred back out of the key register (if NWB=1), or by encrypting the data
before it is transferred out (if NWB=0).

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

802 NXP Semiconductors
Confidential Proprietary

CAAM grants special permissions for key-read transactions. A key-read access is
permitted if an ordinary read is permitted (i.e. if Gx_READ=1 for one or both of the
groups to which the read transaction's DID belongs), but key-read accesses are also
permitted even if Gx_READ=0, as long as the DID asserted by the descriptor is a
member of Groupx. This mechanism allows a partition to be dedicated for cryptographic
keys that are unreadable by software, but which can still be used as keys in CAAM's
CHAs. A "key partition" can be created by setting a partition's access permissions to
prevent ordinary read or write accesses or blob operations. A key partition must be
provisioned in a manner that prevents software from knowing the values of the keys
stored in the key partition. As mentioned earlier, this can be accomplished via Trusted
Descriptors. As an alternative, the operating system or hypervisor or TrustZone
SecureWorld could set the CPU's MMU to allow trusted software to read and write the
partition, but prevent untrusted software from accessing the partition except via job
descriptor key-reads. Note that the SMAPJR and SMAG2/1JR register permissions can
also be set so that only particular bus masters (including CAAM itself) can access the
partition. The table below indicates the various read and key-read permissions that can be
defined.

Table 10-244. Read and Key-Read Permissions

G1_READ=1 G1_READ=0

G2_READ=1 read or key-read permitted if DID is a member of G2

read or key-read permitted if DID is a member of G1

read or key-read permitted if DID is a member of G2

key-read permitted if DID is a member of G1

G2_READ=0 key-read permitted if DID is a member of G2

read or key-read permitted if DID is a member of G1

key-read permitted if DID is a member of G2

key-read permitted if DID is a member of G1

* Note that a read operation is considered a "key-read" only if issued by a KEY command with NWB=1, and
only if the access does not use a SGT, and only if the length of the key is 16 bytes or more. Key-read accesses
are disallowed if the DECO is under direct control of software (see Register-based service interface).

If data within a partition must be preserved across power cycles, the data can be
cryptographically protected by encapsulating it as a blob before storing it in nonvolatile
memory. On a subsequent power cycle (or even during the current power cycle) the data
can be recovered by decapsulating the blob. Exporting and importing General Memory
Blobs are considered as "reads" and "writes" respectively, and exporting them from or
importing them to Secure Memory is permitted or prohibited by the appropriate settings
of the "Gx_READ" and "Gx_WRITE" permission bits. But if the partition does not allow
read access, or if the partition's access permissions or Job Ring ownership must be
enforced, or the blob must be re-imported into a partition that does not allow write
access, then a Secure Memory Blob should be used instead of a General Memory Blob.

A Secure Memory Blob can be exported from or imported to a Secure Memory partition
by a Job Descriptor (or a Shared Descriptor) only if the partition's "Gx_SMBLOB" bit is
a 1. Secure Memory Blob operations are not restricted by the Gx_READ and Gx_WRITE

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 803
Confidential Proprietary

bits, whereas General Memory Blob operations are not restricted by the "Gx_SMBLOB"
bit. Note that Trusted Descriptors (if enabled by the appropriate Gx_TD setting) are
exempt from all these access restrictions, and can export or import General Memory
Blobs or Secure Memory Blobs regardless of the "Gx_READ", "Gx_WRITE" or
"Gx_SMBLOB" settings.

The Blob Key Encryption Key for Secure Memory Blobs is derived, in part, from the
values in the partition's SMAPJR and SMAG2/1JR registers, therefore a Secure Memory
Blob can be successfully imported into a partition only if the partition's SM APJR and
SMAG2/1JR registers have the same values as the partition from which the Secure
Memory Blob was exported.12 If the values differ at all the BKEK value will be incorrect,
which will cause the import operation to halt with an integrity check error.

The semantics of the access control bits can be summarized in the following Boolean
equations:

Access_Permitted =

(If USE_OUT=0, or read access: PRIM_TZ,PRIM_DID ∈{ ACCESS_GROUP1 }) &

(If USE_OUT=1 and write access: 0,OUT_DID ∈ { ACCESS_GROUP1 }) &

(key_read |

(sm_blob_access & G1_SMBLOB) |

(caam_trusted_descriptor & G1_TD) |

(write & G1_WRITE) |

(read & G1_READ)))

(If USE_OUT=0, or read access: PRIM_TZ,PRIM_DID ∈ { ACCESS_GROUP2 }) &

(If USE_OUT=1 and write access: 0,OUT_DID ∈ { ACCESS_GROUP2 }) &

(key_read |

(sm_blob_access & G2_SMBLOB) |

(caam_trusted_descriptor & G2_TD) |

(write & G2_WRITE) |

(read & G2_READ)))

12. Observe that the partition owner's SDID appears in the Partition SDID register. This supports data privacy by preventing
a Secure Memory Blob from being imported into a partition owned by a different Job Ring owner.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

804 NXP Semiconductors
Confidential Proprietary

CAPITAL LETTERS represent SMAPJR or SMAG2/1JR registers fields; lower case
letters represent hardware signals

When software sets the access permissions for a partition, the software can mark the
partition using the Critical Security Parameters bit13 (CSP) flag, which tells Secure
Memory that the partition will be used to hold disclosure-sensitive data. To protect this
disclosure-sensitive data, the Secure Memory automatically zeroizes CSP partitions when
a security alarm is detected, or when releasing that memory for other purposes. Whenever
a page is de-allocated from a CSP partition, that page will be zeroized. When a CSP
partition is de-allocated the Secure Memory hardware zeroizes all pages in that partition.
Not flagging the partition as CSP indicates that the partition will not be used to store
disclosure-sensitive data, so the Secure Memory does not zeroize the pages in that
partition when CAAM transitions to Fail Mode or when the partition or pages from the
partition are de-allocated.

There may be circumstances in which data must remain accessible despite the occurrence
of security failures, software errors, or malicious software. When software sets the access
permissions for a partition, the software can mark the partition with a Public Security
Parameters (PSP) flag, which tells Secure Memory that the partition will be used to hold
availability-sensitive data. Flagging a partition as PSP prevents the partition or any of its
pages from being de-allocated. If a partition is flagged as both PSP and CSP, the partition
(or individual pages of the partition) cannot be de-allocated, but the pages of the partition
will be zeroized when CAAM transitions to Fail Mode.

Normally the owner of a partition can change the values in the partition's SMAPJR and
SMAG2/1JR registers at any time, provided that the owner still has control of a Job Ring
or has access to register page 0. But the changes to either the SMAPJR register or the
SMAG2JR and SMAG1JR registers can be prevented by setting the SMAPJR_LCK" or
SMAG1/2_LCK" bits, respectively. Note that once one of these LCK bits has been set, it
cannot be unlocked except by a POR or by de-allocating the partition. This mechanism
allows either the access permissions or the group membership, or both, to be set by
trusted software before ownership of the partition is turned over to less trusted software.

Note that at power on all Secure Memory pages are automatically allocated to partition 0,
which is owned by SDID 000h, and the access control bits of partition 0's SMAPJR
register and the group membership bits of partition 0's SMAG2/1JR registers reset to
values that make partition 0 accessible to any DID via any access mode. Similarly the
lock bits reset to 0 on power on so that there are no restrictions on changing the SMAPJR
and SMAG2/1JR values. Also, the CSP and PSP bits reset to 0 so that the associated
partition is not marked as either a critical security parameter or a public security
parameter.

13. The terms "Critical Security Parameter" and "Public Security Parameter" are defined in FIPS 140-3.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 805
Confidential Proprietary

NOTE
At POR all SMAP registers reset to 000000FFh (which allows
all access types) so that by default Secure Memory can be
treated as ordinary RAM. However, due to CAAM's access
control this may not be the value observed when the SMAP
registers are read via the IP bus. If a partition's SMAP register
is read by the owner of the partition using the SMAP register
alias located in the owner's Job Ring page, the value read will
be the SMAP register's actual content. If a nonowner reads the
partition's SMAP register, or if the partition owner reads the
partition's SMAP register using an address alias in a Job Ring
register page that it doesn't own, the value 00000000h will be
returned by the CAAM hardware. This is intended to conceal
the partition's access control settings from everyone other than
the partition owner. At POR partition 0 is allocated to SDID=0,
and all DID registers are initialized so that they are associated
with SDID=0 (i.e. SDID_MS,PRIM_TZ,PRIM_DID=0). So
when the SMAP register for partition 0 is read from any CAAM
Job Ring register page using DID value 0, the value 000000FFh
will be returned. But if the SMAP register for partition 0 is read
using a DID value other than 0, the value 00000000h will be
returned. Since at POR all the other partitions are unowned,
reading their SMAP registers will return 00000000h regardless
of the DID used or the SMAP alias used.

10.13.90.1 Offset

Register Offset

P0SMAPR_PG0 A04h

P1SMAPR_PG0 A14h

P2SMAPR_PG0 A24h

P3SMAPR_PG0 A34h

P4SMAPR_PG0 A44h

P5SMAPR_PG0 A54h

P6SMAPR_PG0 A64h

P7SMAPR_PG0 A74h

P0SMAPR_JR0 1A04h

P1SMAPR_JR0 1A14h

P2SMAPR_JR0 1A24h

P3SMAPR_JR0 1A34h

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

806 NXP Semiconductors
Confidential Proprietary

Register Offset

P4SMAPR_JR0 1A44h

P5SMAPR_JR0 1A54h

P6SMAPR_JR0 1A64h

P7SMAPR_JR0 1A74h

P0SMAPR_JR1 2A04h

P1SMAPR_JR1 2A14h

P2SMAPR_JR1 2A24h

P3SMAPR_JR1 2A34h

P4SMAPR_JR1 2A44h

P5SMAPR_JR1 2A54h

P6SMAPR_JR1 2A64h

P7SMAPR_JR1 2A74h

P0SMAPR_JR2 3A04h

P1SMAPR_JR2 3A14h

P2SMAPR_JR2 3A24h

P3SMAPR_JR2 3A34h

P4SMAPR_JR2 3A44h

P5SMAPR_JR2 3A54h

P6SMAPR_JR2 3A64h

P7SMAPR_JR2 3A74h

10.13.90.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PARTITION_KMOD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

C
S

P P
S

P

S
M

A
P

_L
C

K

S
M

A
G

_L
C

K

R
es

er
ve

d

G
2_

S
M

B
LO

B

G
2_

T
D

O

G
2_

W
R

IT
E

G
2_

R
E

A
D

G
1_

S
M

B
LO

B

G
1_

T
D

O

G
1_

W
R

IT
E

G
1_

R
E

A
D

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 807
Confidential Proprietary

10.13.90.3 Fields

Field Description

31-16

PARTITION_KM
OD

The value in this field is used to modify the Blob Key Encryption Key when exporting cryptographic Blobs
from, or importing cryptographic Blobs to, this partition. The value can be chosen by software to be
unique for each partition, ensuring that Blobs will not decrypt correctly if imported into the wrong partition.
The PARTITION_KMOD value can also be used a version ID, ensuring the Blob will not decrypt correctly
if the wrong version is imported.

15

CSP

Critical Security Parameters. This field determines whether the pages from the partition will be zeroized
when they are de-allocated or a security alarm occurs.

0 - The pages allocated to the partition will not be zeroized when they are de-allocated or the partition is
released or a security alarm occurs.

1 - The pages allocated to the partition will be zeroized when they are individually de-allocated or the
partition is released or a security alarm occurs.

14

PSP

Public Security Parameters. This field determines whether the partition and pages from the partition can
be de-allocated.

0 - The partition and any of the pages allocated to the partition can be de-allocated.

1 - The partition cannot be de-allocated and the pages allocated to the partition cannot be de-allocated.

13

SMAP_LCK

SMAP LOCK bit. This field determines whether changes can be made to the partition's access control
permissions.

0 - The SMAP register is unlocked. The partition owner can change any writable bits of the SMAP
register.

1 - The SMAP register is locked. The SMAP_LCK, CSP and PSP bits and G1 and G2 permission bits of
the SMAP register cannot be changed until the partition is de-allocated or a POR occurs. The
PARTITION_KMOD value can still be changed. The SMAG_LCK bit can be changed to a 1, but cannot
be changed to a 0.

12

SMAG_LCK

SMAG LOCK bit. This field determines whether changes can be made to the partition's access group
definitions.

0 - The SMAG2JR register and SMAG1JR register are unlocked. The partition owner can change any
writable bits of these registers.

1 - The SMAG2JR register and SMAG1JR register are locked. The SMAG2JR and SMAG1JR registers
cannot be changed until the partition is de-allocated or a POR occurs.

11-8

—

Reserved

7

G2_SMBLOB

Access Group 2 Secure Memory Blobs. Descriptors run from Job Rings whose SDID value matches the
SDID in the partition's SMAGR2 are allowed to export Secure Memory Blobs from or import Secure
Memory Blobs into the partition in accordance with the restrictions specified below. (The setting of this bit
does not affect General Memory Blobs. These can be exported if G2_READ=1, and can be imported if
G2_WRITE=1.)

0 - Exporting or importing Secure Memory Blobs is prohibited, unless done via a Trusted Descriptor and
G2_TDO=1.

1 - Exporting or importing Secure Memory Blobs is allowed, regardless of the G2_READ and G2_WRITE
settings.

6

G2_TDO

Access Group 2 Trusted Descriptor Override.

Note that Trusted Descriptors can be executed only from a Job Ring whose SDID value matches the
SDID value when the Trusted Descriptor was created.

0 - Trusted Descriptors have the same access privileges as Job Descriptors

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

808 NXP Semiconductors
Confidential Proprietary

Field Description

1 - Trusted Descriptors are allowed to override the other access permissions, i.e. they can export blobs
from or import blobs to the partition and read from and write to the partition regardless of the
G2_SMBLOB, G2_WRITE and G2_READ settings.

5

G2_WRITE

Access Group 2 Write. The bus masters whose DID bits are 1 in the partition's SMAG2JR register are
allowed to write into the partition in accordance with the restrictions specified below.

0 - Writes are prohibited (except that Trusted Descriptor writes are allowed, and importing Secure
Memory Blobs is allowed if G2_SMBLOB=1 or if done by a Trusted Descriptor and G2_TDO=1).

1 - Writes are allowed (but importing a Secure Memory Blob is prohibited if G2_SMBLOB=0 and the
descriptor is not a Trusted Descriptor or if G2_TDO=0).

4

G2_READ

Access Group 2 Read. The bus masters whose DID bits are 1 in the partition's SMAG2JR register are
allowed to read or fetch instructions from the partition in accordance with the restrictions specified below.

0 - Instruction fetches and reads are prohibited (except that Trusted Descriptor reads (if G2_TDO=1) and
key-reads are always allowed, and exporting Secure Memory Blobs is allowed if G2_SMBLOB=1 or if
done by a Trusted Descriptor and G2_TDO=1).

1 - Instruction fetches and reads are allowed (but exporting a Secure Memory Blob is prohibited if
G2_SMBLOB=0 and the descriptor is not a Trusted Descriptor or if G2_TDO=0).

3

G1_SMBLOB

Access Group 1 Secure Memory Blobs. Descriptors run from Job Rings whose SDID value matches the
SDID in the partition's SMAGR1 are allowed to export Secure Memory Blobs from or import Secure
Memory Blobs into the partition in accordance with the restrictions specified below. (The setting of this bit
does not affect General Memory Blobs. These can be exported if G1_READ=1, and can be imported if
G1_WRITE=1.)

0 - Exporting or importing Secure Memory Blobs is prohibited, unless done via a Trusted Descriptor and
G1_TDO=1.

1 - Exporting or importing Secure Memory Blobs is allowed, regardless of the G1_READ and G1_WRITE
settings.

2

G1_TDO

Access Group 1 Trusted Descriptor Override.

Note that Trusted Descriptors can be executed only from a Job Ring whose SDID value matches the
SDID value when the Trusted Descriptor was created.

0 - Trusted Descriptors have the same access privileges as Job Descriptors

1 - Trusted Descriptors are allowed to override the other access permissions, i.e. they can export blobs
from or import blobs to the partition and read from and write to the partition regardless of the
G1_SMBLOB, G1_WRITE and G1_READ settings.

1

G1_WRITE

Access Group 1 Write. The bus masters whose DID bits are 1 in the partition's SMAG1JR register are
allowed to write into the partition in accordance with the restrictions specified below.

0 - Writes are prohibited (except that Trusted Descriptor writes are allowed, and importing Secure
Memory Blobs is allowed if G1_SMBLOB=1 or if done by a Trusted Descriptor and G1_TDO=1).

1 - Writes are allowed (but importing a Secure Memory Blob is prohibited if G1_SMBLOB=0 and the
descriptor is not a Trusted Descriptor or if G1_TDO=0).

0

G1_READ

Access Group 1 Read. The bus masters whose DID bits are 1 in the partition's SMAG1JR register are
allowed to read or fetch instructions from the partition in accordance with the restrictions specified below.

0 - Instruction fetches and reads are prohibited (except that Trusted Descriptor reads (if G1_TDO=1) and
key-reads are always allowed, and exporting Secure Memory Blobs is allowed if G1_SMBLOB=1 or if
done by a Trusted Descriptor and G1_TDO=1).

1 - Instruction fetches and reads are allowed (but exporting a Secure Memory Blob is prohibited if
G1_SMBLOB=0 and the descriptor is not a Trusted Descriptor or if G1_TDO=0).

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 809
Confidential Proprietary

10.13.91 Secure Memory Access Group Registers (P0SMAG2_
PG0 - P7SMAG1_JR2)

Each Secure Memory partition has a SMAG1 and a SMAG2 register. The SMAG1 and
SMAG2 registers for each partition are aliased into the register page of each Job Ring.
The SMAG1 and SMAG2 registers are accessible only by the partition's owner.14

Unowned partitions can be claimed by writing to the partition's SMAP register.

For each allocated partition, the Secure Memory Access Group Register indicates which
bus masters are allowed to access the partition. The SMAG1 and SMAG2 registers define
two access groups, access group 1 and access group 2, corresponding to the two access
permission sets defined in the SMAP register. The Secure Memory Access Group bit
fields are defined so that each bit corresponds to a particular DID value. For example, the
least-significant bit of each ACCESS_GROUP field represents DID 0h, and bit 15
represents DID Fh. Setting a bit to a 1 indicates that the DID identified by that particular
value is a member of that access group. This encoding allows any combination of the
DIDs to be included in either access group.

The nature of the DID associated with an access via the Secure Memory interface is
determined by the particular hardware signals that are connected to CAAM's Secure
Memory and register bus interfaces.

For those bus masters that are a member of an access group, the partition's SMAPJR
Register will be consulted to determine which types of access are allowed. If the bus
master is a member of access group 1, the G1 permission bits will be consulted. If the bus
master is a member of access group 2, the G2 permission bits will be consulted. If the bus
master is a member of both access groups, the bus master will be allowed any access type
permitted by either set of permission bits. Note that all SMAG2/1JR registers reset to all
1s at power on so that by default all bus master identities are members of both access
groups for each Secure Memory partition. Similarly, at reset all SMAPJR registers reset
to all access types permitted for both access permission sets.

When CAAM executes a descriptor that causes any memory transactions (even internal
accesses to Secure Memory), CAAM will assert either the ns=!PRIM_TZ and the
PRIM_DID value or ns=1 (nonSecureWorld) and the OUT_DID value specified within
the appropriate JRxDID register (where x is the number of the Job Ring from which the
descriptor was executed). The values in these fields can be set so that CAAM will assert a
different TZ,DID value when performing DMA operations on behalf of jobs drawn from

14. Bit 15 of the PSDIDR is ignored when determining read/write access to the partition's SMAP and SMAG registers or
when reading the SMPO register.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

810 NXP Semiconductors
Confidential Proprietary

different job rings. If so, then jobs from different Job Rings can be permitted or denied
access to particular Secure Memory partitions by setting the partition’s SMAG2/1JR
registers appropriately.

The values in the SMAG2JR_p and SMAG1JR_p registers have no effect if partition p is
currently unallocated. See Section Secure Memory Access Permissions register (P0SM
APR_PG0 - P7SMAPR_JR2) for an explanation of how a partition is allocated. Once
partition p has been allocated to Job Ring Owner x, the SMAPJRx_p and SMAG2/1x_p
registers become accessible only to Job Ring Owner x (i.e., a bus master using the
identity that is currently active in the PRIM_TZ and PRIM_DID fields of the job ring's
JRaDID register). Attempts to write to the SMAPJR or SMAG2/1JR registers of a
partition owned by another TZDID will be ignored, and read transactions from these
registers will return all 0s. If the partition is released, the partition's SMAPJR and
SMAG2/1JR registers once again become accessible (at the address alias appropriate for
that Job Ring) to all Job Ring owners on a first-come first-served basis.

NOTE
At POR all SMAG registers reset to 0XFFFFFFFF so that by
default Secure Memory can be treated as ordinary RAM.
However, due to CAAM's access control this may not be the
value observed when the SMAG registers are read via the IP
bus. If a partition's SMAG registers are read by the owner of the
partition using the SMAG register aliases located in the owner's
Job Ring page, the value read will be the SMAG registers'
actual content. If a nonowner reads the partition's SMAG
registers, or if the partition owner reads the partition's SMAG
registers using an address alias in a Job Ring register page that
it doesn't own, the value 00000000h will be returned by the
CAAM hardware. This is intended to conceal the partition's
access control settings from everyone other than the partition
owner. At POR partition 0 is allocated to Job Ring 0, and the
JR0DID register is initialized so that the owner of Job Ring 0 is
identified by DID= 0. So when the SMAG registers for partition
0 are read from CAAM register page 1 using DID value 0, the
value 0XFFFFFFFF will be returned. If the SMAG registers for
partition 0 are read from CAAM register page 1 using a DID
value other than 0, the value 00000000h will be returned. Since
at POR all the other partitions are unowned, reading their
SMAG registers will return 00000000h regardless of the DID
used or the SMAG alias used.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 811
Confidential Proprietary

10.13.91.1 Offset

Register Offset

P0SMAG2_PG0 A08h

P0SMAG1_PG0 A0Ch

P1SMAG2_PG0 A18h

P1SMAG1_PG0 A1Ch

P2SMAG2_PG0 A28h

P2SMAG1_PG0 A2Ch

P3SMAG2_PG0 A38h

P3SMAG1_PG0 A3Ch

P4SMAG2_PG0 A48h

P4SMAG1_PG0 A4Ch

P5SMAG2_PG0 A58h

P5SMAG1_PG0 A5Ch

P6SMAG2_PG0 A68h

P6SMAG1_PG0 A6Ch

P7SMAG2_PG0 A78h

P7SMAG1_PG0 A7Ch

P0SMAG2_JR0 1A08h

P0SMAG1_JR0 1A0Ch

P1SMAG2_JR0 1A18h

P1SMAG1_JR0 1A1Ch

P2SMAG2_JR0 1A28h

P2SMAG1_JR0 1A2Ch

P3SMAG2_JR0 1A38h

P3SMAG1_JR0 1A3Ch

P4SMAG2_JR0 1A48h

P4SMAG1_JR0 1A4Ch

P5SMAG2_JR0 1A58h

P5SMAG1_JR0 1A5Ch

P6SMAG2_JR0 1A68h

P6SMAG1_JR0 1A6Ch

P7SMAG2_JR0 1A78h

P7SMAG1_JR0 1A7Ch

P0SMAG2_JR1 2A08h

P0SMAG1_JR1 2A0Ch

P1SMAG2_JR1 2A18h

P1SMAG1_JR1 2A1Ch

P2SMAG2_JR1 2A28h

P2SMAG1_JR1 2A2Ch

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

812 NXP Semiconductors
Confidential Proprietary

Register Offset

P3SMAG2_JR1 2A38h

P3SMAG1_JR1 2A3Ch

P4SMAG2_JR1 2A48h

P4SMAG1_JR1 2A4Ch

P5SMAG2_JR1 2A58h

P5SMAG1_JR1 2A5Ch

P6SMAG2_JR1 2A68h

P6SMAG1_JR1 2A6Ch

P7SMAG2_JR1 2A78h

P7SMAG1_JR1 2A7Ch

P0SMAG2_JR2 3A08h

P0SMAG1_JR2 3A0Ch

P1SMAG2_JR2 3A18h

P1SMAG1_JR2 3A1Ch

P2SMAG2_JR2 3A28h

P2SMAG1_JR2 3A2Ch

P3SMAG2_JR2 3A38h

P3SMAG1_JR2 3A3Ch

P4SMAG2_JR2 3A48h

P4SMAG1_JR2 3A4Ch

P5SMAG2_JR2 3A58h

P5SMAG1_JR2 3A5Ch

P6SMAG2_JR2 3A68h

P6SMAG1_JR2 3A6Ch

P7SMAG2_JR2 3A78h

P7SMAG1_JR2 3A7Ch

10.13.91.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

G
x_

ID
31

G
x_

ID
30

G
x_

ID
29

G
x_

ID
28

G
x_

ID
27

G
x_

ID
26

G
x_

ID
25

G
x_

ID
24

G
x_

ID
23

G
x_

ID
22

G
x_

ID
21

G
x_

ID
20

G
x_

ID
19

G
x_

ID
18

G
x_

ID
17

G
x_

ID
16

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

G
x_

ID
15

G
x_

ID
14

G
x_

ID
13

G
x_

ID
12

G
x_

ID
11

G
x_

ID
10

G
x_

ID
09

G
x_

ID
08

G
x_

ID
07

G
x_

ID
06

G
x_

ID
05

G
x_

ID
04

G
x_

ID
03

G
x_

ID
02

G
x_

ID
01

G
x_

ID
00

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 813
Confidential Proprietary

10.13.91.3 Fields

Field Description

31

Gx_ID31

Bit set to 1 indicates NonSecureWorld MID 15 is a member of Access Group x (1 or 2).

30

Gx_ID30

Bit set to 1 indicates NonSecureWorld MID 14 is a member of Access Group x (1 or 2).

29

Gx_ID29

Bit set to 1 indicates NonSecureWorld MID 13 is a member of Access Group x (1 or 2).

28

Gx_ID28

Bit set to 1 indicates NonSecureWorld MID 12 is a member of Access Group x (1 or 2).

27

Gx_ID27

Bit set to 1 indicates NonSecureWorld MID 11 is a member of Access Group x (1 or 2).

26

Gx_ID26

Bit set to 1 indicates NonSecureWorld MID 10 is a member of Access Group x (1 or 2).

25

Gx_ID25

Bit set to 1 indicates NonSecureWorld MID 09 is a member of Access Group x (1 or 2).

24

Gx_ID24

Bit set to 1 indicates NonSecureWorld MID 08 is a member of Access Group x (1 or 2).

23

Gx_ID23

Bit set to 1 indicates NonSecureWorld MID 07 is a member of Access Group x (1 or 2).

22

Gx_ID22

Bit set to 1 indicates NonSecureWorld MID 06 is a member of Access Group x (1 or 2).

21

Gx_ID21

Bit set to 1 indicates NonSecureWorld MID 05 is a member of Access Group x (1 or 2).

20

Gx_ID20

Bit set to 1 indicates NonSecureWorld MID 04 is a member of Access Group x (1 or 2).

19

Gx_ID19

Bit set to 1 indicates NonSecureWorld MID 03 is a member of Access Group x (1 or 2).

18

Gx_ID18

Bit set to 1 indicates NonSecureWorld MID 02 is a member of Access Group x (1 or 2).

17

Gx_ID17

Bit set to 1 indicates NonSecureWorld MID 01 is a member of Access Group x (1 or 2).

16

Gx_ID16

Bit set to 1 indicates NonSecureWorld MID 00 is a member of Access Group x (1 or 2).

15

Gx_ID15

Bit set to 1 indicates SecureWorld MID 15 is a member of Access Group x (1 or 2).

14 Bit set to 1 indicates SecureWorld MID 14 is a member of Access Group x (1 or 2).

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

814 NXP Semiconductors
Confidential Proprietary

Field Description

Gx_ID14

13

Gx_ID13

Bit set to 1 indicates SecureWorld MID 13 is a member of Access Group x (1 or 2).

12

Gx_ID12

Bit set to 1 indicates SecureWorld MID 12 is a member of Access Group x (1 or 2).

11

Gx_ID11

Bit set to 1 indicates SecureWorld MID 11 is a member of Access Group x (1 or 2).

10

Gx_ID10

Bit set to 1 indicates SecureWorld MID 10 is a member of Access Group x (1 or 2).

9

Gx_ID09

Bit set to 1 indicates SecureWorld MID 09 is a member of Access Group x (1 or 2).

8

Gx_ID08

Bit set to 1 indicates SecureWorld MID 08 is a member of Access Group x (1 or 2).

7

Gx_ID07

Bit set to 1 indicates SecureWorld MID 07 is a member of Access Group x (1 or 2).

6

Gx_ID06

Bit set to 1 indicates SecureWorld MID 06 is a member of Access Group x (1 or 2).

5

Gx_ID05

Bit set to 1 indicates SecureWorld MID 05 is a member of Access Group x (1 or 2).

4

Gx_ID04

Bit set to 1 indicates SecureWorld MID 04 is a member of Access Group x (1 or 2).

3

Gx_ID03

Bit set to 1 indicates SecureWorld MID 03 is a member of Access Group x (1 or 2).

2

Gx_ID02

Bit set to 1 indicates SecureWorld MID 02 is a member of Access Group x (1 or 2).

1

Gx_ID01

Bit set to 1 indicates SecureWorld MID 01 is a member of Access Group x.

0

Gx_ID00

Bit set to 1 indicates SecureWorld MID 00 is a member of Access Group x.

10.13.92 Recoverable Error Indication Status (REIS)

REIS indicates the assertion status of different CAAM recoverable error indication
sources (1 bit per source). Software can clear a bit in REIS by writing a 1 to that bit.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 815
Confidential Proprietary

10.13.92.1 Offset

Register Offset

REIS B00h

10.13.92.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

JB
A

E
2 JB

A
E

1 JB
A

E
0

R
es

er
ve

d

R
B

A
E

W

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

C
W

D
E

W

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.92.3 Fields

Field Description

31-27

—

Reserved

26

JBAE2

A job descriptor executed from Job Ring 2 caused a bus access error.

25

JBAE1

A job descriptor executed from Job Ring 1 caused a bus access error.

24

JBAE0

A job descriptor executed from Job Ring 0 caused a bus access error.

23-17

—

Reserved

16

RBAE

A bus transaction initiated by CAAM RTIC resulted in a bus access error.

15-1 Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

816 NXP Semiconductors
Confidential Proprietary

Field Description

—

0

CWDE

The CAAM watchdog timer expired.

10.13.93 Recoverable Error Indication Halt (REIH)

Writing a 1 to an REIH bit indicates that CAAM should be halted if the associated
recoverable error occurs.

10.13.93.1 Offset

Register Offset

REIH B0Ch

10.13.93.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

JB
A

E
2 JB

A
E

1 JB
A

E
0

R
es

er
ve

d

R
B

A
EW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

C
W

D
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.93.3 Fields

Field Description

31-27

—

Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 817
Confidential Proprietary

Field Description

26

JBAE2

Halt CAAM if JR2-initiated job execution caused bus access error.

0 - Don't halt CAAM if JR2-initiated job execution caused bus access error.

1 - Halt CAAM if JR2-initiated job execution caused bus access error.

25

JBAE1

Halt CAAM if JR1-initiated job execution caused bus access error.

0 - Don't halt CAAM if JR1-initiated job execution caused bus access error.

1 - Halt CAAM if JR1-initiated job execution caused bus access error.

24

JBAE0

Halt CAAM if JR0-initiated job execution caused bus access error.

0 - Don't halt CAAM if JR0-initiated job execution caused bus access error.

1 - Halt CAAM if JR0-initiated job execution caused bus access error.

23-17

—

Reserved

16

RBAE

Halt CAAM if RTIC-initiated job execution caused bus access error.

0 - Don't halt CAAM if RTIC-initiated job execution caused bus access error.

1 - Halt CAAM if RTIC-initiated job execution caused bus access error.

15-1

—

Reserved

0

CWDE

Halt CAAM if CAAM watchdog timer expires.

0 - Don't halt CAAM if CAAM watchdog expired.

1 - Halt CAAM if CAAM watchdog expired..

10.13.94 Secure Memory Write Protect Job Ring Register (SMWP
JR0R - SMWPJR2R)

This register allows the CAAM manager to prevent changes to the configuration of
Secure Memory.

10.13.94.1 Offset

Register Offset

SMWPJR0R BD0h

SMWPJR1R BD4h

SMWPJR2R BD8h

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

818 NXP Semiconductors
Confidential Proprietary

10.13.94.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

S
M

R
_W

P
_J

R
a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.94.3 Fields

Field Description

31-1

—

Reserved

0

SMR_WP_JRa

Secure Memory Registers Write Protect. When SMR_WP_JRa = 1, writing into the Secure Memory
Registers (SMAPR, SMAG1R, SMAG2R, SMCR) in the Job Ring a page is prohibited.

10.13.95 Secure Memory Command Register (SMCR_PG0 -
SMCR_JR2)

The Secure Memory contains Partitions numbered 0 to 7, any of which can contain zero
or more fixed-size pages. A functional description of the Secure Memory can be found in
Secure memory.

At power up all Secure Memory pages are allocated to Partition 0, and ownership of
Partition 0 is assigned to SDID 0. Any software entity that owns a Job Ring can claim an
available partition by writing to the partition's SMAP register (see SectionSecure
Memory Access Permissions register (P0SMAPR_PG0 - P7SMAPR_JR2)). Once a
partition has been claimed by a Job Ring owner, commands related to that partition can
be issued by writing to the Secure Memory Command Register within that Job Ring
register page. Only the owner of Job Ring a can write to SMC_JRa. This register allows

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 819
Confidential Proprietary

software to issue commands to allocate or de-allocate a page, de-allocate (release
ownership of) a partition, or determine which partition is associated with a particular
page. But commands issued via a particular Job Ring's SMC_JR register will be accepted
only for partitions owned by the current Job Ring owner. Note that there is another
Secure Memory Command Register located in CAAM register page 0 that can be used by
the hypervisor to issue commands for any partition owned by any SDID within
TrustZone nonSecureWorld, or can be used by TrustZone SecureWorld to issue
commands for any partition owned by TrustZone nonSecureWorld or owned by any
SDID within TrustZone nonSecureWorld.

Allocating a page associates that page with a partition. Access to that page is now
controlled by the associated partition's SMAP and SMAG2/1 registers. De-allocation of a
page removes the association between the page and the partition, making it available for
allocation to another partition. If the partition to which the page was allocated is
designated as CSP, the page will be zeroized (i.e. erased) upon de-allocation. De-
allocation of a partition removes ownership of the partition and de-allocates all pages
allocated to that partition. If the de-allocated partition was designated as CSP, all pages
associated with the partition are zeroized. Once de-allocated, other Job Ring owners can
claim the partition.

The Page Inquiry Command allows software to specify a page and then read from the
Secure Memory Command Status Register the number of the partition associated with
that page.

10.13.95.1 Offset

Register Offset Description

SMCR_PG0 BE4h (used by the hypervisor and TrustZone
SecureWorld)

SMCR_JR0 1BE4h (used by JR0)

SMCR_JR1 2BE4h (used by JR1)

SMCR_JR2 3BE4h (used by JR2)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

820 NXP Semiconductors
Confidential Proprietary

10.13.95.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W PAGE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved Reserved

W PRTN CMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.95.3 Fields

Field Description

31-16

PAGE

This is the number of the page to be referenced in field CMD. If the page is not available the command is
ignored and an error will be shown in the Secure Memory error status register.

15-12

—

Reserved

11-8

PRTN

Partition: When an Allocate Page or De-allocate Partition command is issued, the action is performed on
the partition indicated in the PRTN field. The PRTN field is ignored for all other commands. If the
command is issued via a Job Ring register page but that Job Ring 's current SDID does not own the
partition, the command is ignored and an error will be shown in the Secure Memory Command Status
Register. If the command is issued via register page 0 (i.e. offset 0BE4h), the command will be acted
upon regardless of which SDID owns the partition. But note that if a partition is owned by TrustZone
SecureWorld, it can be de-allocated or pages allocated to it only by TrustZone SecureWorld, i.e. when
ns=0 on the write to SMCR.

7-4

—

Reserved

3-0

CMD

Command:

1h: Allocate Page - This command allocates the page specified in the PAGE field to the partition specified
in the PRTN field. If the page does not exist or is already allocated to a partition the page will not be
allocated and instead a page availability error will be returned. If the partition does not exist or is not
owned¹ by the requester the page will not be allocated and instead a partition ownership error will be
returned.

2h: De-allocate Page - This command de-allocates the page specified in the PAGE field and returns the
page to the pool of available pages. The PRTN field is ignored. If the page is allocated to a partition that
is marked as CSP, the page is zeroized before it is returned to the pool. If the page is allocated to a
partition that is marked PSP (whether or not it is also marked as CSP) the page will not be de-allocated or
zeroized and instead a PSP error will be returned. If the page is not allocated to a partition, is non-
existent, or is not yet initialized or zeroized, the page will not be de-allocated and instead a page
availability error will be returned. If the page is allocated to a partition that is not owned¹ by the requester
the page will not be de-allocated and instead a partition ownership error will be returned.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 821
Confidential Proprietary

Field Description

3h: De-allocate Partition - This command de-allocates the partition specified in the PRTN field and
releases all of the partition's pages to the pool of available pages. The PAGE field is ignored. If the
partition is marked as CSP, the pages are zeroized before they are returned to the pool. If the partition is
marked as PSP (whether or not it is also marked as CSP) the partition will not be de-allocated and its
pages will not be released or zeroized and instead a PSP error will be returned. If the partition is not
owned¹ by the requester the partition will not be de-allocated and its pages will not be released or
zeroized and instead a partition ownership error will be returned.

5h: Page Inquiry - This command indicates the partition to which the page specified in the PAGE field is
currently allocated. The PRTN field is ignored. The SMCS register's PO field will show the page allocation
status. If the page is allocated to a partition, the SMCS register's PRTN field indicate the partition to
which the page is allocated.

All other values: reserved

Each allocated partition is owned by some Security Domain, which is indicated by the partition's PSDID
register. Each Job Ring is owned by some Security Domain, which is indicated by the Job Ring's JRaDID
register's SDID value. If Job Ring x's JRaDID[SDID] field matches partition y's PSDID register, then the
owner can issue commands for partition y via the Secure Memory Command register located in Job Ring
x's register page. Note that it is possible that the owner of a partition does not currently own a Job Ring,
and so cannot issue commands for the partition. The hypervisor could park a Job Ring and allocate the
Job Ring to the Security Domain when a command needs to be issued for that partition. But the
hypervisor and TrustZone SecureWorld can also issue commands for any partition via the SMCR in
register page 0. For commands issued via the page 0 SMCR there is no comparison of SDID values, so
the hypervisor can issue commands for any non-SecureWorld partition and SecureWorld can issue
commands for any partition whether or not it is owned by SecureWorld.Note that TrustZone SecureWorld
is considered to belong to all Security Domains, so SecureWorld can also issue commands for any
partition via any Job Ring's SMCR regardless of the JRaDID[SDID] setting. The hypervisor cannot issue
commands for SecureWorld partitions because the write to SMCR must have ns=0 if a partition is owned
by TrustZone SecureWorld, or a partition ownership error will be generated and the command will be
ignored.

10.13.96 Secure Memory Command Status Register (SMCSR_PG
0 - SMCSR_JR2)

This register provides information on the state of the allocation engine and feedback for
Allocation Commands. There is one copy of this register for each Job Ring owner. Only
the owner of Job Ring a can read from SMCS_JRa. Note that some commands (e.g.
deallocation of a CSP partition or page) may take many clock cycles to complete. If the
same Job Ring owner issues a second command before its previous command has
completed, the CERR field will return a "Command Overflow" indication and the second
command will be ignored. However, if a command is issued while Secure Memory is
completing another Job Ring owner's command, the second command will be queued and
will execute in its turn.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

822 NXP Semiconductors
Confidential Proprietary

10.13.96.1 Offset

Register Offset Description

SMCSR_PG0 BECh (used by the hypervisor and TrustZone
SecureWorld)

SMCSR_JR0 1BECh (used by JR0)

SMCSR_JR1 2BECh (used by JR1)

SMCSR_JR2 3BECh (used by JR2)

10.13.96.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

PAGE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

C
E

R
R A

E
R

R

R
es

er
ve

d

P
O

R
es

er
ve

d

P
R

T
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.96.3 Fields

Field Description

31-28

—

Reserved

27-16

PAGE

Page. Following a Page Inquiry, Page Allocate or Page De-Allocate Command, this is the Page number
specified in the most recently accepted command. That command may not have completed yet.
Commands that cause a Command Overflow are not accepted. Following a Partition De-Allocate
Command, the value in this field is invalid.

15-14

CERR

Command Error. If the command issued via the SMC_JR register yielded an error, this field shows the
error code.

00 - No Error.

01 - Command has not yet completed.

10 - A security failure occurred.

11 - Command Overflow. Another command was issued by the same Job Ring owner before the owner's
previous command completed. The additional command was ignored.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 823
Confidential Proprietary

Field Description

13-12

AERR

Allocation Error. If the command issued via the SMC_JR register resulted in an allocation error, this field
shows the error code. The value in this field will be 00 following a Page Inquiry Command.

Value Description

After an Allocate Page Command After a De-Allocate Page or a De-Allocate
Partition Command

00 No Error.

01 Reserved. PSP error. The entity that issued the
command owns the partition, but the partition
or page cannot be de-allocated because the
partition is marked as a PSP partition. If the
same request results in a PSP error and a
page availability error (because the page is
not yet initialized or zeroized), the PSP error
code will be returned.

10 Page availability error. The page is either
already allocated to a partition, is non-
existent, or is not yet initialized.

Page availability error. The page is either not
allocated to a partition, is non-existent, or is
not yet initialized or zeroized.

11 Partition ownership error. The partition
specified in the Allocate Page Command
does not exist or the entity issuing the
command does not own the partition. If the
same request results in a partition ownership
error and a page availability error, the
partition ownership error code will be
returned.

Partition ownership error. The partition
specified in the De-Allocate Partition
Command does not exist or the entity issuing
the command does not own the partition. If
the same request results in a partition
ownership error and either a page availability
error or a PSP error, the partition ownership
error code will be returned.

11-8

—

Reserved

7-6

PO

Page Owner: Following a Page Inquiry Command, this field indicates if the Page is owned by the entity
that issued the inquiry, owned by another entity, or unowned. The value in this field is invalid following
any other command issued via the SMC_JR register.

00 - Available; Unowned: The entity that issued the inquiry may allocate this page to a partition. No
zeroization is needed since it has already been cleared, therefore no interrupt should be expected.

01 - Page does not exist in this version or is not initialized yet.

10 - Another entity owns the page. This page is unavailable to the issuer of the inquiry.

11 - Owned by the entity making the inquiry. The owner may de-allocate this page if its partition is not
marked PSP. If the partition to which the page is allocated is designated as CSP, the page will be
zeroized upon de-allocation.

5-4

—

Reserved

3-0

PRTN

Following a Page Inquiry Command, if the PO field is 10 or 11, this field indicates the partition to which
the page specified in the PAGE field is allocated. Following any other SMC_JR register command, or if
the PO field is 00 or 01 following a Page Inquiry Command, the value in this field is invalid.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

824 NXP Semiconductors
Confidential Proprietary

10.13.97 CAAM Version ID Register, most-significant half (CAAM
VID_MS)

This register contains the ID for CAAM and major and minor revision numbers. It also
contains the integration options, ECO revision, and configuration options. Since this
register holds more than 32 bits, it holds a 48-bit value but registers are accessible only as
32-bit words, the counter accessed as two 32-bit words. Because this register may be of
interest to multiple software entities, this register is aliased to addresses in multiple 4KB
address spaces. The register and its fields are described in the figure and table below.

10.13.97.1 Offset

Register Offset

CAAMVID_MS BF8h (alias)

CAAMVID_MS FF8h (alias)

CAAMVID_MS 1FF8h (alias)

CAAMVID_MS 2FF8h (alias)

CAAMVID_MS 3FF8h (alias)

CAAMVID_MS 6FF8h (alias)

CAAMVID_MS 8FF8h (alias)

10.13.97.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R IP_ID

W

Reset 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MAJ_REV MIN_REV

W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 825
Confidential Proprietary

10.13.97.3 Fields

Field Description

31-16

IP_ID

ID for CAAM.

15-8

MAJ_REV

Major revision number for CAAM.

7-0

MIN_REV

Minor revision number for CAAM.

10.13.98 CAAM Version ID Register, least-significant half (CAAM
VID_LS)

This register contains the ID for CAAM and major and minor revision numbers. It also
contains the integration options, ECO revision, and configuration options. Since this
register holds more than 32 bits, it holds a 48-bit value but registers are accessible only as
32-bit words, the counter accessed as two 32-bit words. Because this register may be of
interest to multiple software entities, this register is aliased to addresses in multiple
4kbyte address spaces. The register and its fields are described in the figure and table
below.

10.13.98.1 Offset

Register Offset

CAAMVID_LS BFCh (alias)

CAAMVID_LS FFCh (alias)

CAAMVID_LS 1FFCh (alias)

CAAMVID_LS 2FFCh (alias)

CAAMVID_LS 3FFCh (alias)

CAAMVID_LS 6FFCh (alias)

CAAMVID_LS 8FFCh (alias)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

826 NXP Semiconductors
Confidential Proprietary

10.13.98.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R COMPILE_OPT INTG_OPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ECO_REV CONFIG_OPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.98.3 Fields

Field Description

31-24

COMPILE_OPT

Compile options for CAAM.

23-16

INTG_OPT

Integration options for CAAM.

15-8

ECO_REV

ECO revision for CAAM.

7-0

CONFIG_OPT

Configuration options for CAAM.

10.13.99 Holding Tank 0 Job Descriptor Address (HT0_JD_A
DDR)

The HTa_JD_ADDR register holds the address of a Job Descriptor that is in a "holding
tank" waiting to be loaded into a DECO. The register is intended to be used when
debugging descriptor execution.

The Job Queue Debug Select Register (JQ_DEBUG_SEL) HT_SEL field controls which
holding tank supplies the Job Descriptor Address to the HTa_JD_ADDR.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 827
Confidential Proprietary

10.13.99.1 Offset

Register Offset Description

HT0_JD_ADDR C00h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

10.13.99.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.99.3 Fields

Field Description

63-32

—

Reserved

31-0

JD_ADDR

Job Descriptor Address.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

828 NXP Semiconductors
Confidential Proprietary

10.13.100 Holding Tank 0 Shared Descriptor Address (HT0_SD_A
DDR)

The HTa_SD_ADDR register holds the address of a Shared Descriptor that is in a
Holding Tank waiting to be loaded into a DECO. The register is intended to be used
when debugging descriptor execution via a Job Ring.

The Job Queue Debug Select Register (JQ_DEBUG_SEL) HT_SEL field controls which
holding tank supplies the Shared Descriptor Address to the HTa_SD_ADDR.

10.13.100.1 Offset

Register Offset Description

HT0_SD_ADDR C08h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 829
Confidential Proprietary

10.13.100.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.100.3 Fields

Field Description

63-32

—

Reserved

31-0

SD_ADDR

Shared Descriptor Address.

10.13.101 Holding Tank 0 Job Queue Control, most-significant
half (HT0_JQ_CTRL_MS)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

830 NXP Semiconductors
Confidential Proprietary

The HTa_JQ_CTRL register holds the control information for a descriptor that is in a
"holding tank" waiting to be loaded into a DECO. The register is intended to be used
when debugging descriptor execution. The most-significant half of HTa_JQ_CTRL is
formatted the same as the DECO Job Queue Control Register, except that there is no
STEP field or SING field as in the DECO Job Queue Control Register.

The Job Queue Debug Select Register (JQ_DEBUG_SEL) HT_SEL field controls which
holding tank supplies the Job Queue control data of the HTa_JQ_CTRL_MS.

10.13.101.1 Offset

Register Offset Description

HT0_JQ_CTRL_MS C10h Note that the addresses of the two halves of this
register are unaffected by the endianness
configuration.

10.13.101.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

W
H

L

F
O

U
R

IL E

S
H

R
_F

R
O

M

R
es

er
ve

d

D
W

O
R

D
_S

W
A

P

H
T

_E
R

R
O

R

S
O

B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
M

T
D

JD
D

S

R
es

er
ve

d

S
R

C

R
es

er
ve

d

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.101.3 Fields

Field Description

31-30 Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 831
Confidential Proprietary

Field Description

—

29

WHL

Whole Descriptor. In versions of CAAM that implement prefetching, the WHL field is interpreted in
combination with the SOB field. In versions that don't implement prefetching, WHL=1 indicates that HT is
passing the full job descriptor to DECO and therefore DECO does not need to fetch any additional Job
Descriptor words from external memory.

28

FOUR

Four Words. Job Queue Controller will pass at least 4 words of the descriptor to DECO.

27

ILE

Immediate Little Endian. This bit controls the byte-swapping of Immediate data embedded within
descriptors. Byte-swapping is controlled when data is transferred between the Descriptor Buffer and any
of the following byte-stream sources and destinations:

• Input Data FIFO
• Output Data FIFO
• Auxiliary Data FIFO
• Class 1 Context register
• Class 2 Context register
• Class 1 Key register
• Class 2 Key register

0 - No byte-swapping is performed for immediate data transferred to or from the Descriptor Buffer.

1 - Byte-swapping is performed for immediate data transferred to or from the Descriptor Buffer.

26-22

SHR_FROM

Share From. This is the DECO block from which the DECO block that runs this job will get the Shared
Descriptor. This field is only used if the job queue controller wants this DECO to use a Shared Descriptor
that is already in a DECO. This field is ignored when running descriptors via the IP bus (i.e. under the
direct control of software).

21-20

—

Reserved

19

DWORD_SWAP

Double Word Swap.

0 - DWords are in the order most-significant word, least-significant word.

1 - DWords are in the order least-significant word, most-significant word.

18-17

HT_ERROR

Holding Tank Error. (This field is implemented only in versions of CAAM that support prefetching.)

00 - No error

01 - Job Descriptor or Shared Descriptor length error

10 - AXI_error while reading a Job Ring Shared Descriptor or the remainder of a Job Ring Job Descriptor

11 - reserved

16

SOB

Shared or Burst. (This field is implemented only in versions of CAAM that support prefetching.) The SOB
field is interpreted along with the WHL field as follows:

SOB=0 WHL=0 - No prefetch, not whole descriptor

SOB=0 WHL=1 - Got whole Job Descriptor, no Shared Descriptor or input frame data

SOB=1 WHL=0 - Got Shared Descriptor, no input frame data

SOB=1 WHL=1 - Got whole Job Descriptor and input frame data

15

AMTD

Allow Make Trusted Descriptor. This field is read-only. If this bit is a 1, then a Job Descriptor with the
MTD (Make Trusted Descriptor) bit set is allowed to execute. The bit will be 1 only if the Job Descriptor
was run from a Job Ring with the AMTD bit set to 1 in the Job Ring’s JRaDID Register.

14

JDDS

Job Descriptor DID Select. Determines whether the SEQ DID or the Non-SEQ DID is asserted when
reading the Job Descriptor from memory.

0 - Non-SEQ DID

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

832 NXP Semiconductors
Confidential Proprietary

Field Description

1 - SEQ DID

13-11

—

Reserved

10-8

SRC

Job Source. Source of the job. Determines which set of DMA configuration attributes (e.g.
JRCFGR_JRa_MS and endian configuration bits) the DMA should use for bus transactions. It is illegal
for the SRC field to have a value other than that of a Job Ring when running descriptors via the IP bus
(i.e. under the direct control of software).

000 - Job Ring 0

001 - Job Ring 1

010 - Job Ring 2

011 - Reserved

100 - RTIC

101 - Reserved

110 - Reserved

111 - Reserved

7-3

—

Reserved

2-0

ID

Job ID. Unique tag given to each job by its source. Used to tell the source that the job has completed.

10.13.102 Holding Tank 0 Job Queue Control, least-significant
half (HT0_JQ_CTRL_LS)

The HTa_JQ_CTRL register holds the control information for a descriptor that is in a
"holding tank" waiting to be loaded into a DECO. The register is intended to be used
when debugging descriptor execution. The most-significant half of HTa_JQ_CTRL is
formatted the same as the DECO Job Queue Control Register, except that there is no
STEP field or SING field as in the DECO Job Queue Control Register.

The Job Queue Debug Select Register (JQ_DEBUG_SEL) HT_SEL field controls which
holding tank supplies the Job Queue control data to the HTa_JQ_CTRL_LS.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 833
Confidential Proprietary

10.13.102.1 Offset

Register Offset Description

HT0_JQ_CTRL_LS C14h Note that the addresses of the two halves of this
register are unaffected by the endianness
configuration.

10.13.102.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

O
U

T
_I

C
ID

R
es

er
ve

d

O
U

T
_D

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

P
R

IM
_I

C
ID

P
R

IM
_T

Z

P
R

IM
_D

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.102.3 Fields

Field Description

31-21

OUT_ICID

Output ICID. When JRaDID[USE_OUT]=0, the value in this field is unused. When JRaDID[USE_OUT]=1,
this ICID value is asserted for external memory data writes, but not for reads or for job completion status
writes or descriptor write-backs.

20

—

Reserved

19-16

OUT_DID

Output DID. When JRaDID[USE_OUT]=0, the value in this field is unused. When JRaDID[USE_OUT]=1,
this DID value is asserted for all external memory data writes, but not for reads or for job completion
status writes or descriptor write-backs.

15-5

PRIM_ICID

Primary ICID. When JRaDID[USE_OUT]=0, the value in this field indicates the ICID asserted for all
external memory accesses. When JRaDID[USE_OUT]=1, this ICID value is asserted for all external
memory reads, and writes for job completion status and descriptor write-backs.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

834 NXP Semiconductors
Confidential Proprietary

Field Description

4

PRIM_TZ

Primary TZ. When JRaDID[USE_OUT]=0, the value in this field indicates the TrustZone World value
(PRIM_TZ=1 means SecureWorld) asserted for all external memory accesses. When
JRaDID[USE_OUT]=1, this TZ value is asserted for all external memory reads, and writes for job
completion status and descriptor write-backs.

0 - TrustZone NonSecureWorld

1 - TrustZone SecureWorld

3-0

PRIM_DID

Primary DID. When JRaDID[USE_OUT]=0, the value in this field indicates the DID value asserted for all
external memory accesses. When JRaDID[USE_OUT]=1, this DID value is asserted for all external
memory reads, and writes for job completion status and descriptor write-backs.

10.13.103 Holding Tank Status (HT0_STATUS)

The HT0_STATUS register holds the status information for a Job Descriptor "holding
tank". The register is intended to be used when debugging descriptor execution.

The HT_SEL field in the Job Queue Debug Select Register (JQ_DEBUG_SEL) controls
which holding tank supplies the status information to the HT0_STATUS.

10.13.103.1 Offset

Register Offset

HT0_STATUS C1Ch

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 835
Confidential Proprietary

10.13.103.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R B
C

IN
_U

S
E

R
es

er
ve

d
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

P
E

N
D

_0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.103.3 Fields

Field Description

31

BC

Been Changed. When using the Holding Tank debug registers, the Holding Tank Job Descriptor Address
register should be the first register that is read. The BC ("Been Changed") bit is cleared when the Holding
Tank Job Descriptor Address register is read. If data in the holding tanks changes after that time but
before the HT Status register is read, the "Been Changed" bit is set. This indicates that the data read
from some of the HT debug registers may be inconsistent with data read from other HT debug registers.
In this case the HT debug registers should be reread, starting with the Holding Tank Job Descriptor
Address register.

30

IN_USE

In Use. The "In use" bit is set when the HT contains some or all of the information for a job that has not
yet been sent or not yet completely sent to a DECO.

29-1

—

Reserved

0

PEND_0

Pending for DECO 0. The PEND_0 bit for this holding tank is set if the shared descriptor in this holding
tank matches the shared descriptor currently in DECO 0. It is possible for more than one pending bit for
the holding tank to be set at the same time.

10.13.104 Job Queue Debug Select Register (JQ_DEBUG_SEL)

The Job Queue Debug Select register is used to select which holding tank is being
accessed in the holding tank debug registers (HTa Job Descriptor Address, HTa Shared
Descriptor Address, HTa JQ Control, and HTa Status registers). The Job Queue Debug

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

836 NXP Semiconductors
Confidential Proprietary

Select register is also used to select the ID of the job that is being queried in the Job Ring
Job-Done Source and Job Ring Job-Done Descriptor Address registers. Finally, it
specifies which FIFO index to report in the Job Ring Job-Done Job ID FIFO register.

If the value written to the HT_SEL field is larger than the number of holding tanks in
CAAM, a value of 0 will be stored in the HT_SEL field and Holding Tank 0 will be used
by the HTa Job Descriptor Address, HTa Shared Descriptor Address, HTa JQ Control,
and HTa Status registers.

10.13.104.1 Offset

Register Offset

JQ_DEBUG_SEL C24h

10.13.104.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

JOB_ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

H
T

_S
E

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.104.3 Fields

Field Description

31-19

—

Reserved

18-16

JOB_ID

Job ID. Specifies a Job ID for which to return a Job Source in the Job Ring Job-Done Source FIFO
register or Descriptor address in the Job Ring Job-Done Descriptor Address register. Specifies a FIFO
index for the Job ID returned by the Job Ring Job-Done Job IDFIFO register, where a value of 0 indicates
the oldest job in the FIFO.

15-1 Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 837
Confidential Proprietary

Field Description

—

0

HT_SEL

Holding Tank Select. Selects which holding tank is being accessed in the holding tank debug registers
(HTa Job Descriptor Address, HTa Shared Descriptor Address, HTa JQ Control, and HTa Status
registers).

10.13.105 Job Ring Job IDs in Use Register, least-significant half
(JRJIDU_LS)

The Job Ring Job IDs in Use register indicates which of the Job IDs tracked by the Job
Controller are currently in use (i.e. identifying a job that is present in a holding tank, in a
DECO, or in the completed Job Queue waiting for the Job Completion status to be
written to an output ring). The register is intended to be used when debugging descriptor
execution via a Job Ring. The JRJIDU contains a bit for each of the Job IDs, indicating
whether that Job ID is currently in use.

10.13.105.1 Offset

Register Offset

JRJIDU_LS DBCh

10.13.105.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

JI
D

03

JI
D

02

JI
D

01

JI
D

00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

838 NXP Semiconductors
Confidential Proprietary

10.13.105.3 Fields

Field Description

31-4

—

Reserved

3

JID03

Job ID 03. Job ID 03 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

2

JID02

Job ID 02. Job ID 02 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

1

JID01

Job ID 01. Job ID 01 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

0

JID00

Job ID 00. Job ID 00 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

10.13.106 Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC)

This register indicates whether consistent data has been read from the JRJDJI FIFO and
JRJDS and JRJDDA registers.

The Job Queue maintains an ordered list of Job IDs for the completed jobs whose
completion status is waiting to be written to a Job Ring output ring. The Job Ring Job-
Done Job ID FIFO register returns the Job ID located at the index specified in the
JOB_ID field of the Job Queue Debug Select Register (JQ_DEBUG_SEL). When the
JOB_ID field is set to 0, the oldest JOB_ID in the Job-Done FIFO is returned. See
Section Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR2).
Note that these Job IDs are not reset as job status is written to output rings, so the
completion status for some Job IDs that appear in these registers may already have been
written to output rings.

10.13.106.1 Offset

Register Offset

JRJDJIFBC DC0h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 839
Confidential Proprietary

10.13.106.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BC
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.106.3 Fields

Field Description

31

BC

Been changed. The hardware sets BC to 0 when the job descriptor address for Job ID 0 is read from Job
Ring Job-Done Descriptor Address (JRJDDA). The hardware sets BC to 1 when any job is added or
removed from the Job-Done Job ID FIFO. After software reads the JRJDJIF, JRJIDU, JRJDS1, and
JRJDDA registers software should read BC. If the BC bit is 1, the results read from the JRJDJIF, JRJIDU,
JRJDS1, and JRJDDA may be inconsistent with each other.

30-0

—

Reserved

10.13.107 Job Ring Job-Done Job ID FIFO (JRJDJIF)

This register provides Job Ring job ID information required to examine job completion
status.

10.13.107.1 Offset

Register Offset

JRJDJIF DC4h

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

840 NXP Semiconductors
Confidential Proprietary

10.13.107.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

JO
B

_I
D

_E
N

T
R

Y

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.107.3 Fields

Field Description

31-3

—

Reserved

2-0

JOB_ID_ENTRY

Job ID entry. This field contains the Job ID of a job whose completion status is located at the
JQ_DEBUG_SEL[JOB-ID] index in the Job-Done FIFO.

10.13.108 Job Ring Job-Done Source 1 (JRJDS1)

The Job Queue keeps track of the job source (Job Ring numbers) for each Job ID, and
values in this register are updated whenever a new Job Ring job starts in a holding tank.
Each entry in this register is matched to corresponding entries in the JRJDV and JRDDAa
registers.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 841
Confidential Proprietary

10.13.108.1 Offset

Register Offset Description

JRJDS1 DE4h The source for the job with the Job ID specified in
JQ_DEBUG_SEL[JOB-ID].

10.13.108.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

V
A

LI
D

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.108.3 Fields

Field Description

31

VALID

Valid. If this bit is 1, the job located at the index specified by the JOB_ID field in the Job Queue Debug
Select register is complete, but its status has not yet been written to the output ring.

30-2

—

Reserved

1-0

SRC

Source. This field contains the number of the Job Ring that was the source of a job whose completion
status is waiting to be written to an output ring. The job is located in the FIFO at the index specified by the
JOB_ID field in the Job Queue Debug Select register.

10.13.109 Job Ring Job-Done Descriptor Address 0 Register
(JRJDDA)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

842 NXP Semiconductors
Confidential Proprietary

The JRJDDA register is used to store the address of a job descriptor when the job is sent
to a holding tank. The descriptor address read from JRJDDA is the one corresponding to
the Job ID specified in the JOB_ID field of the Job Queue Debug Select Register (JQ_D
EBUG_SEL). See Section Job Ring Output Status Register for Job Ring a (JRSTAR_JR0
- JRSTAR_JR2). Because these addresses are updated only when a new job starts in a
holding tank, some addresses read from this register may be for completed jobs that have
already been written to an output ring. This register is intended to be used when
debugging descriptor execution via a Job Ring.

10.13.109.1 Offset

Register Offset Description

JRJDDA E00h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

10.13.109.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 843
Confidential Proprietary

10.13.109.3 Fields

Field Description

63-32

—

Reserved

31-0

JD_ADDR

Job Descriptor Address.

10.13.110 CHA Revision Number Register, most-significant half
(CRNR_MS)

The CHA Revision Number register indicates the revision number of each CHA. The
revisions are numbered independently for each version of a particular CHA (see CHA
Version ID Register, most-significant half (CHAVID_MS)). Since the register is larger
than 32 bits, the CRNR fields are accessed as two 32-bit words. Because this register may
be of interest to multiple software entities, this register is aliased to addresses in multiple
pages. The register format is shown in the figure and table below.

10.13.110.1 Offset

Register Offset

CRNR_MS FA0h (alias)

CRNR_MS 1FA0h (alias)

CRNR_MS 2FA0h (alias)

CRNR_MS 3FA0h (alias)

CRNR_MS 6FA0h (alias)

CRNR_MS 8FA0h (alias)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

844 NXP Semiconductors
Confidential Proprietary

10.13.110.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JRRN DECORN
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ZARN ZERN SNW9RN
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.110.3 Fields

Field Description

31-28

JRRN

Job Ring Revision Number

27-24

DECORN

DECO Revision Number

23-16

—

Reserved

15-12

ZARN

ZUC Authentication Hardware Accelerator Revision Number

11-8

ZERN

ZUC Encryption Hardware Accelerator Revision Number

7-4

SNW9RN

SNOW-f9 Hardware Accelerator Revision Number

3-0

—

Reserved

10.13.111 CHA Revision Number Register, least-significant half
(CRNR_LS)

The CHA Revision Number register indicates the revision number of each CHA. The
revisions are numbered independently for each version of a particular CHA (see CHA
Version ID Register, most-significant half (CHAVID_MS)). Since the register is larger

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 845
Confidential Proprietary

than 32 bits, the CRNR fields are accessed as two 32-bit words. Because this register may
be of interest to multiple software entities, this register is aliased to addresses in multiple
pages. The register format is shown in the figure and table below.

10.13.111.1 Offset

Register Offset

CRNR_LS FA4h (alias)

CRNR_LS 1FA4h (alias)

CRNR_LS 2FA4h (alias)

CRNR_LS 3FA4h (alias)

CRNR_LS 6FA4h (alias)

CRNR_LS 8FA4h (alias)

10.13.111.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKRN KASRN SNW8RN RNGRN

W

Reset 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MDRN ARC4RN DESRN AESRN

W

Reset 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0

10.13.111.3 Fields

Field Description

31-28

PKRN

Public Key Hardware Accelerator Revision Number

For PKHA-XT, PKRN=1.

For PKHA-SD, see below.

0000 - PKHA-SDv1

0001 - PKHA-SDv2

0010 - PKHA-SDv3

0011 - PKHA-SDv4

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

846 NXP Semiconductors
Confidential Proprietary

Field Description

27-24

KASRN

Kasumi f8/f9 Hardware Accelerator Revision Number

23-20

SNW8RN

SNOW-f8 Hardware Accelerator Revision Number

19-16

RNGRN

Random Number Generator Revision Number.

15-12

MDRN

Message Digest Hardware Accelerator module Revision Number.

11-8

ARC4RN

Alleged RC4 Hardware Accelerator Revision Number.

7-4

DESRN

DES Accelerator Revision Number.

3-0

AESRN

AES Accelerator Revision Number.

0000 No Differential Power Analysis resistance implemented

0001 Differential Power Analysis resistance implemented

For all other values when AESVID = 4, Differential Power Analysis resistance is implemented.

10.13.112 Compile Time Parameters Register, most-significant
half (CTPR_MS)

The Compile Time Parameters register indicates the parameter settings at the time
CAAM was compiled. Since the register is larger than 32 bits, the CTPR fields are
accessed as two 32-bit words. Because this register may be of interest to multiple
software entities, this register is aliased to addresses in multiple 4kbyte address spaces.

10.13.112.1 Offset

Register Offset

CTPR_MS FA8h (alias)

CTPR_MS 1FA8h (alias)

CTPR_MS 2FA8h (alias)

CTPR_MS 3FA8h (alias)

CTPR_MS 6FA8h (alias)

CTPR_MS 8FA8h (alias)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 847
Confidential Proprietary

10.13.112.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

A
X

I_
P

IP
E

_D
E

P
T

H

A
X

I_
LI

O
D

N

A
X

I_
P

R
I

Q
I

A
C

C
_C

T
L

C
1C

2

R
es

er
ve

d

P
C

D
E

C
O

_W
D

P
M

_E
V

T
_B

U
S

S
G

8

M
C

F
G

_P
S

M
C

F
G

_B
U

R
S

T

W

Reset 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

IP
_C

LK

D
P

A
A

2

R
es

er
ve

d

A
I_

IN
C

L

R
N

G
_I

R
es

er
ve

d

R
E

G
_P

G
_S

IZ
E R

es
er

ve
d

V
IR

T
_E

N
_P

O
R

_V
A

LU
E

V
IR

T
_E

N
_I

N
C

L

W

Reset 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

10.13.112.3 Fields

Field Description

31-28

AXI_PIPE_DEP
TH

AXI Pipeline Depth.

0000: CAAM DMA implements maximum AXI bus pipeline depth.

0001 - 1111: CAAM DMA implements an AXI bus pipeline depth as specified by AXI_PIPE_DEPTH.

27

AXI_LIODN

LIODN logic included.

0 : This version of CAAM does not implement LIODN logic.

1 : This version of CAAM implements logic to select LIODNs.

26

AXI_PRI

AXI Master Priority implemented.

0 : This version of CAAM does not implement AXI Master Priority.

1 : This version of CAAM implements logic for the AXI Master Priority signals.

25

QI

Queue Manager interface (QI) implemented.

0 : This version of CAAM does not implement a QI.

1 : This version of CAAM implements a QI.

24 System/user partition-based CAAM IP Bus register access control

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

848 NXP Semiconductors
Confidential Proprietary

Field Description

ACC_CTL 0: CAAM does not implement partition-based access control for its IP Bus registers, i.e., CAAM relies on
the core MMU and/or other SoC register access controls if such control is needed.

1: CAAM implements DID-based IP Bus register access control.

23

C1C2

Separate C1 and C2 registers

0: In this implementation of CAAM the Class 2 Key and Context registers are shared with the Class 1 Key
and Context registers.

1: CAAM implements Class 2 Key and Context registers that are separate from the Class 1 Key and
Context registers.

22

—

Reserved

21

PC

Performance Counter registers implemented

0: CAAM does not implement Performance Counter registers.

1: CAAM does implement Performance Counter registers.

20

DECO_WD

DECO Watchdog Counter implemented

0: CAAM does not implement a DECO Watchdog Counter.

1: CAAM does implement a DECO Watchdog Counter.

19

PM_EVT_BUS

Performance Monitor Event Bus implemented

0: CAAM does not implement a Performance Monitor Event Bus.

1: CAAM does implement a Performance Monitor Event Bus.

18

SG8

Eight Scatter-Gather Tables implemented

0: CAAM implements one Scatter-Gather Table register.

1: CAAM implements eight Scatter-Gather Table registers.

17

MCFG_PS

Pointer Size field implemented

0: The Master Configuration Register does not contain a Pointer Size field.

1: The Master Configuration Register does contain a Pointer Size field.

16

MCFG_BURST

Burst Configurability

If MCFG_BURST is 0, the normal burst size is limited to 32 bytes and large bursts cannot be enabled. If
MCFG_BURST is 1, the normal burst size is either set to 64 bytes or large bursts can be enabled by
setting the LARGE_BURST bit in the Master Configuration Register (see MCFGR[LARGE_BURST] for
details).

0: Normal bursts are aligned 32-byte transfers and extended bursting cannot be enabled.

1: Normal bursts are aligned 64-byte transfers or extended bursting exceeding the normal burst size can
be enabled with the LARGE_BURST enable bit in the Master Configuration register.

15

—

Reserved

14

IP_CLK

IP Bus Slave Clock.

0: The frequency of CAAM's IP Bus Slave Clock is the same as the frequency of CAAM's AXI bus clock.

1: The frequency of CAAM's IP Bus Slave Clock is one-half of the frequency of CAAM's AXI bus clock.

13

DPAA2

ICIDs with AMQs supported.

0: This version of CAAM does not support ICIDs with AMQs.

1: This version of CAAM supports ICIDs with AMQs.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 849
Confidential Proprietary

Field Description

12

—

Reserved

11

AI_INCL

AIOP interface implemented.

0 : This version of CAAM does not implement an AIOP interface.

1 : This version of CAAM implements one or more AIOP interfaces.

10-8

RNG_I

RNG Instantiations. RNG_I indicates the number of RNG instantiations that are implemented in the RNG
hardware. Note that each instantiation is the data context for an independent RNG stream. The number
of hardware RNGs is indicated in the RNGNUM field of the CHANUM register.

7-5

—

Reserved

4

REG_PG_SIZE

CAAM register page size.

0: CAAM uses 4Kbyte register pages.

1: CAAM uses 64Kbyte register pages.

3-2

—

Reserved

1

VIRT_EN_POR
_VALUE

Job Ring Virtualization POR state.

0: Job Ring virtualization is not enabled at power up.

1: Job Ring virtualization is enabled at power up.

0

VIRT_EN_INCL

Job Ring Virtualization programmable.

0: Job Ring virtualization is always enabled and the Security Configuration register does not contain a
VIRT_EN bit.

1: Job Ring virtualization can be programmed to be enabled or disabled by writing to the VIRT_EN bit in
the Security Configuration register.

10.13.113 Compile Time Parameters Register, least-significant
half (CTPR_LS)

The Compile Time Parameters register indicates the parameter settings at the time
CAAM was compiled. Since the register is larger than 32 bits, the CTPR fields are
accessed as two 32-bit words. Because this register may be of interest to multiple
software entities, this register is aliased to addresses in multiple 4kbyte address spaces.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

850 NXP Semiconductors
Confidential Proprietary

10.13.113.1 Offset

Register Offset

CTPR_LS FACh (alias)

CTPR_LS 1FACh (alias)

CTPR_LS 2FACh (alias)

CTPR_LS 3FACh (alias)

CTPR_LS 6FACh (alias)

CTPR_LS 8FACh (alias)

10.13.113.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

D
K

P

M
A

N
_P

R
O

T

D
B

L_
C

R
C

P
3G

_L
T

E

R
S

A

M
A

C
S

E
C

T
LS

_P
R

F S
S

L_
T

L
S

IK
E

IP
S

E
C S

R
T

P

W
IM

A
X

W
IF

I

B
LO

B

K
G

_D
S

W

Reset 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1

10.13.113.3 Fields

Field Description

31-16

—

Reserved

15

—

Reserved

14

DKP

Derived Key Protocol

0 - CAAM does not implement the Derived Key Protocol.

1 - CAAM implements the Derived Key Protocol.

13

MAN_PROT

Manufacturing Protection protocol

0 - CAAM does not implement Manufacturing Protection functions.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 851
Confidential Proprietary

Field Description

1 - CAAM implements Manufacturing Protection functions.

12

DBL_CRC

Double CRC protocol

0 - CAAM does not implement specialized support for Double CRC.

1 - CAAM implements specialized support for Double CRC.

11

P3G_LTE

3GPP/LTE protocol

0 - CAAM does not implement specialized support for 3G and LTE protocols.

1 - CAAM implements specialized support for 3G and LTE protocols.

10

RSA

RSA protocol

0 - CAAM does not implement specialized support for RSA encrypt and decrypt operations.

1 - CAAM implements specialized support for RSA encrypt and decrypt operations.

9

MACSEC

MACSEC protocol

0 - CAAM does not implement specialized support for the MACSEC protocol.

1 - CAAM implements specialized support for the MACSEC protocol.

8

TLS_PRF

TLS PRF protocol

0 - CAAM does not implement specialized support for the TLS protocol pseudo-random function.

1 - CAAM implements specialized support for the TLS protocol pseudo-random function.

7

SSL_TLS

SSL/TLS protocol

0 - CAAM does not implement specialized support for the SSL and TLS protocols.

1 - CAAM implements specialized support for the SSL and TLS protocols.

6

IKE

IKE protocols

0 - CAAM does not implement specialized support for the IKE protocol.

1 - CAAM implements specialized support for the IKE protocol.

5

IPSEC

IPSEC protocols

0 - CAAM does not implement specialized support for the IPSEC protocol.

1 - CAAM implements specialized support for the IPSEC protocol.

4

SRTP

SRTP protocol

0 - CAAM does not implement specialized support for the SRTP protocol.

1 - CAAM implements specialized support for the SRTP protocol.

3

WIMAX

WiMax protocol

0 - CAAM does not implement specialized support for the WIMAX protocol.

1 - CAAM implements specialized support for the WIMAX protocol.

2

WIFI

WiFi protocol

0 - CAAM does not implement specialized support for the WIFI protocol.

1 - CAAM implements specialized support for the WIFI protocol.

1

BLOB

Blob protocol

0 - CAAM does not implement specialized support for encapsulating and decapsulating cryptographic
blobs.

1 - CAAM implements specialized support for encapsulating and decapsulating cryptographic blobs.

0

KG_DS

PK generation and digital signature protcols

0 - CAAM does not implement specialized support for Public Key Generation and Digital Signatures.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

852 NXP Semiconductors
Confidential Proprietary

Field Description

1 - CAAM implements specialized support for Public Key Generation and Digital Signatures.

10.13.114 Secure Memory Status Register (SMSTA)

This register indicates the current status of the Secure Memory Controller. The status of
the first error that occurs will remain until this register is read. Because this register may
be of interest to multiple software entities, this register is aliased to addresses in multiple
4kbyte address spaces.

10.13.114.1 Offset

Register Offset

SMSTA FB4h (alias)

SMSTA 1FB4h (alias)

SMSTA 2FB4h (alias)

SMSTA 3FB4h (alias)

SMSTA 6FB4h (alias)

SMSTA 8FB4h (alias)

10.13.114.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

P
A

R
T

R
es

er
ve

d

P
A

G
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

S
M

R
_W

P

R
es

er
ve

d

N S D
ID

A
C

C
E

R
R

S
T

A
T

E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 853
Confidential Proprietary

10.13.114.3 Fields

Field Description

31-28

PART

In this version of CAAM this field should be ignored. Find out the partition number via the SMCS register's
Page Inquiry Command.

27

—

Reserved

26-16

PAGE

Page. The number of pages that have completed zeroization during POR or following a transition to Fail
Mode. The Secure Memory Controller updates this field as it zeroizes each page. Following completion of
zeroization, this value remains constant until a Secure Memory access error occurs. When ACCERR !=
0h, PAGE indicates the Secure Memory page associated with the denied access.

15

SMR_WP

Secure Memory Registers Write Protected. SMR_WP=1 indicates that the CAAM manager has disabled
writing into the Secure Memory registers in this Job Ring page.

14-13

—

Reserved

12

NS

The TrustZone nonsecure bit of the bus master whose access to Secure Memory was denied. NS=0
means SecureWorld.

11-8

DID

The DID of the bus master whose access to Secure Memory was denied.

7-4

ACCERR

Access Error. This field indicates the reason that a read or write access to Secure Memory was denied. If
an access was denied for more than one reason, the lowest numbered error value will be reported.

0000 - No error occurred

0001 - A bus transaction attempted to access a page in Secure Memory, but the page was not allocated
to any partition.

0010 - A bus transaction attempted to access a partition, but the transaction's TrustZone World, DID was
not granted access to the partition in the partition's SMAG2/1JR registers.

0011 - A bus transaction attempted to read, but reads from this partition are not allowed.

0100 - A bus transaction attempted to write, but writes to this partition are not allowed.

0110 - Secure Memory Blob import or export was attempted, but Secure Memory Blob access is not
allowed for this partition.

1010 - A Descriptor attempted a Secure Memory Blob import or export, but not all of the pages
referenced were from the same partition.

1011 - A memory access was directed to Secure Memory, but the specified address is not implemented
in Secure Memory. The address was either outside the address range occupied by Secure Memory, or
was within an unimplemented portion of the 4kbyte address block occupied by a 1Kbyte or 2Kbyte
Secure Memory page.

1100 - A bus transaction was attempted, but the burst would have crossed a page boundary.

1101 - An attempt was made to access a page while it was still being initialized.

3-0

STATE

Current State. This field represents the current state of the Secure Memory Controller.

0000 - Reset State

0001 - Initialize State

0010 - Normal State

0011 - Fail State

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

854 NXP Semiconductors
Confidential Proprietary

10.13.115 Secure Memory Partition Owners Register (SMPO)

When a Job Ring owner reads this partition from the address alias associated with the Job
Ring, the value returned will indicate whether that Job Ring's SDID owns the partition,
another Job Ring's SDID owns the partition, the partition is unowned, or the partition is
unimplemented. Each allocated partition is allocated to one of the 4096 TrustZone
SecureWorld SDID values or to one of the 4096 TrustZone NonSecureWorld SDID
values. A partition owner may own more than one partition.

Note that the SMPO is accessible via multiple address aliases (one per Job Ring plus one
located in register page 0). If Job Ring x's owner15 (as determined by the JRaDID
register) reads the SMPO register via the address associated with Job Ring x, then the
partition owner field will return a 11b code for each partition owned by that Job Ring. If
the partition is owned by a different owner, a 10b code will be returned in the partition's
partition owner field. If the partition is currently unallocated a 00b code will be returned
in the partition owner field. Note that the same entity can own more than one Job Ring,
and can obtain the same information by reading the SMPO register from different address
aliases.

Note that at POR all Secure Memory pages are allocated to partition 0, and partition 0 is
assigned to SDID value 0000h. Since all JRDID registers also reset to 0000h, at POR all
Job Rings own partition 0. Consequently, if any Job Ring alias of SMPO is read
immediately following POR, or if the SMPO alias in register page 0 immediately
following POR, PO0 will return 11b and all other partition owner fields will return either
00b (unowned) or 01b (unimplemented). If the SMPO is read from a Job Ring alias after
the Job Ring has been assigned a new SDID value, or if the SDID value in the
PAGE0_SDID register has been changed, PO0 will return 10b (owned by someone else)
and all other partition owner fields will return either 00b (unowned) or 01b
(unimplemented).

10.13.115.1 Offset

Register Offset Description

SMPO FBCh (alias) used by the hypervisor or Trustzone SecureWorld

SMPO 1FBCh (alias) used by Job Ring 0

Table continues on the next page...

15. Bit 15 of the PSDIDR is ignored when determining read/write access to the partition's SMAP and SMAG registers or
when reading the SMPO register.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 855
Confidential Proprietary

Register Offset Description

SMPO 2FBCh (alias) used by Job Ring 1

SMPO 3FBCh (alias) used by Job Ring 2

10.13.115.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PO15 PO14 PO13 PO12 PO11 PO10 PO9 PO8

W

Reset 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PO7 PO6 PO5 PO4 PO3 PO2 PO1 PO0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

10.13.115.3 Fields

Field Description

31-30

PO15

Partition Owner for partition 15. See PO0.

29-28

PO14

Partition Owner for partition 14. See PO0.

27-26

PO13

Partition Owner for partition 13. See PO0.

25-24

PO12

Partition Owner for partition 12. See PO0.

23-22

PO11

Partition Owner for partition 11. See PO0.

21-20

PO10

Partition Owner for partition 10. See PO0.

19-18

PO9

Partition Owner for partition 9. See PO0.

17-16

PO8

Partition Owner for partition 8. See PO0.

15-14

PO7

Partition Owner for partition 7. See PO0.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

856 NXP Semiconductors
Confidential Proprietary

Field Description

13-12

PO6

Partition Owner for partition 6. See PO0.

11-10

PO5

Partition Owner for partition 5. See PO0.

9-8

PO4

Partition Owner for partition 4. See PO0.

7-6

PO3

Partition Owner for partition 3. See PO0.

5-4

PO2

Partition Owner for partition 2. See PO0.

3-2

PO1

Partition Owner for partition 1. See PO0.

1-0

PO0

Partition Owner for partition 0: When read by a Job Ring owner, this field indicates if partition 0 is owned
by that Job Ring, another Job Ring, Unowned, or Unimplemented.

00 - Available; Unowned. A Job Ring owner may claim partition 0 by writing to the appropriate SMAPJR
register address alias. Note that the entire register will return all 0s if read by a entity that does not own
the Job Ring associated with the SMPO address alias that was read.

01 - Partition 0 does not exist in this version

10 - Another entity owns partition 0. Partition 0 is unavailable to the reader. If the reader attempts to de-
allocate partition 0 or write to the SMAPJR register or SMAGJR register for partition 0 or allocate a page
to or de-allocate a page from partition 0 the command will be ignored. (Note that if a CSP partition is de-
allocated, all entities (including the owner that de-allocated the partition) will see a 0b10 value for that
partition until all its pages have been zeroized.)

11 - The entity that read the SMPO register owns partition 0. Ownership is claimed when the access
permissions register (SMAPJR) of an available partition is first written.

10.13.116 Fault Address Register (FAR)

The Fault Address Register is used for software debugging of external memory access
errors. This register will hold the value of the AXI address where a read or write error
occurred. The read error address is aligned to the data bus address boundary of the data
sample where the error occurred. The write error address is the starting address of the
transaction, aligned to the data bus address boundary. Additional details concerning the
bus transaction appear in the FADR (see Fault Address Detail Register (FADR)). The
associated DID is in the Fault Address DID Register (see Section Fault Address DID
Register (FADID)). Because this register may be of interest to multiple software entities,
this register is aliased to addresses in multiple 4kbyte address spaces. The values in the

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 857
Confidential Proprietary

Fault Address Register, the Fault Address DID Register, and the Fault Address Detail
Register are stored (and no additional address fault data is recorded) until all these
registers have been read, in any order, whereupon all these registers will be cleared.

10.13.116.1 Offset

Register Offset Description

FAR FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR 1FC0h (alias) -

FAR 2FC0h (alias) -

FAR 3FC0h (alias) -

FAR 6FC0h (alias) -

FAR 8FC0h (alias) -

10.13.116.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FAR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FAR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

858 NXP Semiconductors
Confidential Proprietary

10.13.116.3 Fields

Field Description

63-32

—

Reserved

31-0

FAR

Fault Address. This is the AXI address at which the error occurred. If multiple errors occur, this is the AXI
address at which the first error occurred. This address will remain in the register until software has read
the register.

10.13.117 Fault Address DID Register (FADID)

The Fault Address DID Register is used by software for debugging external memory
access errors. This register indicates the DID associated with the AXI transaction where
the error occurred. The associated AXI address is in the Fault Address Register (see Fault
Address Register (FAR)) and additional details appear in the Fault Address Detail
Register (see Fault Address Detail Register (FADR)). Because this register may be of
interest to multiple software entities, this register is aliased to addresses in multiple
4kbyte address spaces. The values in the Fault Address Register, the Fault Address DID
Register, and the Fault Address Detail Register are stored (and no additional address fault
data is recorded) until all these registers have been read, in any order, whereupon all
these registers will be cleared.

10.13.117.1 Offset

Register Offset

FADID FC8h (alias)

FADID 1FC8h (alias)

FADID 2FC8h (alias)

FADID 3FC8h (alias)

FADID 6FC8h (alias)

FADID 8FC8h (alias)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 859
Confidential Proprietary

10.13.117.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FICID FNS FDID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.117.3 Fields

Field Description

31-16

—

Reserved

15-5

FICID

DMA transaction ICID. This was the ICID value associated with the DMA transaction that failed.

4

FNS

DMA transaction ns. This was the ns signal (ns=0 means TrustZone SecureWorld) associated with the
DMA transaction that failed.

3-0

FDID

DMA transaction DID. This was the DID associated with the DMA transaction that failed.

10.13.118 Fault Address Detail Register (FADR)

The Fault Address Detail Register is used by software for debugging external memory
access errors. This register will hold details about the AXI transaction where the error
occurred. The associated AXI address is in the Fault Address Register (FAR). The
associated DID is in the Fault Address DID Register (FADID). Because this register may
be of interest to multiple software entities, this register is aliased to addresses in multiple
4kbyte address spaces. The values in the Fault Address Register, the Fault Address DID
Register, and the Fault Address Detail Register are stored (and no additional address fault
data is recorded) until all these registers have been read, in any order, whereupon all
these registers will be cleared.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

860 NXP Semiconductors
Confidential Proprietary

10.13.118.1 Offset

Register Offset

FADR FCCh (alias)

FADR 1FCCh (alias)

FADR 2FCCh (alias)

FADR 3FCCh (alias)

FADR 6FCCh (alias)

FADR 8FCCh (alias)

10.13.118.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

F
E

R
R

R
es

er
ve

d

F
N

S

F
B

N
D

G

F
T

D
S

C

F
K

E
Y

F
K

M
O

D

R
es

er
ve

d

F
S

Z
_E

X
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

D
T

Y
P

JS
R

C B
LK

ID

T
Y

P

F
S

Z

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.118.3 Fields

Field Description

31-30

FERR

Fault Error Code. This is the AXI Error Response Code.

00 - OKAY - Normal Access

01 - Reserved

10 - SLVERR - Slave Error

11 - DECERR - Decode Error

29

—

Reserved

28 Non-secure (AXI bus ns bit) access to Secure Memory.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 861
Confidential Proprietary

Field Description

FNS 0 - CAAM DMA was asserting ns=0 at the time of the DMA error.

1 - CAAM DMA was asserting ns=1 at the time of the DMA error.

27

FBNDG

Access permission binding access to Secure Memory.

0 - CAAM DMA was not reading access permissions from a Secure Memory partition at the time of the
DMA error.

1 - CAAM DMA was reading access permissions from a Secure Memory partition at the time of the DMA
error.

26

FTDSC

Trusted Descriptor access to Secure Memory

0 - CAAM DMA was not executing a Trusted Descriptor at the time of the DMA error.

1 - CAAM DMA was executing a Trusted Descriptor at the time of the DMA error.

25

FKEY

Key Access Read

0 - CAAM DMA was not attempting to perform a key read from Secure Memory at the time of the DMA
error.

1 - CAAM DMA was attempting to perform a key read from Secure Memory at the time of the DMA error.

24

FKMOD

Key Modifier Read. (The APJR register and SMAG1 JR and SMAG2 JR registers are used to modify the
BEK during Secure Memory Blob export and import operations.)

0 - CAAM DMA was not attempting to read the key modifier from Secure Memory at the time that the
DMA error occurred.

1 - CAAM DMA was attempting to read the key modifier from Secure Memory at the time that the DMA
error occurred.

23-19

—

Reserved

18-16

FSZ_EXT

AXI Transaction Transfer Size - extended. This field holds the most significant bits of the transfer size,
measured in bytes, of the DMA transaction that resulted in an error.

15

DTYP

Data Type. The type of data being processed when the AXI transfer error occurred.

0 - message data

1 - control data

14-12

JSRC

Job Source. The source of the job whose AXI transfer ended with an error:

000 - Job Ring 0

001 - Job Ring 1

010 - Job Ring 2

011 - reserved

100 - RTIC

101 - reserved

110 - reserved

111 - reserved

11-8

BLKID

Block ID. The Block ID is the identifier of the block internal to CAAM that initiated the DMA transfer that
resulted in an error. BLKID is interpreted as follows:

0100 - job queue controller Burst Buffer

0101 - One of the Job Rings (see JSRC field)

1000 - DECO0

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

862 NXP Semiconductors
Confidential Proprietary

Field Description

7

TYP

AXI Transaction Type. This is the type, read or write, of the DMA transaction that resulted in an error.

0 - Read.

1 - Write.

6-0

FSZ

AXI Transaction Transfer Size. This field holds the least-significant bits of the transfer size, measured in
bytes, of the DMA transaction that resulted in an error. For large transfers the most-significant bits are
held in field FSZ_EXT.

10.13.119 CAAM Status Register (CSTA)

The CAAM Status Register indicates some status information that is relevant to the entire
CAAM block. Because this register may be of interest to multiple software entities, this
register is aliased to addresses in multiple 4kbyte address spaces.

10.13.119.1 Offset

Register Offset

CSTA FD4h (alias)

CSTA 1FD4h (alias)

CSTA 2FD4h (alias)

CSTA 3FD4h (alias)

CSTA 6FD4h (alias)

CSTA 8FD4h (alias)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 863
Confidential Proprietary

10.13.119.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

P
LE

N
D M

O
O

R
es

er
ve

d

T
R

N
G

_I
D

LE

ID
L

E B
S

Y

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

10.13.119.3 Fields

Field Description

31-11

—

Reserved

10

PLEND

Platform Endianness.The value of PLEND indicates whether CAAM interprets and generates multi-byte
structures in platform memory by default in big endian (BE) or little endian (LE) format.

NOTE: In this instance of CAAM the PLEND value is a hard-wired, SoC-specific CAAM configuration
and software can override the endianess for CAAM sub-module specific data by setting bits in
the Job Ring Configuration Register, the RTIC Endian Register, and the DECO Job Queue
Control Register.

0 - Platform default is Little Endian

1 - Platform default is Big Endian

9-8

MOO

Mode of Operation. These bits indicate the Security Mode that CAAM is currently working in. The Security
Mode is determined by the Platform Security State Machine. The modes are defined in CAAM modes of
operation.

00 - Non-Secure

01 - Secure

10 - Trusted

11 - Fail

7-3

—

Reserved

2

TRNG_IDLE

TRNG Idle. If TRNG_IDLE == 1, the TRNG portion of the RNG is idle. The free-running oscillator is
stopped, so no entropy is being generated.

1

IDLE

CAAM Idle. IDLE == 1 indicates that
• CAAM is not busy (see BSY bit description below)

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

864 NXP Semiconductors
Confidential Proprietary

Field Description

• the output job ring timers are not counting, i.e., there are no completed jobs yet to be reported via
interrupt (though there may be job entries in output rings that have beed previously reported as
complete, but not yet consumed by software)

• there are no pending CAAM interrupts (or all such interrupts are masked)
• secure memory is idle
• and the special RTIC conditions described below are met:

If RIDLE == 1 in the RTIC Control Register, IDLE will be 0 if RTIC is in Run-Time Mode and one or more
Memory Blocks are enabled for Run-Time Mode (i.e. one or more of the RTME bits are 1). If RIDLE == 0
and CAAM is otherwise idle, the IDLE bit will still occasionally be 0 while RTIC is actually hashing a
chunk of memory. That is, if RTIC is in Run-Time Mode and one or more memory blocks are enabled,
RTIC's Programmable DMA Throttle Timer may time out periodically and RTIC will launch a hashing job,
which will cause IDLE to briefly go to 0.

0

BSY

CAAM Busy. BSY == 1 indicates that CAAM is processing at least one job descriptor in any of CAAM's
service interfaces or an external RNG request is being processed.

10.13.120 Secure Memory Version ID Register, most-significant
half (SMVID_MS)

The Secure Memory Version ID register can be used by software to differentiate between
different versions of the Secure Memory, and to determine the page size and the number
of partitions and pages supported by this version of CAAM. Because this register may be
of interest to multiple software entities, this register is aliased to addresses in multiple
4kbyte address spaces. Since the register holds more than 32 bits, it is accessed as two
32-bit words.

10.13.120.1 Offset

Register Offset

SMVID_MS FD8h (alias)

SMVID_MS 1FD8h (alias)

SMVID_MS 2FD8h (alias)

SMVID_MS 3FD8h (alias)

SMVID_MS 6FD8h (alias)

SMVID_MS 8FD8h (alias)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 865
Confidential Proprietary

10.13.120.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

MAX_NPAG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

N
P

R
T

R
es

er
ve

d

N
P

A
G

W

Reset 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

10.13.120.3 Fields

Field Description

31-26

—

Reserved

25-16

MAX_NPAG

Maximum allowable value for NPAG. Since NPAG counts from 0, the maximum number of Secure
Memory pages that can be supported in this version of the CAAM hardware is MAX_NPAG + 1. The
NPAG field indicates the highest numbered Secure Memory page that has been configured in this SOC.
Since this SoC may use a smaller Secure Memory RAM than the maximum that can be supported by
CAAM, the actual number of pages (NPAG + 1) may be smaller than MAX_NPAG + 1.

15-12

NPRT

This is the highest numbered Secure Memory partition, so there can be 1 to 16 partitions.

11-10

—

Reserved

9-0

NPAG

This is the highest numbered page of Secure Memory. The number of the last page is in the range 0 to
1023, therefore the number of pages can range from 1 to 1024.

10.13.121 Secure Memory Version ID Register, least-significant
half (SMVID_LS)

The Secure Memory Version ID register can be used by software to differentiate between
different versions of the Secure Memory, and to determine the page size and the number
of partitions and pages supported by this version of CAAM. Because this register may be

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

866 NXP Semiconductors
Confidential Proprietary

of interest to multiple software entities, this register is aliased to addresses in multiple
4kbyte address spaces. Since the register holds more than 32 bits, it is accessed as two
32-bit words.

10.13.121.1 Offset

Register Offset

SMVID_LS FDCh (alias)

SMVID_LS 1FDCh (alias)

SMVID_LS 2FDCh (alias)

SMVID_LS 3FDCh (alias)

SMVID_LS 6FDCh (alias)

SMVID_LS 8FDCh (alias)

10.13.121.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

PSIZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SMJV SMNV

W

Reset 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

10.13.121.3 Fields

Field Description

31-19

—

Reserved

18-16

PSIZ

Page Size. The number of bytes in a Secure Memory page is 2psiz KB. Zero means 1kbyte pages. The
maximum page size is 128 KB.

15-8

SMJV

Secure Memory Major Version ID. A Zero value means that there is no Secure Memory in this version of
CAAM

7-0

SMNV

Secure Memory Minor Version ID.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 867
Confidential Proprietary

10.13.122 RTIC Version ID Register (RVID)

The Run Time Integrity Checking Version ID register can be used by software to
differentiate between different versions of the RTIC. Field RMJV is used for major
revisions, field RMNV is used for minor revisions and the remaining fields are used for
other revision information about the hardware. The bit assignments of this register appear
below. Because this register may be of interest to multiple software entities, this register
is aliased to addresses in multiple 4kbyte address spaces.

10.13.122.1 Offset

Register Offset

RVID FE0h (alias)

RVID 1FE0h (alias)

RVID 2FE0h (alias)

RVID 3FE0h (alias)

RVID 6FE0h (alias)

RVID 8FE0h (alias)

10.13.122.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

M
D

M
C

M
B

M
A

R
es

er
ve

d

S
H

A
_5

12

R
es

er
ve

d

S
H

A
_2

56

R
es

er
ve

d

W

Reset 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RMJV RMNV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

868 NXP Semiconductors
Confidential Proprietary

10.13.122.3 Fields

Field Description

31-28

—

Reserved

27

MD

Memory Block D Available. This bit indicates that Memory Block D is available for Hash Once and Run
Time Checking.

26

MC

Memory Block C Available. This bit indicates that Memory Block C is available for Hash Once and Run
Time Checking.

25

MB

Memory Block B Available. This bit indicates that Memory Block B is available for Hash Once and Run
Time Checking.

24

MA

Memory Block A Available. This bit indicates that Memory Block A is available for Hash Once and Run
Time Checking.

23-20

—

Reserved

19

SHA_512

SHA-512.

0 - RTIC cannot use the SHA-512 hashing algorithm.

1 - RTIC can use the SHA-512 hashing algorithm.

18

—

Reserved

17

SHA_256

SHA-256.

0 - RTIC cannot use the SHA-256 hashing algorithm.

1 - RTIC can use the SHA-256 hashing algorithm.

16

—

Reserved

15-8

RMJV

RTIC Major Version. Represents major revision number of RTIC. This value is incremented when major
functional changes are introduced or the programming model has changed.

7-0

RMNV

RTIC Minor Version. Represents minor revision number of RTIC. This value is incremented when minor
functional changes are made that do not change the programming model. Corrections that require
changes to the design are the typical reason for incrementing these bits.

10.13.123 CHA Cluster Block Version ID Register (CCBVID)

The CHA Cluster Block Version ID register can be used by software to differentiate
between different versions of the CCB. Because this register may be of interest to
multiple software entities, this register is aliased to addresses in multiple 4kbyte address
spaces.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 869
Confidential Proprietary

10.13.123.1 Offset

Register Offset

CCBVID FE4h (alias)

CCBVID 1FE4h (alias)

CCBVID 2FE4h (alias)

CCBVID 3FE4h (alias)

CCBVID 6FE4h (alias)

CCBVID 8FE4h (alias)

10.13.123.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CAAM_ERA
Reserved

W

Reset 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AMJV AMNV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

10.13.123.3 Fields

Field Description

31-24

CAAM_ERA

CAAM Era. This version of CAAM is based on Era 9 RTL.

NOTE: A value of 0 implies CAAM Era 5 or earlier.

23-16

—

Reserved

15-8

AMJV

Accelerator Major Revision Number. This value will be incremented every time there is a major
architectural change to the CCB design. Incrementing this results in the AMNV being set back to 0.

7-0

AMNV

Accelerator Minor Revision Number. This value will be incremented every time an RTL change has been
made to the CCB module.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

870 NXP Semiconductors
Confidential Proprietary

10.13.124 CHA Version ID Register, most-significant half (CHAV
ID_MS)

The CHA Version ID register can be used, along with the CCB Version ID, by software
to differentiate between different versions of the cryptographic hardware accelerators.
Since this register holds more than 32 bits, it is accessed as two 32-bit registers. Because
this register may be of interest to multiple software entities, this register is aliased to
addresses in multiple 4kbyte address spaces.

10.13.124.1 Offset

Register Offset

CHAVID_MS FE8h (alias)

CHAVID_MS 1FE8h (alias)

CHAVID_MS 2FE8h (alias)

CHAVID_MS 3FE8h (alias)

CHAVID_MS 6FE8h (alias)

CHAVID_MS 8FE8h (alias)

10.13.124.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JRVID DECOVID
Reserved

W

Reset 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ZAVID ZEVID SNW9VID
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.124.3 Fields

Field Description

31-28 Job Ring Version ID

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 871
Confidential Proprietary

Field Description

JRVID

27-24

DECOVID

DECO Version ID

23-16

—

Reserved

15-12

ZAVID

ZUC Authentication Hardware Accelerator Version ID

11-8

ZEVID

ZUC Encryption Hardware Accelerator Version ID

7-4

SNW9VID

SNOW-f9 Hardware Accelerator Version ID

3-0

—

Reserved

10.13.125 CHA Version ID Register, least-significant half (CHAV
ID_LS)

The CHA Version ID register can be used, along with the CCB Version ID, by software
to differentiate between different versions of the cryptographic hardware accelerators.
Since this register holds more than 32 bits, it is accessed as two 32-bit registers. Because
this register may be of interest to multiple software entities, this register is aliased to
addresses in multiple 4kbyte address spaces.

10.13.125.1 Offset

Register Offset

CHAVID_LS FECh (alias)

CHAVID_LS 1FECh (alias)

CHAVID_LS 2FECh (alias)

CHAVID_LS 3FECh (alias)

CHAVID_LS 6FECh (alias)

CHAVID_LS 8FECh (alias)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

872 NXP Semiconductors
Confidential Proprietary

10.13.125.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKVID KASVID SNW8VID RNGVID

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MDVID ARC4VID DESVID AESVID

W

Reset 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1

10.13.125.3 Fields

Field Description

31-28

PKVID

Public Key Hardware Accelerator Version ID. The bit count is the size of the digit used during
computation. The single-digit ("SD") versions allow a minimum modulus size of one byte.

0000 - PKHA-XT (32-bit); minimum modulus five bytes

0001 - PKHA-SD (32-bit)

0010 - PKHA-SD (64-bit)

0011 - PKHA-SD (128-bit)

27-24

KASVID

Kasumi f8/f9 Hardware Accelerator Version ID.

23-20

SNW8VID

SNOW-f8 Hardware Accelerator Version ID.

19-16

RNGVID

Random Number Generator Version ID.

0010 - RNGB

0100 - RNG4

15-12

MDVID

Message Digest Hardware Accelerator Version ID.

0000 - Low-power MDHA, with SHA-1, SHA-256, SHA 224, MD5 and HMAC

0001 - Low-power MDHA, with SHA-1, SHA-256, SHA 224, SHA-512, SHA-512/224, SHA-512/256,
SHA-384, MD5 and HMAC

0010 - Medium-performance MDHA, with SHA-1, SHA-256, SHA 224, SHA-512, SHA-512/224,
SHA-512/256, SHA-384, MD5, HMAC & SMAC

0011 - High-performance MDHA, with SHA-1, SHA-256, SHA 224, SHA-512, SHA-512/224,
SHA-512/256, SHA-384, MD5, HMAC & SMAC

11-8

ARC4VID

Alleged RC4 Hardware Accelerator Version ID.

0000 - Low-power ARC4

0001 - High-performance ARC4

7-4 DES Accelerator Version ID.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 873
Confidential Proprietary

Field Description

DESVID

3-0

AESVID

AES Accelerator Version ID.

0011 - Low-power AESA, implementing ECB, CBC, CBC-CS2, CFB128, OFB, CTR, CCM, CMAC,
XCBC-MAC, and GCM modes

0100 - High-performance AESA, implementing ECB, CBC, CBC-CS2, CFB128, OFB, CTR, CCM, CMAC,
XCBC-MAC, CBCXCBC, CTRXCBC, XTS, and GCM modes

10.13.126 CHA Number Register, most-significant half (CHAN
UM_MS)

The CHA Number register can be used by software to determine how many copies of
each type of cryptographic hardware accelerator are implemented in this version of
CAAM. Since this register holds more than 32 bits, it is accessed as two 32-bit registers.
Because this register may be of interest to multiple software entities, this register is
aliased to addresses in multiple 4kbyte address spaces.

10.13.126.1 Offset

Register Offset

CHANUM_MS FF0h (alias)

CHANUM_MS 1FF0h (alias)

CHANUM_MS 2FF0h (alias)

CHANUM_MS 3FF0h (alias)

CHANUM_MS 6FF0h (alias)

CHANUM_MS 8FF0h (alias)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

874 NXP Semiconductors
Confidential Proprietary

10.13.126.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JRNUM DECONUM
Reserved

W

Reset 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ZANUM ZENUM SNW9NUM CRCNUM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.126.3 Fields

Field Description

31-28

JRNUM

The number of copies of the Job Ring that are implemented in this version of CAAM

27-24

DECONUM

The number of copies of the DECO that are implemented in this version of CAAM

23-16

—

Reserved

15-12

ZANUM

The number of copies of ZUCA that are implemented in this version of CAAM

11-8

ZENUM

The number of copies of ZUCE that are implemented in this version of CAAM

7-4

SNW9NUM

The number of copies of the SNOW-f9 module that are implemented in this version of CAAM

3-0

CRCNUM

The number of copies of the CRC module that are implemented in this version of CAAM

10.13.127 CHA Number Register, least-significant half (CHAN
UM_LS)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 875
Confidential Proprietary

The CHA Number register can be used by software to determine how many copies of
each type of cryptographic hardware accelerator are implemented in this version of
CAAM. Since this register holds more than 32 bits, it is accessed as two 32-bit registers.
Because this register may be of interest to multiple software entities, this register is
aliased to addresses in multiple 4kbyte address spaces.

10.13.127.1 Offset

Register Offset

CHANUM_LS FF4h (alias)

CHANUM_LS 1FF4h (alias)

CHANUM_LS 2FF4h (alias)

CHANUM_LS 3FF4h (alias)

CHANUM_LS 6FF4h (alias)

CHANUM_LS 8FF4h (alias)

10.13.127.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKNUM KASNUM SNW8NUM RNGNUM

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MDNUM ARC4NUM DESNUM AESNUM

W

Reset 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

10.13.127.3 Fields

Field Description

31-28

PKNUM

The number of copies of the Public Key module that are implemented in this version of CAAM

27-24

KASNUM

The number of copies of the Kasumi module that are implemented in this version of CAAM

23-20 The number of copies of the SNOW-f8 module that are implemented in this version of CAAM

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

876 NXP Semiconductors
Confidential Proprietary

Field Description

SNW8NUM

19-16

RNGNUM

The number of copies of the Random Number Generator that are implemented in this version of CAAM.

15-12

MDNUM

The number of copies of the MDHA (Hashing module) that are implemented in this version of CAAM.

11-8

ARC4NUM

The number of copies of the ARC4 module that are implemented in this version of CAAM.

7-4

DESNUM

The number of copies of the DES module that are implemented in this version of CAAM.

3-0

AESNUM

The number of copies of the AES module that are implemented in this version of CAAM.

10.13.128 Input Ring Base Address Register for Job Ring a
(IRBAR_JR0 - IRBAR_JR2)

The Input Ring Base Address register holds the physical address of the input ring in
memory (see Address pointers. Because there are 3 Job Rings, there are 3 copies of this
register.

When the Job Ring is allocated to TrustZone SecureWorld, IRBAR may only be written
with a transaction with ns=0. If virtualization is enabled, the Job Ring must be started in
order to write the register. See Section Job Ring Registers. The IRBAR register can be
written only when there are no jobs in the input ring or when the Job Ring is halted, else
an input ring base address or size invalid write error will result and a Job Ring reset or a
power on reset will be required. Writing this register resets the Input Ring Read Index
register, therefore following a write to the IRBAR the new head of the queue within the
input ring will be located at the value just written to the IRBAR. Note that if the input
ring was not empty, software must relocate the queue entries and write the number of
these relocated entries to the Input Ring Jobs Added Register or these jobs will be lost.
The address written to the Input Ring Base Address register must be 4-byte aligned, else
an error will result and the Job Ring will not process jobs until a valid address is written
and the error is cleared. More information on job management can be found in Job Ring
interface.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 877
Confidential Proprietary

10.13.128.1 Offset

Register Offset Description

IRBAR_JR0 1000h Used by JR0. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).Accessible only when using DID specified in
JR0DID register

IRBAR_JR1 2000h Used by JR1. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).Accessible only when using DID specified in
JR1DID register

IRBAR_JR2 3000h Used by JR2. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).Accessible only when using DID specified in
JR2DID register

10.13.128.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IRBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IRBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

878 NXP Semiconductors
Confidential Proprietary

10.13.128.3 Fields

Field Description

63-32

—

Reserved

31-0

IRBA

Input Ring Base Address.

10.13.129 Input Ring Size Register for Job Ring a (IRSR_JR0 -
IRSR_JR2)

The Input Ring Size register holds the current size of the input ring, measured in number
of entries. Since each entry consists of one address pointer, an entry is a single 32-bit
word. Because there are 3 Job Rings, there are 3 copies of this register.

When the Job Ring is allocated to TrustZone SecureWorld, IRSR may only be written
with a transaction with ns=0. If virtualization is enabled, the Job Ring must be started in
order to write the register. See Section Job Ring Registers. This register can be written
only when there are no jobs in the input ring or when the Job Ring is halted, else an input
ring base address or size invalid write error (type 5h) will result and a Job Ring reset or a
power on reset will be required. Writing this register resets the Input Ring Read Index
register, therefore following a write to the IRSR the new head of the queue within the
input ring will be located at the value stored in the IRBAR. Note that if the input ring was
not empty, software must relocate the queue entries and write the number of these
relocated entries to the Input Ring Jobs Added Register or these jobs will be lost.

The size of the pointer entries in the ring is one word. See Address pointers for a
discussion of address pointers. More information on job management can be found in Job
Ring interface.

10.13.129.1 Offset

Register Offset Description

IRSR_JR0 100Ch (used by JR 0) Accessible only when using DID
specified in JR0DID register

IRSR_JR1 200Ch (used by JR 1) Accessible only when using DID
specified in JR1DID register

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 879
Confidential Proprietary

Register Offset Description

IRSR_JR2 300Ch (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.129.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IRS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.129.3 Fields

Field Description

31-10

—

Reserved

9-0

IRS

Input Ring Size. (measured in number of entries)

10.13.130 Input Ring Slots Available Register for Job Ring a
(IRSAR_JR0 - IRSAR_JR2)

The Input Ring Slots Available Register gives the number of empty slots for jobs in the
input ring. Since each slot consists of one address pointer, a job slot is a single 32-bit
word. Because there are 3 Job Rings, there are 3 copies of this register. This tells
software how many more jobs it can submit to CAAM before the input ring would be
full. CAAM increments this register when it removes a job from the input ring for
processing. CAAM decrements this register by the value in the Input Ring Jobs Added
Register (see Section Input Ring Jobs Added Register for Job Ringa (IRJAR_JR0 - IRJA
R_JR2)) when that register is updated. The value of the Input Ring Slots Available

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

880 NXP Semiconductors
Confidential Proprietary

Register will never be larger than the Input Ring Size Register (see Section Input Ring
Size Register for Job Ring a (IRSR_JR0 - IRSR_JR2)). More information on job
management can be found in Job Ring interface.

The Job Ring must be started in order to write the IRSAR register. This register is read-
only when virtualization is disabled. When the Job Ring is allocated to TrustZone
SecureWorld, IRSAR may only be written with a transaction with ns=0. See Section Job
Ring Registers.

10.13.130.1 Offset

Register Offset Description

IRSAR_JR0 1014h (used by JR 0) Accessible only when using DID
specified in JR0DID register

IRSAR_JR1 2014h (used by JR 1) Accessible only when using DID
specified in JR1DID register

IRSAR_JR2 3014h (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.130.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IRSA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.130.3 Fields

Field Description

31-10

—

Reserved

9-0

IRSA

Input Ring Slots Available. (measured in number of available job slots)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 881
Confidential Proprietary

10.13.131 Input Ring Jobs Added Register for Job Ringa (IRJAR_
JR0 - IRJAR_JR2)

The Input Ring Jobs Added Register tells CAAM how many new jobs were added to the
input ring. Because there are 3 Job Rings, there are 3 copies of this register. Software
must write into this register the number of Job Descriptor addresses that software has
added to the ring. When the Input Ring Jobs Added Register is written, CAAM adds that
new value to its count of the jobs available for processing and decrements the Input Ring
Slots Available Register. The value in the Input Ring Jobs Added Register must not be
larger than the value of the Input Ring Slots Available Register (see Section Input Ring
Slots Available Register for Job Ring a (IRSAR_JR0 - IRSAR_JR2)). If more jobs are
added than the value in the Input Ring Slots Available Register an "Added too many
jobs" error (type 9h) will occur. This is a fatal error and will require a Job Ring reset or
power on reset to correct. More information on job management can be found in Job Ring
interface.

When the Job Ring is allocated to TrustZone SecureWorld, IRJAR may only be written
with a transaction with ns=0. If virtualization is enabled, the Job Ring must be started in
order to write the register. See Section Job Ring Registers.

10.13.131.1 Offset

Register Offset Description

IRJAR_JR0 101Ch (used by JR 0) Accessible only when using DID
specified in JR0DID register

IRJAR_JR1 201Ch (used by JR 1) Accessible only when using DID
specified in JR1DID register

IRJAR_JR2 301Ch (used by JR 2) Accessible only when using DID
specified in JR2DID register

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

882 NXP Semiconductors
Confidential Proprietary

10.13.131.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IRJA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.131.3 Fields

Field Description

31-10

—

Reserved

9-0

IRJA

Input Ring Jobs Added. (measured in number of entries)

10.13.132 Output Ring Base Address Register for Job Ring a
(ORBAR_JR0 - ORBAR_JR2)

The Output Ring Base Address Register holds the address of the output ring in memory
(see Job Ring interface). Because there are 3 Job Rings, there are 3 copies of this register.
When the Job Ring is allocated to TrustZone SecureWorld, ORBAR may only be written
with a transaction with ns=0. If virtualization is enabled, the Job Ring must be started in
order to write the register. See Section Job Ring Registers. This register can be written
only when the Job Ring is halted or when there are no jobs from this ring in progress
within CAAM or in the input ring or output ring, else an output ring base address or size
invalid write error will result and a Job Ring reset, software CAAM reset or a power on
reset will be required.

Writing this register resets the Output Ring Write Index register, therefore following a
write to the ORBAR the new tail of the queue within the output ring will be located at the
value just written to the ORBAR. If the JR was halted before writing to the ORBAR, all

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 883
Confidential Proprietary

jobs from that Job Ring will either still be in the input ring or will be completed and
written to the output ring. This gives software a chance to process all completed jobs
from the selected JR, and to query to see how many jobs are still in the input ring before
writing the new output ring base address. This would allow for a clean start with a new
empty output ring. Note that if the output ring was not empty at the time the ORBAR was
written, those old results entries will not be in the new output ring. The address written to
the Output Ring Base Address register must be 4-byte aligned, else an error will result
and the Job Ring will not process jobs until a valid address is written and the error is
cleared. More information on job management can be found in Job Ring interface.

10.13.132.1 Offset

Register Offset Description

ORBAR_JR0 1020h Used by JR0. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).Accessible only when using DID specified in
JR0DID register

ORBAR_JR1 2020h Used by JR1. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).Accessible only when using DID specified in
JR1DID register

ORBAR_JR2 3020h Used by JR2. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).Accessible only when using DID specified in
JR2DID register

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

884 NXP Semiconductors
Confidential Proprietary

10.13.132.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ORBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ORBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.132.3 Fields

Field Description

63-32

—

Reserved

31-0

ORBA

Output Ring Base Address.

10.13.133 Output Ring Size Register for Job Ring a (ORSR_JR0 -
ORSR_JR2)

The Output Ring Size Register holds the current size of the output ring, measured in
number of entries. Each entry in the output ring consists of one descriptor address pointer
plus one 32-bit results status word, plus an optional word indicating the length of the
SEQ sequence, if any, associated with this job (see INCL_SEQ_OUT field in the section

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 885
Confidential Proprietary

Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_M
S - JRCFGR_JR2_MS)). See Address pointers for a discussion of address pointers.
Because there are 3 Job Rings, there are 3 copies of this register. If virtualization is
enabled, the Job Ring must be started in order to write the register. See Section Job Ring
Registers. This register can be written only when the Job Ring is halted or when there are
no jobs from this ring in the input ring or output ring or in progress within CAAM, else
an output ring base address or size invalid write error will result and a Job Ring reset,
software CAAM reset or a power on reset will be required.

Writing this register resets the Output Ring Write Index register, therefore following a
write to the ORSR the new tail of the queue within the output ring will be located at the
value stored in the ORBAR. If the JR was halted before writing to the ORBAR, all jobs
from that Job Ring will either still be in the input ring or will be completed and written to
the output ring. This gives software a chance to process all completed jobs from the
selected JR, and to query to see how many jobs are still in the input ring before writing
the new output ring base address. This would allow for a clean start with a new empty
output ring. Note that if the output ring was not empty at the time the ORSR was written,
those old results entries will not be in the new output ring. If the output ring is not empty
when the ORSR is written, software may need to process or relocate those entries to
avoid losing job results.

More information on job management can be found in Job Ring interface.

10.13.133.1 Offset

Register Offset Description

ORSR_JR0 102Ch (used by JR 0) Accessible only when using DID
specified in JR0DID register

ORSR_JR1 202Ch (used by JR 1) Accessible only when using DID
specified in JR1DID register

ORSR_JR2 302Ch (used by JR 2) Accessible only when using DID
specified in JR2DID register

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

886 NXP Semiconductors
Confidential Proprietary

10.13.133.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ORS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.133.3 Fields

Field Description

31-10

—

Reserved

9-0

ORS

Output Ring Size. (measured in number of entries)

10.13.134 Output Ring Jobs Removed Register for Job Ring a
(ORJRR_JR0 - ORJRR_JR2)

The Output Ring Jobs Removed Register tells CAAM how many jobs were removed
from the output ring for processing by software. Because there are 3 Job Rings, there are
3 copies of this register. Software must write into this register the number of entries that
software has removed from the ring. When the Output Ring Jobs Removed Register is
written, CAAM will subtract this amount from the Output Ring Slots Full Register. The
value of the Output Ring Jobs Removed Register must not be larger than the value in the
Output Ring Slots Full Register. If a value larger than the Output Ring Slots Full Register
is written to the ORJRR, a "removed too many jobs" error will occur and a Job Ring
reset, software CAAM reset or a power on reset will be required.

When the Job Ring is allocated to TrustZone SecureWorld, ORJRR may only be written
with a transaction with ns=0. If virtualization is enabled, the Job Ring must be started in
order to write the register. See Section Job Ring Registers.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 887
Confidential Proprietary

More information on job management can be found in Job Ring interface.

10.13.134.1 Offset

Register Offset Description

ORJRR_JR0 1034h (used by JR 0) Accessible only when using DID
specified in JR0DID register

ORJRR_JR1 2034h (used by JR 1) Accessible only when using DID
specified in JR1DID register

ORJRR_JR2 3034h (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.134.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ORJR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.134.3 Fields

Field Description

31-10

—

Reserved

9-0

ORJR

Output Ring Jobs Removed. (measured in number of entries)

10.13.135 Output Ring Slots Full Register for Job Ring a (ORSF
R_JR0 - ORSFR_JR2)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

888 NXP Semiconductors
Confidential Proprietary

The Output Ring Slots Full Register tells the software how many completed jobs CAAM
has placed in the output ring. Because there are 3 Job Rings, there are 3 copies of this
register. CAAM will increment this register as it completes a Descriptor and adds it to the
output ring. CAAM will decrement this register when software writes a new value to the
Output Ring Jobs Removed Register (see Section Output Ring Jobs Removed Register
for Job Ring a (ORJRR_JR0 - ORJRR_JR2)). The value in the Output Ring Slots Full
Register cannot be larger than the value in the Output Ring Size Register (see Section
Output Ring Size Register for Job Ring a (ORSR_JR0 - ORSR_JR2)).

The Job Ring must be started in order to write the IRSAR register. This register is read-
only when virtualization is disabled. When the Job Ring is allocated to TrustZone
SecureWorld, ORSFR may only be written with a transaction with ns=0. See Section Job
Ring Registers.

More information on job management can be found in Job Ring interface.

10.13.135.1 Offset

Register Offset Description

ORSFR_JR0 103Ch (used by JR 0) Accessible only when using DID
specified in JR0DID register

ORSFR_JR1 203Ch (used by JR 1) Accessible only when using DID
specified in JR1DID register

ORSFR_JR2 303Ch (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.135.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ORSF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 889
Confidential Proprietary

10.13.135.3 Fields

Field Description

31-10

—

Reserved

9-0

ORSF

Output Ring Slots Full. (measured in number of entries)

10.13.136 Job Ring Output Status Register for Job Ring a (JRST
AR_JR0 - JRSTAR_JR2)

This register is used to show the status of the last job that was completed. Because there
are 3 Job Rings, there are 3 copies of this register. Although it is possible to read the job
completion status directly from this register, in normal circumstances this is not useful
because the status value will quickly be overwritten when the next job completes. Bits
0-31 of this register are written into the output ring after the completion of a job, and
software should read the status from there. More information on Job Ring management
can be found in Section Job Ring interface. Only one type of error will be valid at a time.
The status code and various other information related to the status are given in the SSED
field.

10.13.136.1 Offset

Register Offset Description

JRSTAR_JR0 1044h (used by JR 0) Accessible only when using DID
specified in JR0DID register

JRSTAR_JR1 2044h (used by JR 1) Accessible only when using DID
specified in JR1DID register

JRSTAR_JR2 3044h (used by JR 2) Accessible only when using DID
specified in JR2DID register

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

890 NXP Semiconductors
Confidential Proprietary

10.13.136.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SSRC SSED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SSED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.136.3 Fields

Field Description

31-28

SSRC

Status source. These bits define which source is reporting the status.

All other values - reserved

0000 - No Status Source (No Error or Status Reported)

0001 - Reserved

0010 - CCB Status Source (CCB Error Reported)

0011 - Jump Halt User Status Source (User-Provided Status Reported)

0100 - DECO Status Source (DECO Error Reported)

0101 - Reserved

0110 - Job Ring Status Source (Job Ring Error Reported)

0111 - Jump Halt Condition Codes (Condition Code Status Reported)

27-0

SSED

Source-specific error details. The format of this field depends on the status source specified in the SSRC
field. The interpretation of the SSED field for all status sources is shown in Job termination status/error
codes.

10.13.137 Job Ring Interrupt Status Register for Job Ring a
(JRINTR_JR0 - JRINTR_JR2)

The Job Ring Interrupt Status Register indicates whether CAAM has asserted an interrupt
for a particular Job Ring, whether software has requested that the Job Ring be halted,
whether the Job Ring is now halted, and whether there is an error in this Job Ring. If
there was an error, the type of error is indicated. The error bit in the JRINT Register

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 891
Confidential Proprietary

doesn't assert when there is a non-zero job completion status. It only asserts for the types
of errors reported in the ERR_TYPE field in this register. Because there are 3 Job Rings,
there are 3 copies of this register.

10.13.137.1 Offset

Register Offset Description

JRINTR_JR0 104Ch (used by JR 0) Accessible only when using DID
specified in JR0DID register

JRINTR_JR1 204Ch (used by JR 1) Accessible only when using DID
specified in JR1DID register

JRINTR_JR2 304Ch (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.137.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

E
R

R
_O

R
W

I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

E
R

R
_T

Y
P

E

R
es

er
ve

d

E
X

IT
_F

A
IL

E
N

T
E

R
_F

A
I

L

H
A

LT

JR E JR I
W

W
1C

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.137.3 Fields

Field Description

31-30

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

892 NXP Semiconductors
Confidential Proprietary

Field Description

29-16

ERR_ORWI

Output ring write index with error. Set only when ERR_TYPE=0001. This indicates the location in the
output ring that was being written when the error occurred. It is the offset in bytes from the Output Ring
Base Address (see Section Output Ring Base Address Register for Job Ring a (ORBAR_JR0 - ORBAR_
JR2)).

15-13

—

Reserved

12-8

ERR_TYPE

Error type. Set only when JRE bit is also set. Indicates the type of error when it cannot be reported in the
Job Ring Status Register (see Section Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 -
JRSTAR_JR2).)

00001 - Error writing status to Output Ring

00011 - Bad input ring base address (not on a 4-byte boundary).

00100 - Bad output ring base address (not on a 4-byte boundary).

00101 - Invalid write to Input Ring Base Address Register or Input Ring Size Register. Can be written
when there are no jobs in the input ring or when the Job Ring is halted. 1

00110 - Invalid write to Output Ring Base Address Register or Output Ring Size Register. Can be written
when there are no jobs in the output ring and no jobs from this queue are already processing in CAAM (in
the holding tanks or DECOs), or when the Job Ring is halted.1

00111 - Job Ring reset released before Job Ring is halted.1

01000 - Removed too many jobs (ORJRR larger than ORSFR).1

01001 - Added too many jobs (IRJAR larger than IRSAR).1

01010 - Writing ORSF > ORS 2

01011 - Writing IRSA > IRS 2

01100 - Writing ORWI > ORS in bytes 2

01101 - Writing IRRI > IRS in bytes 2

01110 - Writing IRSA when ring is active 2

01111 - Writing IRRI when ring is active 2

10000 - Writing ORSF when ring is active 2

10001 - Writing ORWI when ring is active 2

7-6

—

Reserved

5

EXIT_FAIL

Exit Fail Mode. If the FAIL_MODE bit is set in the Job Ring Configuration register, the interrupt will also
assert. Writing a 1 to the EXIT_FAIL bit will clear it.

4

ENTER_FAIL

Enter Fail Mode. If the FAIL_MODE bit is set in the Job Ring Configuration register, the interrupt will also
assert. Writing a 1 to the ENTER_FAIL bit will clear it.

3-2

HALT

Halt the Job Ring.

If reading HALT returns 01:

Software has requested that CAAM flush the jobs in this Job Ring and halt processing jobs in this Job
Ring (by writing to the RESET bit in the Job Ring Command Register (JRCR_JRn[RESET]).

If reading HALT returns 10:

CAAM has flushed all jobs from this Job Ring and has halted processing jobs in this Job Ring. If there is
not enough room in the output ring for all the flushed jobs, HALT will continue to return 01 until software
has removed enough jobs so that all the flushed jobs can be written to the output ring.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 893
Confidential Proprietary

Field Description

Software writes a "1" to the MSB of HALT (bit 3) to clear the HALT field and resume processing jobs in
this Job Ring. An error will occur if 1 is written to the MSB of the HALT field before the HALT field
indicates that CAAM has flushed all jobs from this Job Ring.

If CAAM is in the Fail Mode and the FAIL MODE bit is not set in the Job Ring Configuration Register
(JRCFGR_JRn_MS[FAIL_MODE]), a Job Ring halt will be initiated and the HALT status will return 01.
When the halt process is complete, the HALT status will be 10. The HALT status cannot be cleared until
CAAM transitions out of FAIL MODE. If the JRCFGR_JRn_MS[FAIL_MODE] bit is set, the Job Ring is not
halted in FAIL MODE.

1

JRE

Job Ring Error. A Job Ring error occurred. The error code is indicated in the ERR_TYPE field in this
register. Write a 1 to this bit to clear the error indication.

0

JRI

Job Ring Interrupt. CAAM has asserted the interrupt request signal for this Job Ring. Write a 1 to this bit
to clear the interrupt request.

1. These are fatal and will likely result in not being able to get all jobs out into the output ring for processing by software.
Resetting the job ring will almost certainly be necessary.

2. In these error cases the write is ignored, the interrupt is asserted (unless masked) and the error bit and error_type fields
are set in the Job Ring Interrupt Status Register.

10.13.138 Job Ring Configuration Register for Job Ring a, most-
significant half (JRCFGR_JR0_MS - JRCFGR_JR2_MS)

Software uses the Job Ring Configuration Register to configure the interrupt handling,
error handling, and data endianness specific to a Job Ring. Because there are 3 Job Rings,
there are 3 copies of this register. Since there are more than 32 bits in the JRCFG
Register, it is accessed as two 32-bit words.

Note that many of the bits of this register are used to configure how data is rearranged
when it is read from or written to memory. This is intended primarily to facilitate data
handling in SoCs in which different processors use different data endianness. Because
data may have to be rearranged differently depending upon the type of data, this register
provides separate configuration bits for "control data" and for "message data". These are
defined as shown below:

Table 10-245. Control Data vs. Message Data

Control Data Message Data

Control data read by CAAM DMA:

• Descriptors or other data loaded into the Descriptor
Buffer

• Job Ring input ring entries
• Address pointers
• Scatter/Gather Tables
• Data loaded into the Class 1 or Class 2 Key Size

registers

Message data read by CAAM DMA:

• Data read into the Input Data FIFO
• Data loaded into the Output Data FIFO
• Data loaded into the Class 1 or Class 2 Context

registers
• Data loaded into the Class 1 or Class 2 Key registers
• Data loaded into the Input or Output Data FIFO Nibble

Shift registers
• Data put into the Auxiliary Data FIFO

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

894 NXP Semiconductors
Confidential Proprietary

Table 10-245. Control Data vs. Message Data (continued)

Control Data Message Data

• Data loaded into the Class 1 or Class 2 Data Size
registers

• Data loaded into the Class 1 or Class 2 ICV Size
registers

• Data loaded into the DECO DID register
• Data loaded into the CHA Control register
• Data loaded into the DECO Control register
• Data loaded into the IRQ Control register
• Data loaded into the DECO Protocol Override register
• Data loaded into the Clear Written register
• Data loaded into the Math registers
• Data loaded into the AAD Size register
• Data loaded into the Class 1 IV Size register
• Data loaded into the Alternate Data Size Class 1

register
• Data loaded into the PKHA Size registers
• Data loaded into the iNformation FIFO (NFIFO)

Control data written by CAAM DMA:

• Descriptors or other data stored from the Descriptor
Buffer

• Job Ring output ring entries
• Address pointers
• Scatter/Gather Tables
• Data stored from the Class 1 or Class 2 Mode registers
• Data stored from the DECO Job Queue Control register
• Data stored from the Class 1 or Class 2 Key Size

registers
• Data stored from the DECO Descriptor Address

Register
• Data stored from the Class 1 or Class 2 Data Size

registers
• Data stored from the DECO Status register
• Data stored from the Class 1 or Class 2 ICV Size

registers
• Data stored from the CHA Control register
• Data stored from the IRQ Control register
• Data stored from the Clear Written register
• Data stored from the Math registers
• Data stored from the CCB Status register
• Data stored from the AAD Size register
• Data stored from the Class 1 IV Size register
• Data stored from the PKHA Size registers

Message data written by CAAM DMA:

• Data output via the Output Data FIFO
• Data stored from the Class 1 or Class 2 Context

registers

10.13.138.1 Offset

Register Offset Description

JRCFGR_JR0_MS 1050h (used by JR 0) Accessible only when using DID
specified in JR0DID register

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 895
Confidential Proprietary

Register Offset Description

JRCFGR_JR1_MS 2050h (used by JR 1) Accessible only when using DID
specified in JR1DID register

JRCFGR_JR2_MS 3050h (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.138.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

IN
C

L_
S

E
Q

_O
U

T

F
A

IL
_M

O
D

E

R
es

er
ve

d

D
W

S
O

P
E

O D
M

B
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

C
H

W
S

O

C
B

S
O

R
es

er
ve

d

M
H

W
S

O

M
B

S
O

R
es

er
ve

d

C
H

W
S

I

C
B

S
I

R
es

er
ve

d

M
H

W
S

I

M
B

S
I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.138.3 Fields

Field Description

31

—

Reserved

30

INCL_SEQ_OU
T

Include Sequence Out Length. If this bit is set to 1, entries in the job ring's output ring will include a 32-bit
word indicating the number of bytes written out via SEQ STORE and SEQ FIFO STORE commands in
this job. If this bit is set to 0, the SEQ OUT Length is omitted from the entries. The setting of this bit can
be changed only during ring configuration, when no jobs are running in CAAM, else an error will be
flagged.

29

FAIL_MODE

Fail mode control. If this bit is set to 1 and CAAM indicates a FAIL MODE, the Job Ring will assert its
interrupt and set the ENTER_FAIL bit in the Job Ring Interrupt Status register. The Job Ring will not halt,
but will continue to process any available jobs. DECO will return these jobs with a FAIL MODE error. If
CAAM transitions out of FAIL MODE, the Job Ring will assert its interrupt and set the EXIT_FAIL bit in the
Job Ring Interrupt Status register.

If this bit is set to 0 and CAAM indicates a FAIL MODE, the Job Ring will set the ENTER_FAIL bit in the
Job Ring Interrupt Status register. The Job Ring will halt until CAAM transitions out of FAIL MODE. When
the Job Ring has halted, it will assert its interrupt. If CAAM transitions out of FAIL MODE, the Job Ring
will set the EXIT_FAIL bit in the Job Ring Interrupt Status register.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

896 NXP Semiconductors
Confidential Proprietary

Field Description

28-19

—

Reserved

18

DWSO

Double Word Swap Override. Setting DWSO=1 complements the swap control determined by
MCFGR[DWT] and JRCFGR_JR[PEO]

17

PEO

Platform Endian Override - The bit is XORed with the PLEND bit in the CaCSTA Register and the other
"swap" bits in the Job Ring Configuration Register to determine the AXI Master's view of memory
endianness when executing Job Descriptors from this Job Ring. Note that the swap bits can be used in
combination to achieve multiple swaps simultaneously.

16

DMBS

Descriptor Message Data Byte Swap (this applies only to internal message data transfers to/from DECO
Descriptor Buffers). An example is shown below:

Data as it is read from the source 0123456789abcdefh

Data as it is written to the destination when DBMS = 0 0123456789abcdefh

Data as it is written to the destination when DBMS = 1 23016745ab89efcdh

15-14

—

Reserved

13

CHWSO

To assist with mixed Endianness platforms, this bit configures a halfword swap of control data written by
CAAM DMA. An example is shown below:

Data as interpreted within CAAM 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CHWSO =
0

0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CHWSO =
1

45670123cdef89abh

12

CBSO

To assist with mixed Endianness platforms, this bit configures a byte swap of control data written by
CAAM DMA. An example is shown below:

Data as interpreted within CAAM 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CBSO = 0 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CBSO = 1 23016745ab89efcdh

11-10

—

Reserved

9

MHWSO

To assist with mixed Endianness platforms, this bit configures a halfword swap of message data written
by CAAM DMA. An example is shown below:

Data as interpreted within CAAM 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MHWSO
= 0

0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MHWSO
= 1

45670123cdef89abh

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 897
Confidential Proprietary

Field Description

8

MBSO

To assist with mixed Endianness platforms, this bit configures a byte swap of message data written by
CAAM DMA. An example is shown below:

Data as interpreted within CAAM 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MBSO = 0 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MBSO = 1 23016745ab89efcdh

7-6

—

Reserved

5

CHWSI

To assist with mixed Endianness platforms, this bit configures a halfword swap of control data read by
CAAM DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by CAAM when PEO XOR PLEND XOR CHWSI
= 0

0123456789abcdefh

Data as interpreted by CAAM when PEO XOR PLEND XOR CHWSI
= 1

45670123cdef89abh

4

CBSI

To assist with mixed Endianness platforms, this bit configures a byte swap of control data read by CAAM
DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by CAAM when PEO XOR PLEND XOR CBSI =
0

0123456789abcdefh

Data as interpreted by CAAM when PEO XOR PLEND XOR CBSI =
1

23016745ab89efcdh

3-2

—

Reserved

1

MHWSI

To assist with mixed Endianness platforms, this bit configures a halfword swap of message data read by
CAAM DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by CAAM when PEO XOR PLEND XOR
MHWSI = 0

0123456789abcdefh

Data as interpreted by CAAM when PEO XOR PLEND XOR
MHWSI = 1

45670123cdef89abh

0

MBSI

To assist with mixed Endianness platforms, this bit configures a byte swap of message data read by
CAAM DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by CAAM when PEO XOR PLEND XOR MBSI =
0

01234567ababcdefh

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

898 NXP Semiconductors
Confidential Proprietary

Field Description

Data as stored in memory 0123456789abcdefh

Data as interpreted by CAAM when PEO XOR PLEND XOR MBSI =
1

23016745ab89efcdh

10.13.139 Job Ring Configuration Register for Job Ring a, least-
significant half (JRCFGR_JR0_LS - JRCFGR_JR2_LS)

See description of JRCFGR_JR_MS

10.13.139.1 Offset

Register Offset Description

JRCFGR_JR0_LS 1054h (used by JR 0) Accessible only when using DID
specified in JR0DID register

JRCFGR_JR1_LS 2054h (used by JR 1) Accessible only when using DID
specified in JR1DID register

JRCFGR_JR2_LS 3054h (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.139.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ICTT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

IC
D

C
T

R
es

er
ve

d

IC
E

N

IM
S

K

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 899
Confidential Proprietary

10.13.139.3 Fields

Field Description

31-16

ICTT

Interrupt Coalescing Timer Threshold. While interrupt coalescing is enabled (ICEN=1), this value
determines the maximum amount of time after processing a Descriptor before raising an interrupt. If
Descriptors have been processed but the Descriptor count threshold has not been met, an interrupt is
raised when the interrupt coalescing timer expires. The interrupt coalescing timer is stopped when the
Output Ring Slots Full Register is 0. The timer is reset and stopped once an interrupt has been asserted
or whenever the Output Ring Jobs Removed Register is written by software. Counting resumes from zero
after a reset if the counter is still enabled. The timer begins counting once the next Descriptor is moved to
the output ring. Note that it is possible for one or more Descriptors to be moved to the output ring after
software has read the Output Ring Slots Full Register and before software has written the Output Ring
Jobs Removed Register. This would cause the timer to be reset to 0, but still counting. In this situation an
interrupt would be raised when the timer expires at the full threshold value (unless the interrupt was
raised earlier due to the Descriptor Count Threshold). The threshold value is represented in units equal to
64 CAAM interface clocks. Valid values for this field are from 1 to 65535. A value of 0 results in behavior
identical to that when interrupt coalescing is disabled.

15-8

ICDCT

Interrupt Coalescing Descriptor Count Threshold. While interrupt coalescing is enabled (ICEN=1), this
value determines how many Descriptors are completed before raising an interrupt. Valid values for this
field are from 0 to 255. Note that a value of 1 functionally defeats the advantages of interrupt coalescing
since the threshold value is reached each time that a Job Descriptor is completed. A value of 0 is treated
in the same manner as a value of 1. The value of ICDCT is ignored if ICEN=0.

7-2

—

Reserved

1

ICEN

Interrupt Coalescing Enable.

0 - Interrupt coalescing is disabled. If the IMSK bit is cleared, an interrupt is asserted whenever a job is
written to the output ring. ICDCT is ignored. Note that if software removes one or more jobs and clears
the interrupt but the output rings slots full is still greater than 0 (ORSF > 0), then the interrupt will clear but
reassert on the next clock cycle.

1 - Interrupt coalescing is enabled. If the IMSK bit is cleared, an interrupt is asserted whenever the
threshold number of frames is reached (ICDCT) or when the threshold timer expires (ICTT). Note that if
software removes one or more jobs and clears the interrupt but the interrupt coalescing threshold is still
met (ORSF >= ICDCT), then the interrupt will clear but reassert on the next clock cycle.

0

IMSK

Interrupt Mask. Mask the interrupt that is associated with the particular processor.

0 - Interrupt enabled.

1 - Interrupt masked.

10.13.140 Input Ring Read Index Register for Job Ring a (IRRIR_
JR0 - IRRIR_JR2)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

900 NXP Semiconductors
Confidential Proprietary

The Input Ring Read Index Register points to the head of the queue within the Input
Ring. At this address there will be a pointer to the next Job Descriptor that CAAM will
fetch from this Job Ring. After CAAM reads a Job Descriptor from the Job Ring CAAM
increments this register by 4. The index will be added to the Input Ring Base Address to
get the physical address. Because there are 3 Job Rings, there are 3 copies of this register.

The Job Ring must be started in order to write the IRRIR register. This register is read-
only when virtualization is disabled. When the Job Ring is allocated to TrustZone
SecureWorld, IRRIR may only be written with a transaction with ns=0.

More information on job management and job ring registers can be found in chapters Job
Ring interface and Job Ring Registers.

10.13.140.1 Offset

Register Offset Description

IRRIR_JR0 105Ch (used by JR 0) Accessible only when using DID
specified in JR0DID register

IRRIR_JR1 205Ch (used by JR 1) Accessible only when using DID
specified in JR1DID register

IRRIR_JR2 305Ch (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.140.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IRRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.140.3 Fields

Field Description

31-13 Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 901
Confidential Proprietary

Field Description

—

12-0

IRRI

Input Ring Read Index.

10.13.141 Output Ring Write Index Register for Job Ring a (ORWI
R_JR0 - ORWIR_JR2)

The Output Ring Write Index Register points to the tail of the queue within the output
ring. Because there are 3 Job Rings, there are 3 copies of this register. The Output Ring
Write Index Register is added to the Output Ring Base Address Register to get the
physical address. At this address CAAM writes a pointer to the last Descriptor that
CAAM has processed. At the next entry in the ring CAAM writes the completion status
of that Descriptor. Every time that a Descriptor has been processed CAAM increments
the value in the Output Ring Write Index Register by the size of the pointer plus the size
of the 4-byte completion status word plus an additional 4 bytes if the INCL_SEQ_OUT
bit in the JRCRGR is 1. So if INCL_SEQ_OUT=0 the increment will be 8. If
INCL_SEQ_OUT=1, the increment will be 12. For a discussion of address pointers see
Address pointers.

The Job Ring must be started in order to write the ORWIR register. This register is read-
only when virtualization is disabled. When the Job Ring is allocated to TrustZone
SecureWorld, ORWIR may only be written with a transaction with ns=0.

More information on job management and job ring registers can be found in chapters Job
Ring interface and Job Ring Registers.

10.13.141.1 Offset

Register Offset Description

ORWIR_JR0 1064h (used by JR 0) Accessible only when using DID
specified in JR0DID register

ORWIR_JR1 2064h (used by JR 1) Accessible only when using DID
specified in JR1DID register

ORWIR_JR2 3064h (used by JR 2) Accessible only when using DID
specified in JR2DID register

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

902 NXP Semiconductors
Confidential Proprietary

10.13.141.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

O
R

W
I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.141.3 Fields

Field Description

31-14

—

Reserved

13-0

ORWI

Output Ring Write Index. The pointer to the next entry in the output ring.

10.13.142 Job Ring Command Register for Job Ring a (JRCR_
JR0 - JRCR_JR2)

Software can use this register to issue a park, flush or reset command to a Job Ring. A
flush command is issued by writing a 1 to JRCR[RESET] when JRCR[RESET]=0. A
flush is defined as stalling any jobs currently in the input ring and terminating (with an
error code) any jobs currently in progress in the holding tanks or DECOs. The terminated
jobs will be written to the output ring with a status indicating that they were terminated
by a flush request. Note that these flushed jobs will count towards the Interrupt
Coalescing Descriptor Count. If there is not sufficient space in the output ring for all the
flushed jobs, Job Ring flushing will be paused until software has made enough space in
the Output Ring. When JRCR[RESET] is written with a 1, the HALT field in the Job
Ring Interrupt Status register will display 01b. When the flush operation is complete, the
HALT field will change to 10b. After a flush completes, the halt can be cleared and job
processing will resume, or a reset can be requested.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 903
Confidential Proprietary

A park command will stall any jobs in the job ring that have not yet been fetched, but will
allow all the jobs in progress to complete normally. A park command may be issued only
if virtualization is enabled. If virtualization is disabled, any writes to the PARK bit are
ignored.

During the time between the write to PARK and all of the in-progress jobs completing,
the HALT field in the Job Ring Interrupt Status register will return 01b indicating that the
Job Ring was asked to stop processing jobs. When all jobs are complete and the Job Ring
has halted, the Job Ring Interrupt Status register will indicate this by setting the HALT
field to 10b. Once the Job Ring indicates that it has halted, it is safe to read the values of
the Job Ring registers to save the Job Ring state. The following register values should be
saved:

• JRCFGR_JR -Job Ring Configuration Register for the Job Ring
• IRBAR_JR - Input Ring Base Address Register for the Job Ring
• IRSR_JR - Input Ring Size Register for the Job Ring
• ORBAR_JR - Output Ring Base Address Register for the Job Ring
• ORSR_JR - Output Ring Size Register for the Job Ring
• IRSAR_JR - Input Ring Slots Available Register for the Job Ring
• ORSFR_JR - Output Ring Slots Full Register for the Job Ring
• IRRIR_JR - Input Ring Read Index Register for the Job Ring
• ORWIR_JR - Output Ring Write Index Register for the Job Ring

Once the state is saved, the Job Ring may be reassigned. To reassign the Job Ring, the
registers that were saved should be rewritten with new values. When reprogramming,
note that IRS must be written before IRSA or IRRI, and ORS must be written before
ORSF or ORWI. IRSA should be written last because this is the register that indicates to
the Job Ring that it has jobs to process. Failure to write the registers in the correct order
may result in one of the following errors: IRSA>IRS, IRRI>IRS, ORSF>ORS, or
ORWI>ORS. Once the Job Ring is reprogrammed, park status can be released so that the
Job Ring can start running again. To do this, write a "1" to the MSB of the HALT field in
the Job Ring Interrupt Status register. Note that if software tries to release parking status
before the Job Ring has halted, a fatal error will occur (type 00111). This is the same
error type as releasing the Job Ring from reset status before the ring has halted.

A reset command is issued by writing a 1 to JRCR[RESET] when JRCR[RESET]=1. A
reset command will clear all registers in the Job Ring except the following:

• Input Ring Base Address
• Input Ring Size
• Output Ring Base Address
• Output Ring Size
• Job Ring Configuration.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

904 NXP Semiconductors
Confidential Proprietary

A reset can be initiated only after a flush has been requested and completed as indicated
by the HALT field in the Job Ring Interrupt Status Register. After a reset, job processing
will resume when the Input Ring Jobs Added Register is written to indicate that new jobs
are available. If both PARK and RESET are written to 1, either a flush or a reset will be
performed depending on the current value of RESET.

Because there are 3 Job Rings, there are 3 copies of this register.

10.13.142.1 Offset

Register Offset Description

JRCR_JR0 106Ch (used by JR 0) Accessible only when using DID
specified in JR0DID register

JRCR_JR1 206Ch (used by JR 1) Accessible only when using DID
specified in JR1DID register

JRCR_JR2 306Ch (used by JR 2) Accessible only when using DID
specified in JR2DID register

10.13.142.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

W

P
A

R
K

R
E

S
E

T
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.142.3 Fields

Field Description

31-2

—

Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 905
Confidential Proprietary

Field Description

1

PARK

Park - When PARK is 0, software writes a 1 to PARK to request that the Job Ring be "parked", i.e.
quiesced. All jobs currently "in flight" (in holding tanks, DECOs or waiting for status results to be written
out) are completed, but no new jobs are fetched from the input ring. When the job ring has completed
parking, the HALT field in the Job Ring Interrupt Status register will change from 01b to 10b.

0

RESET

Reset - When RESET is 0, software writes a 1 to RESET to request a flush of the Job Ring. If software
wants to initiate a reset of the Job Ring, software writes a 1 to the RESET bit after a flush (when RESET
is already 1). The reset will clear the RESET bit and other registers in the job ring. If no reset is required,
software writes a 1 to the MSB of the HALT field in the Job Ring Interrupt Status Register to cause the
Job Ring to resume processing jobs. An error will occur if 1 is written to the MSB of the HALT field before
the HALT field indicates that the CAAM has flushed all jobs from this Job Ring.

10.13.143 Job Ring a Address-Array Valid Register (JR0AAV -
JR2AAV)

The Job Ring Address-Array Valid register indicates which entries stored in the Job Ring
Address-Array Address Registers contain valid data. The register is intended to be used
when debugging descriptor execution via a Job Ring. The Debug Control Register can be
used to stop CAAM processing before reading the Job Ring debug registers so that a
consistent set of values can be read. Note that this version of CAAM implements 4 Job
Ring Address-Array Registers.

10.13.143.1 Offset

Register Offset Description

JR0AAV 1704h Used with Job Ring 0

JR1AAV 2704h Used with Job Ring 1

JR2AAV 3704h Used with Job Ring 2

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

906 NXP Semiconductors
Confidential Proprietary

10.13.143.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BC
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

V3 V2 V1 V0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.143.3 Fields

Field Description

31

BC

Been Changed. The BC bit is used to verify that consistent data has been read from the Address Array
Registers. BC is set to 0 when JR0AAA0 is read, and BC is then set to 1 if the content of any of the
JRAAAx registers or the JRaAAV register changes (due to new addresses being loaded into AA or
existing addresses being sent to a holding tank) before the JRaAAV is read. So if BC is 1 after this
sequence of register reads, some of the data that was read may be inconsistent with other data that was
read. In this case the address Array registers should be read again.

30-4

—

Reserved

3

V3

Valid 3. When V3=1, Job Ring Address-Array Address Register 3 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank.

2

V2

Valid 2. When V2=1, Job Ring Address-Array Address Register 2 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank.

1

V1

Valid 1. When V1=1, Job Ring Address-Array Address Register 1 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank.

0

V0

Valid 0. When V0=1, Job Ring Address-Array Address Register 0 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank.

10.13.144 Job Ring a Address-Array Address b Register (JR0A
AA0 - JR2AAA3)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 907
Confidential Proprietary

JRaAAAb registers are used when debugging descriptor execution started from a Job
Ring. The Debug Control Register (DEBUGCTL) can be used to stop CAAM processing
before reading Job Ring debug registers so that a consistent set of values can be read.As
discussed in Job scheduling, the job Queue Controller may buffer up to 4 Job Descriptor
addresses for each Job Ring and read up to 4 Job Descriptor addresses from a Job Ring
before servicing the next Job Ring in round-robin fashion. For optimal performance
(primarily to minimize bus transactions), CAAM will read up to 4 job descriptor
addresses in a single bus burst when possible. JRaAAAb registers are used to buffer the
job descriptor addresses after the job queue controller fetches the descriptor address from
the input ring and before assigning the descriptor to a Holding Tank.

10.13.144.1 Offset

For a = 0 to 2; b = 0 to 3:

Register Offset Description

JRaAAAb 1800h + (a × 1000h) + (b × 8h) Used with Job Ring a. For the order that the two 32-
bit halves of this register appear in memory, see the
DWT bit description in Master Configuration Register
(MCFGR).

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

908 NXP Semiconductors
Confidential Proprietary

10.13.144.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.144.3 Fields

Field Description

63-32

—

Reserved

31-0

JD_ADDR

Job Descriptor Address.

10.13.145 Recoverable Error Indication Record 0 for Job Ring a
(REIR0JR0 - REIR0JR2)

If a recoverable error occurs related to execution of a job from a Job Ring, error
information will be captured in the JR's REIR registers. Data for a second recoverable
error related to jobs from JR will not be captured until the REIR0JR is written. If another

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 909
Confidential Proprietary

bus error from JR occurs before then, the double error status bit (MISS) in REIR0JR will
be set. When REIR0JR is written, all of JR's REIRJR registers are cleared and error
capture is re-enabled.

10.13.145.1 Offset

Register Offset Description

REIR0JR0 1E00h (used by JR 0)

REIR0JR1 2E00h (used by JR 1)

REIR0JR2 3E00h (used by JR 2)

10.13.145.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

M
IS

S

R
es

er
ve

d

T
Y

P
E

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.145.3 Fields

Field Description

31

MISS

If MISS=1, a second recoverable error associated with JR occurred before REIR0JR was written
following a previous JR recoverable error.

30-26

—

Reserved

25-24

TYPE

This field indicates the type of the recoverable error.

If TYPE = 0 : reserved

If TYPE = 1 : memory access error

If TYPE = 2 : reserved

If TYPE = 3 : reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

910 NXP Semiconductors
Confidential Proprietary

Field Description

23-0

—

Reserved

10.13.146 Recoverable Error Indication Record 2 for Job Ring a
(REIR2JR0 - REIR2JR2)

See the description for Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0
- REIR0JR2).

10.13.146.1 Offset

Register Offset Description

REIR2JR0 1E08h Used by JR0. Accessible only when using DID
specified in JR0DID register

REIR2JR1 2E08h Used by JR1. Accessible only when using DID
specified in JR1DID register

REIR2JR2 3E08h Used by JR2. Accessible only when using DID
specified in JR2DID register

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 911
Confidential Proprietary

10.13.146.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.146.3 Fields

Field Description

63-32

—

Reserved

31-0

ADDR

Address associated with the recoverable JR error.

10.13.147 Recoverable Error Indication Record 4 for Job Ring a
(REIR4JR0 - REIR4JR2)

See the description for Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0
- REIR0JR2).

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

912 NXP Semiconductors
Confidential Proprietary

10.13.147.1 Offset

Register Offset Description

REIR4JR0 1E10h (used by JR 0)

REIR4JR1 2E10h (used by JR 1)

REIR4JR2 3E10h (used by JR 2)

10.13.147.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R MIX ERR
Reserved

RWB AXPROT AXCACHE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

D
ID

IC
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.147.3 Fields

Field Description

31-30

MIX

This field holds the memory interface index associated with the recoverable error.

29-28

ERR

This field holds the AXI error response associated with the recoverable error.

27-24

—

Reserved

23

RWB

This field specifies whether the memory access was a read or write.

22-20

AXPROT

This field holds the AXI protection transaction attribute used for the memory access.

19-16

AXCACHE

This field holds the AXI cache control transaction attribute used for the memory access.

15 Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 913
Confidential Proprietary

Field Description

—

14-11

DID

This field holds the DID associated with the recoverable error.

10-0

ICID

This field holds the ICID associated with the recoverable error.

10.13.148 Recoverable Error Indication Record 5 for Job Ring a
(REIR5JR0 - REIR5JR2)

See the description for Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0
- REIR0JR2).

10.13.148.1 Offset

Register Offset Description

REIR5JR0 1E14h (used by JR 0)

REIR5JR1 2E14h (used by JR 1)

REIR5JR2 3E14h (used by JR 2)

10.13.148.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

S
M

A

K
E

Y

K
M

O
D

T
D

S
C

B
N

D
G

R
es

er
ve

d

R
es

er
ve

d

B
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

914 NXP Semiconductors
Confidential Proprietary

10.13.148.3 Fields

Field Description

31-30

—

Reserved

29

SMA

This field indicates whether the bus transaction associated with the recoverable error was an attempted
access to CAAM Secure Memory.

28

KEY

This field indicates whether the bus transaction associated with the recoverable error was an attempted
key access to CAAM Secure Memory.

27

KMOD

This field indicates whether the bus transaction associated with the recoverable error was an attempt to
read the key modifier associated with an CAAM Secure Memory partition.

26

TDSC

This field indicates whether the bus transaction associated with the recoverable error was an attempt to
assert trusted descriptor privilege when accessing an CAAM Secure Memory partition.

25

BNDG

This field indicates whether the bus transaction associated with the recoverable error was initiating an
CAAM Secure Memory blob operation.

24

—

Reserved

23-20

—

Reserved

19-16

BID

This field holds the block identifier (see Table 10-243) of the source of the AXI transaction associated
with the recoverable error.

15-0

—

Reserved

10.13.149 RTIC Status Register (RSTA)

This section describes the registers of the Run Time Integrity Checker (RTIC). A
functional description of the RTIC can be found in Run-time Integrity Checker (RTIC).
Note the use of the RTIC is optional, to support platform assurance.

The Run Time Integrity Checking Status Register is a read-only register that gives
software information about the internal states of RTIC. Reading the RTIC Status Register
will clear all errors and the RTIC interrupt. Due to timing issues, instead of polling this
register software should read the RTIC Status Register after an RTIC done interrupt.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 915
Confidential Proprietary

10.13.149.1 Offset

Register Offset

RSTA 6004h

10.13.149.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

CS
Reserved

RTD HOD ABH WE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

AE MIS HE SV HD BSY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.149.3 Fields

Field Description

31-27

—

Reserved

26-25

CS

RTIC Current State. Indicates the current state of the RTIC controller.

00 - Idle State

01 - Single Hash State

10 - Run-time State

11 - Error State

24-20

—

Reserved

19

RTD

Run Time Blocks Disabled. When RTIC is in Run Time mode, a 1 in the RTD field indicates that all the
Memory Blocks are Disabled for Run Time Operation.

18

HOD

Hash Once Blocks Disabled. All the Memory Blocks are Disabled for Hash Once Operation. This bit is set
when RTIC is either in an Idle State or Hash Once State and none of the Memory Blocks have been
enabled for Hash Once Operation.

17

ABH

All Blocks Hashed. This is a bit that is used for debugging. This bit toggles during run-time mode every
time RTIC completes hashing A-D memory blocks and starts over at the beginning again.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

916 NXP Semiconductors
Confidential Proprietary

Field Description

16

WE

RTIC Watchdog Error. RTIC Watchdog timer has tripped during run-time hashing. This indicates that all
enabled memory segments did not finish a round of hashing prior to the RTIC watchdog timer completing.

0 - No RTIC Watchdog timer error has occurred.

1 - RTIC Watchdog timer has expired prior to completing a round of hashing.

15-12

—

Reserved

11-8

AE

Address Error. Indicates an illegal address was read from a peripheral memory block. This is caused by
an invalid start address in the Address 1/2 fields or a value in the Length 1/2 fields that caused the RTIC
to read outside a peripheral memory's valid address space. If an address error occurs, the illegal address
will be captured in the CAAM Fault Address Register (Section Fault Address Register (FAR)).

Each bit in the field represents the status of an individual memory block. The following bit positions in the
field indicates which memory block has the error:

xxx1 - Memory Block A Address Error

xx1x - Memory Block B Address Error

x1xx - Memory Block C Address Error

1xxx - Memory Block D Address Error

The settings for each bit are as follows:

0000 - All reads by RTIC were valid.

0001 - An illegal address was accessed by the RTIC

7-4

MIS

Memory Integrity Status. Indicates memory block(s) with error. Each bit in the field represents the status
of an individual memory block. The following bit positions in the field indicates which memory block has
the error:

xxx1 - Memory Block A Hash Error

xx1x - Memory Block B Hash Error

x1xx - Memory Block C Hash Error

1xxx - Memory Block D Hash Error

The settings for each bit are as follows:

0000 - Memory Block X is valid or state unknown

0001 - Memory Block X has been corrupted

3

HE

Hashing Error. Indicates that a unlocked memory block has been corrupted during run time or that an
address error has occurred. The unlocked memory block(s) in error are indicated in the MIS field. If a
memory addressing error occurred, the memory block(s) in error are indicated in the AE field. The
security violation signal will be asserted. RTIC will generate a done interrupt and disable checking the
memory block that caused the failure.

Unlocked memory blocks can be determined by reading the RTIC Control Register (see Section RTIC
Control Register (RCTL)).

0 - Memory block contents authenticated.

1 - Memory block hash doesn't match reference value.

2

SV

Security Violation. Indicates that a locked RTIC memory block has been corrupted during run-time, an
address error has occurred, or an RTIC Watchdog timeout has occurred. The memory block(s) in error
are indicated in the MIS field. If a memory addressing error occurred, the memory block(s) in error are
indicated in the AE field. If an RTIC Watchdog timeout error occurred then the WE bit will be set. A
security violation can only be cleared by a hardware reset.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 917
Confidential Proprietary

Field Description

Locked memory blocks can be determined by reading the RTIC Control Register (see Section RTIC
Control Register (RCTL)).

0 - Memory block contents authenticated.

1 - Memory block hash doesn't match reference value.

1

HD

Hash Once Operation Completed (Hash Done). Processor may read hash values. If an error occurs
during hashing or no memory blocks are enabled for one-time hash, this bit will not be set even if the
RTIC hardware interrupts are asserted. This bit is cleared by setting the CINT bit in the RTIC Command
Register (see Section RTIC Command Register (RCMD)) or when the RTIC enters the run-time checking
state.

0 - Boot authentication disabled

1 - Authenticate code/generate reference hash value. This bit cannot be modified during run-time
checking mode.

0

BSY

RTIC Idle/Busy Status. When busy, the RTIC cannot be written to.

0 - RTIC Idle.

1 - RTIC Busy.

10.13.150 RTIC Command Register (RCMD)

The Run Time Integrity Checking Command Register is used to issue commands to the
RTIC. This register is used to instruct the RTIC to perform different functions. This
register is only writeable when RTIC is in an idle state.

10.13.150.1 Offset

Register Offset

RCMD 600Ch

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

918 NXP Semiconductors
Confidential Proprietary

10.13.150.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
T

D

W

R
T

C

H
O

C
IN

T

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.150.3 Fields

Field Description

31-4

—

Reserved

3

RTD

Run Time Disable. Does not allow RTIC to be put into Run-Time mode. This bit will have higher priority in
the case where both Run Time Check and Run Time Disable are set on the same write. Run Time
Disable is ignored if RTIC is already in the Run Time Mode.

0 - Allow Run Time Mode

1 - Prevent Run Time Mode

2

RTC

Run time check. Starts run-time integrity checking for any blocks having the corresponding RTME bit =1
(see RTIC Status Register (RSTA)). Some of the RTIC registers become read-only. This bit is self-
clearing and always returns a logic-0 when read. Setting this bit will clear the ipi_done_int hardware
interrupt as well as the HASH DONE bit in the RTIC Status Register. Note that it is possible to set both
the HO bit and the RTC bit to 1 simultaneously. In this case the hash-once operations will complete on all
blocks whose HOME bit =1, and then the done interrupt will be asserted for one clock cycle but
immediately cleared as RTIC enters Run-Time Check mode.

If no memory blocks are enabled, setting the RUN TIME CHK bit will cause the RTIC to enter an idle
state while waiting for a memory segment to be enabled. Some registers will be read only. No data is
hashed and no interrupts or errors will be generated.

0 - Run-time checking disabled

1 - Verify run-time memory blocks continually

1

HO

Hash once. Starts one-time hash/boot code authentication for any blocks having the corresponding
HOME bit =1 (see RTIC Status Register (RSTA)). The resulting hash value is stored in the Hash Register
File. This bit is self-clearing and always returns a logic-0 when read. If no memory blocks are enabled, a
done interrupt will be immediately generated. Note that it is possible to set both the HO bit and the RTC
bit to 1 simultaneously. In this case the hash-once operations will complete on all blocks whose HOME bit
=1, and then the done interrupt will be asserted for one clock cycle but immediately cleared as RTIC
enters Run-Time Check mode.

0 - Boot authentication disabled

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 919
Confidential Proprietary

Field Description

1 - Authenticate code/generate reference hash value. This bit cannot be modified during run-time
checking mode.

0

CINT

Clear Interrupt. Clears RTIC hardware interrupt signal. This bit is self-clearing and always returns a logic
0 when read.

0 - Do not clear interrupt

1 - Clear interrupt. This bit cannot be modified during run-time checking mode

10.13.151 RTIC Control Register (RCTL)

The RTIC is configured by writing to the Run Time Integrity Checking Control Register.
No bits in this register are writable unless RTIC is idle or, if RTIC is in Run-Time Mode,
unless the control bits for the memory block are disabled and unlocked.

10.13.151.1 Offset

Register Offset

RCTL 6014h

10.13.151.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
ID

L
E R

A
LG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTMU RTME HOME RREQS IE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

920 NXP Semiconductors
Confidential Proprietary

10.13.151.3 Fields

Field Description

31-21

—

Reserved

20

RIDLE

RTIC setting for the IPG_IDLE signal. If RIDLE=1, the signal ipg_idle will be negated if RTIC is in Run-
Time Mode and one or more Memory Blocks are enabled for Run-Time Mode (i.e. one or more of the
RTME bits is 1). If RIDLE=0 and CAAM is otherwise idle, the signal ipg_idle will still occasionally negate
while RTIC is actually hashing a chunk of memory.

19-16

RALG

RTIC Algorithm Select. Selects which algorithms should be used per Memory Block. All of these bits are
writable when RTIC is idle. When RTIC is in Run-Time Mode, only those bits corresponding to unlocked
memory blocks are writable. (see RTMU field description)

xxx0b - SHA-256 selected for Memory Block A xxx1b - SHA-512 selected for Memory Block A

xx0xb - SHA-256 selected for Memory Block B xx1xb - SHA-512 selected for Memory Block B

x0xxb - SHA-256 selected for Memory Block C x1xxb - SHA-512 selected for Memory Block C

0xxxb - SHA-256 selected for Memory Block D 1xxxb - SHA-512 selected for Memory Block D

15-12

RTMU

Run Time Memory Unlock. Unlocks memory block(s) for run-time hashing. If a memory block is unlocked
it can be enabled and disabled at any time even if RTIC Run-Time Mode has started. These bits are not
writable once RTIC Run-Time Mode has started. These bits are intended to allow some of the RTIC
memory blocks to be used during RTIC Run-Time Mode by trusted software to verify the integrity of
dynamically loaded software. The remaining (locked) memory blocks would be used to verify the integrity
of the operating system and the trusted software itself.

xxx1b - Unlock Memory Block A

xx1xb - Unlock Memory Block B

x1xxb - Unlock Memory Block C

1xxxb - Unlock Memory Block D

11-8

RTME

Run Time Memory Enable. Enables memory block(s) for run-time hashing. All of these bits are writable
when RTIC is idle. When RTIC is in Run-Time Mode, only those bits corresponding to unlocked memory
blocks are writable. (see RTMU field description)

xxx1 - Enable Memory Block A

xx1x - Enable Memory Block B

x1xx - Enable Memory Block C

1xxx - Enable Memory Block D

NOTE: Enable one or more RTIC Memory Blocks for Run Time (e.g. set at least one RTME bit to 1)
before changing from Hash Once mode to Run Time mode. Failing to set at least one bit may
cause RTIC to hang, which will result in a watchdog timeout.

7-4

HOME

Hash Once Memory Enable. Enables memory block(s) for one-time hashing. All of these bits are writable
when RTIC is idle. When RTIC is in Run-Time Mode, only those bits corresponding to unlocked memory
blocks are writable. (see RTMU field description)

xxx1 - Enable Memory Block A

xx1x - Enable Memory Block B

x1xx - Enable Memory Block C

1xxx - Enable Memory Block D

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 921
Confidential Proprietary

Field Description

3-1

RREQS

RTIC Request Size. These bits are used during run-time mode to specify how many blocks of data are
hashed every time the throttle counter expires. The block size is determined by the selected Algorithm.

Block Size:

SHA-256 = 64 bytes

SHA-512 = 128 bytes

NOTE: The RREQS default value of 0 is interpreted as a request for 1 block.

0

IE

Interrupt Enable. Enables the RTIC interrupt. This bit is writable only while RTIC is in an idle state.
Hardware interrupts are disabled by default after reset.

0 - Interrupts disabled

1 - Interrupts enabled

10.13.152 RTIC Throttle Register (RTHR)

The Run Time Integrity Checking Throttle Register can be set to specify how many clock
cycles to wait between RTIC hashing operations when RTIC is in run-time mode. The
register becomes read-only when RTIC is in run-time mode.

10.13.152.1 Offset

Register Offset

RTHR 601Ch

10.13.152.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTHR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

922 NXP Semiconductors
Confidential Proprietary

10.13.152.3 Fields

Field Description

31-16

—

Reserved

15-0

RTHR

Run Time Mode DMA Throttle. Programmable Timer that can be set to specify how many cycles of the 32
Khz clock to wait between RTIC hashing operations during run time mode. At boot time, this register
would generally be set to a value that will allow all four memory blocks to be hashed in a reasonable time
without high bus utilization.

10.13.153 RTIC Watchdog Timer (RWDOG)

The RTIC Watchdog Register holds the starting value for the RTIC Watchdog Timer,
which is used during Run Time Mode to prevent a denial of service attack on RTIC.
When RTIC is in Run Time Mode, the RTIC Watchdog Timer begins counting down
when run time hashing starts on the first memory block and it resets to the starting value
when the last memory block has been hashed. If the RTIC Watchdog Timer times out
prior to the last memory block's completion then an RTIC Watchdog error will be
generated. Note that the RTIC Watchdog Register is not writable after RTIC enters Run
Time Mode, so prior to placing RTIC into Run Time Mode software must write a large
enough value into the register to prevent the RTIC Watchdog Timer from expiring under
normal conditions. Upon entering low-power mode the RTIC Watchdog Timer will stop
counting until low-power mode is exited. Upon exiting low-power mode, the RTIC
Watchdog Timer will resume from where it left off.

10.13.153.1 Offset

Register Offset Description

RWDOG 6028h When the endianness is in the default configuration,
this address is for the least-significant 32 bits. The
most-significant 32 bits can be accessed at this
address +4h.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 923
Confidential Proprietary

10.13.153.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RWDOG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RWDOG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.153.3 Fields

Field Description

63-32

—

Reserved

31-0

RWDOG

Run Time Watchdog Time-Out value. This holds the starting value of the RTIC Run Time Watchdog
Timer.

10.13.154 RTIC Endian Register (REND)

The RTIC Endian Register is used to allow for data ordering corrections when data is not
retrieved from external memory in the proper order. These data ordering corrections are
most likely to be needed on a mixed endian platform. The bit assignments of this register
appear in the figure below and the description and settings for the register are given in the
following table.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

924 NXP Semiconductors
Confidential Proprietary

10.13.154.1 Offset

Register Offset

REND 6034h

10.13.154.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RHWS RBS REPO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.154.3 Fields

Field Description

31-12

—

Reserved

11-8

RHWS

RTIC Half-Word Swap. This allows for a software controllable half-word swap in the DMA to assist with
mixed Endianess platforms. This may be necessary if message data is not swapped properly when
accessing memories. The word 01234567h placed in memory will become 45670123h when written into
the hashing engine.

The memory blocks are configured as follows:

1xxx - Half-Word Swap Memory Block D

x1xx - Half-Word Swap Memory Block C

xx1x - Half-Word Swap Memory Block B

xxx1 - Half-Word Swap Memory Block A

7-4

RBS

RTIC Byte Swap. This allows for a software controllable byte swap to assist with mixed Endianess
platforms. This byte swap works in conjunction with the platform endian configuration indicated by the
PLEND bit in the CAAM Status Register. The word 01234567h placed in memory becomes 67452301h
when written into the hashing engine.

The memory blocks are configured as follows:

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 925
Confidential Proprietary

Field Description

Byte Swap
Bit

PLEND WORD

0 0 67452301h

1 0 01234567h

0 1 01234567h

1 1 67452301h

1xxx - Byte Swap Memory Block D

x1xx - Byte Swap Memory Block C

xx1x - Byte Swap Memory Block B

xxx1 - Byte Swap Memory Block A

3-0

REPO

RTIC Endian Platform Override. This allows for the current platform endian configuration bit (PLEND bit in
the CAAM Status Register) to be overridden by bits in the REPO field. PLEND is either Big Endian =1 or
Little Endian =0. Setting a REPO bit to 1 will cause the data read from the corresponding memory block
to be interpreted as Big Endian if PLEND specifies Little Endian, or Little Endian if PLEND specifies Big
Endian.

The memory blocks are configured as follows:

1xxx - Byte Swap Memory Block D

x1xx - Byte Swap Memory Block C

xx1x - Byte Swap Memory Block B

xxx1 - Byte Swap Memory Block A

10.13.155 RTIC Memory Block a Address b Register (RMAA0 -
RMDA1)

For an explanation of the RTIC Memory Block registers, see RTIC Memory Block
Address/Length Registers

The RTIC Memory Block a Address b Register (RMaAb) specifies the starting address of
segment b (b = 0 or 1) of Memory Block a (a = A,B,C,D). The length of data referred to
by this pointer (see Address pointers.) is found in the RTIC Memory Block a Length b
Register (RMaLb). The RTIC Memory Block Address registers and the RTIC Memory
Block Length registers are writeable when RTIC is in an IDLE state, or during Run-Time
mode if both the RTMU bit is set and the RTME bit is cleared (see Section RTIC Control
Register (RCTL)) for the corresponding memory block.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

926 NXP Semiconductors
Confidential Proprietary

10.13.155.1 Offset

For a = A to D (0 to 3); b = 0 to 1:

Register Offset Description

RMaAb 6100h + (a × 20h) + (b × 10h) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

10.13.155.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MEMBLKADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MEMBLKADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.155.3 Fields

Field Description

63-32

—

Reserved

31-0

MEMBLKADDR

Memory Block Address. The MEMBLKADDR field of RMaAb holds the starting address of segment b
(b=0,1) of RTIC Memory Block a (a=A,B,C,D).

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 927
Confidential Proprietary

10.13.156 RTIC Memory Block a Length b Register (RMAL0 -
RMDL1)

For an explanation of the RTIC Memory Block registers, see RTIC Memory Block
Address/Length Registers

The RTIC Memory Block a Length b Register (RMaLb) specifies the number of bytes to
hash in segment b (b = 0 or 1) of Memory Block a (a = A,B,C,D). The starting address of
segment b of RTIC Memory Block a is specified in the RTIC Memory Block a Address b
Register (RMaAb). The RTIC Memory Block Address registers and the RTIC Memory
Block Length registers are writeable when RTIC is in an IDLE state, or during Run-Time
mode if both the RTMU bit is set and the RTME bit is cleared (see Section RTIC Control
Register (RCTL)) for the corresponding memory block.

Note that programming a memory segment (A, B, C, D) to have a zero length (length_1
and length_2) will cause RTIC to generate a bad descriptor.

In RTIC versions RMJV= 0 and RMNV <=1 this can be detected by means of a
watchdog timer. In hash-once operation this will be detected only if the DECO watchdog
timer is enabled. This will cause the descriptor that is programmed by RTIC to be
detected by the watchdog and flagged as an Address Error in the status register. In run-
time operation the bad descriptor will be flagged by either the RTIC watchdog timer or
the DECO watchdog timer. If the RTIC watchdog timer detects this condition then it will
be flagged as an RTIC Watchdog Error. If instead the DECO watchdog catches it, then it
will be flagged as an Address Error.

In later versions of RTIC bad RTIC descriptors will be flagged immediately as Address
Errors.

10.13.156.1 Offset

For a = A to D (0 to 3); b = 0 to 1:

Register Offset

RMaLb 610Ch + (a × 20h) + (b × 10h)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

928 NXP Semiconductors
Confidential Proprietary

10.13.156.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MEMBLKLEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MEMBLKLEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.156.3 Fields

Field Description

31-0

MEMBLKLEN

Memory Block Lengths. The MEMBLKLEN field of RMaLb holds the length, in bytes, of segment b
(b=0,1) of RTIC Memory Block a (a=A,B,C,D).

10.13.157 RTIC Memory Block a c Endian Hash Result Word d
(RAMDB_0 - RDMDL_31)

The results of the RTIC hashing operations are stored in the RTIC Hash Result Registers
(256 bits for SHA-256, 512 bits for SHA-512). The hash result for Memory Block a (a=
A,B,C,D) is accessed in contiguous word addresses beginning at the base address of
RTIC Hash Result Register a. For each Memory Block, there are 2 addresses associated
with RTIC Hash Result Register a. Reading successive words starting at the RaMDB
address will return successive words, in big endian format, of the hash result for Memory
Block a. Reading successive words starting at the RaMDL address will return successive
words, in little endian format, of the hash result for Memory Block a.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 929
Confidential Proprietary

10.13.157.1 Offset

Register Offset Description

RAMDB_0 6200h RTIC Mem Block A Hash Result Big Endian Format
Word 0

RAMDB_1 6204h RTIC Mem Block A Hash Result Big Endian Format
Word 1

RAMDB_2 6208h RTIC Mem Block A Hash Result Big Endian Format
Word 2

RAMDB_3 620Ch RTIC Mem Block A Hash Result Big Endian Format
Word 3

RAMDB_4 6210h RTIC Mem Block A Hash Result Big Endian Format
Word 4

RAMDB_5 6214h RTIC Mem Block A Hash Result Big Endian Format
Word 5

RAMDB_6 6218h RTIC Mem Block A Hash Result Big Endian Format
Word 6

RAMDB_7 621Ch RTIC Mem Block A Hash Result Big Endian Format
Word 7

RAMDB_8 6220h RTIC Mem Block A Hash Result Big Endian Format
Word 8

RAMDB_9 6224h RTIC Mem Block A Hash Result Big Endian Format
Word 9

RAMDB_10 6228h RTIC Mem Block A Hash Result Big Endian Format
Word 10

RAMDB_11 622Ch RTIC Mem Block A Hash Result Big Endian Format
Word 11

RAMDB_12 6230h RTIC Mem Block A Hash Result Big Endian Format
Word 12

RAMDB_13 6234h RTIC Mem Block A Hash Result Big Endian Format
Word 13

RAMDB_14 6238h RTIC Mem Block A Hash Result Big Endian Format
Word 14

RAMDB_15 623Ch RTIC Mem Block A Hash Result Big Endian Format
Word 15

RAMDB_16 6240h RTIC Mem Block A Hash Result Big Endian Format
Word 16

RAMDB_17 6244h RTIC Mem Block A Hash Result Big Endian Format
Word 17

RAMDB_18 6248h RTIC Mem Block A Hash Result Big Endian Format
Word 18

RAMDB_19 624Ch RTIC Mem Block A Hash Result Big Endian Format
Word 19

RAMDB_20 6250h RTIC Mem Block A Hash Result Big Endian Format
Word 20

RAMDB_21 6254h RTIC Mem Block A Hash Result Big Endian Format
Word 21

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

930 NXP Semiconductors
Confidential Proprietary

Register Offset Description

RAMDB_22 6258h RTIC Mem Block A Hash Result Big Endian Format
Word 22

RAMDB_23 625Ch RTIC Mem Block A Hash Result Big Endian Format
Word 23

RAMDB_24 6260h RTIC Mem Block A Hash Result Big Endian Format
Word 24

RAMDB_25 6264h RTIC Mem Block A Hash Result Big Endian Format
Word 25

RAMDB_26 6268h RTIC Mem Block A Hash Result Big Endian Format
Word 26

RAMDB_27 626Ch RTIC Mem Block A Hash Result Big Endian Format
Word 27

RAMDB_28 6270h RTIC Mem Block A Hash Result Big Endian Format
Word 28

RAMDB_29 6274h RTIC Mem Block A Hash Result Big Endian Format
Word 29

RAMDB_30 6278h RTIC Mem Block A Hash Result Big Endian Format
Word 30

RAMDB_31 627Ch RTIC Mem Block A Hash Result Big Endian Format
Word 31

RAMDL_0 6280h RTIC Mem Block A Hash Result Little Endian Format
Word 0

RAMDL_1 6284h RTIC Mem Block A Hash Result Little Endian Format
Word 1

RAMDL_2 6288h RTIC Mem Block A Hash Result Little Endian Format
Word 2

RAMDL_3 628Ch RTIC Mem Block A Hash Result Little Endian Format
Word 3

RAMDL_4 6290h RTIC Mem Block A Hash Result Little Endian Format
Word 4

RAMDL_5 6294h RTIC Mem Block A Hash Result Little Endian Format
Word 5

RAMDL_6 6298h RTIC Mem Block A Hash Result Little Endian Format
Word 6

RAMDL_7 629Ch RTIC Mem Block A Hash Result Little Endian Format
Word 7

RAMDL_8 62A0h RTIC Mem Block A Hash Result Little Endian Format
Word 8

RAMDL_9 62A4h RTIC Mem Block A Hash Result Little Endian Format
Word 9

RAMDL_10 62A8h RTIC Mem Block A Hash Result Little Endian Format
Word 10

RAMDL_11 62ACh RTIC Mem Block A Hash Result Little Endian Format
Word 11

RAMDL_12 62B0h RTIC Mem Block A Hash Result Little Endian Format
Word 12

RAMDL_13 62B4h RTIC Mem Block A Hash Result Little Endian Format
Word 13

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 931
Confidential Proprietary

Register Offset Description

RAMDL_14 62B8h RTIC Mem Block A Hash Result Little Endian Format
Word 14

RAMDL_15 62BCh RTIC Mem Block A Hash Result Little Endian Format
Word 15

RAMDL_16 62C0h RTIC Mem Block A Hash Result Little Endian Format
Word 16

RAMDL_17 62C4h RTIC Mem Block A Hash Result Little Endian Format
Word 17

RAMDL_18 62C8h RTIC Mem Block A Hash Result Little Endian Format
Word 18

RAMDL_19 62CCh RTIC Mem Block A Hash Result Little Endian Format
Word 19

RAMDL_20 62D0h RTIC Mem Block A Hash Result Little Endian Format
Word 20

RAMDL_21 62D4h RTIC Mem Block A Hash Result Little Endian Format
Word 21

RAMDL_22 62D8h RTIC Mem Block A Hash Result Little Endian Format
Word 22

RAMDL_23 62DCh RTIC Mem Block A Hash Result Little Endian Format
Word 23

RAMDL_24 62E0h RTIC Mem Block A Hash Result Little Endian Format
Word 24

RAMDL_25 62E4h RTIC Mem Block A Hash Result Little Endian Format
Word 25

RAMDL_26 62E8h RTIC Mem Block A Hash Result Little Endian Format
Word 26

RAMDL_27 62ECh RTIC Mem Block A Hash Result Little Endian Format
Word 27

RAMDL_28 62F0h RTIC Mem Block A Hash Result Little Endian Format
Word 28

RAMDL_29 62F4h RTIC Mem Block A Hash Result Little Endian Format
Word 29

RAMDL_30 62F8h RTIC Mem Block A Hash Result Little Endian Format
Word 30

RAMDL_31 62FCh RTIC Mem Block A Hash Result Little Endian Format
Word 31

RBMDB_0 6300h RTIC Mem Block B Hash Result Big Endian Format
Word 0

RBMDB_1 6304h RTIC Mem Block B Hash Result Big Endian Format
Word 1

RBMDB_2 6308h RTIC Mem Block B Hash Result Big Endian Format
Word 2

RBMDB_3 630Ch RTIC Mem Block B Hash Result Big Endian Format
Word 3

RBMDB_4 6310h RTIC Mem Block B Hash Result Big Endian Format
Word 4

RBMDB_5 6314h RTIC Mem Block B Hash Result Big Endian Format
Word 5

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

932 NXP Semiconductors
Confidential Proprietary

Register Offset Description

RBMDB_6 6318h RTIC Mem Block B Hash Result Big Endian Format
Word 6

RBMDB_7 631Ch RTIC Mem Block B Hash Result Big Endian Format
Word 7

RBMDB_8 6320h RTIC Mem Block B Hash Result Big Endian Format
Word 8

RBMDB_9 6324h RTIC Mem Block B Hash Result Big Endian Format
Word 9

RBMDB_10 6328h RTIC Mem Block B Hash Result Big Endian Format
Word 10

RBMDB_11 632Ch RTIC Mem Block B Hash Result Big Endian Format
Word 11

RBMDB_12 6330h RTIC Mem Block B Hash Result Big Endian Format
Word 12

RBMDB_13 6334h RTIC Mem Block B Hash Result Big Endian Format
Word 13

RBMDB_14 6338h RTIC Mem Block B Hash Result Big Endian Format
Word 14

RBMDB_15 633Ch RTIC Mem Block B Hash Result Big Endian Format
Word 15

RBMDB_16 6340h RTIC Mem Block B Hash Result Big Endian Format
Word 16

RBMDB_17 6344h RTIC Mem Block B Hash Result Big Endian Format
Word 17

RBMDB_18 6348h RTIC Mem Block B Hash Result Big Endian Format
Word 18

RBMDB_19 634Ch RTIC Mem Block B Hash Result Big Endian Format
Word 19

RBMDB_20 6350h RTIC Mem Block B Hash Result Big Endian Format
Word 20

RBMDB_21 6354h RTIC Mem Block B Hash Result Big Endian Format
Word 21

RBMDB_22 6358h RTIC Mem Block B Hash Result Big Endian Format
Word 22

RBMDB_23 635Ch RTIC Mem Block B Hash Result Big Endian Format
Word 23

RBMDB_24 6360h RTIC Mem Block B Hash Result Big Endian Format
Word 24

RBMDB_25 6364h RTIC Mem Block B Hash Result Big Endian Format
Word 25

RBMDB_26 6368h RTIC Mem Block B Hash Result Big Endian Format
Word 26

RBMDB_27 636Ch RTIC Mem Block B Hash Result Big Endian Format
Word 27

RBMDB_28 6370h RTIC Mem Block B Hash Result Big Endian Format
Word 28

RBMDB_29 6374h RTIC Mem Block B Hash Result Big Endian Format
Word 29

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 933
Confidential Proprietary

Register Offset Description

RBMDB_30 6378h RTIC Mem Block B Hash Result Big Endian Format
Word 30

RBMDB_31 637Ch RTIC Mem Block B Hash Result Big Endian Format
Word 31

RBMDL_0 6380h RTIC Mem Block B Hash Result Little Endian Format
Word 0

RBMDL_1 6384h RTIC Mem Block B Hash Result Little Endian Format
Word 1

RBMDL_2 6388h RTIC Mem Block B Hash Result Little Endian Format
Word 2

RBMDL_3 638Ch RTIC Mem Block B Hash Result Little Endian Format
Word 3

RBMDL_4 6390h RTIC Mem Block B Hash Result Little Endian Format
Word 4

RBMDL_5 6394h RTIC Mem Block B Hash Result Little Endian Format
Word 5

RBMDL_6 6398h RTIC Mem Block B Hash Result Little Endian Format
Word 6

RBMDL_7 639Ch RTIC Mem Block B Hash Result Little Endian Format
Word 7

RBMDL_8 63A0h RTIC Mem Block B Hash Result Little Endian Format
Word 8

RBMDL_9 63A4h RTIC Mem Block B Hash Result Little Endian Format
Word 9

RBMDL_10 63A8h RTIC Mem Block B Hash Result Little Endian Format
Word 10

RBMDL_11 63ACh RTIC Mem Block B Hash Result Little Endian Format
Word 11

RBMDL_12 63B0h RTIC Mem Block B Hash Result Little Endian Format
Word 12

RBMDL_13 63B4h RTIC Mem Block B Hash Result Little Endian Format
Word 13

RBMDL_14 63B8h RTIC Mem Block B Hash Result Little Endian Format
Word 14

RBMDL_15 63BCh RTIC Mem Block B Hash Result Little Endian Format
Word 15

RBMDL_16 63C0h RTIC Mem Block B Hash Result Little Endian Format
Word 16

RBMDL_17 63C4h RTIC Mem Block B Hash Result Little Endian Format
Word 17

RBMDL_18 63C8h RTIC Mem Block B Hash Result Little Endian Format
Word 18

RBMDL_19 63CCh RTIC Mem Block B Hash Result Little Endian Format
Word 19

RBMDL_20 63D0h RTIC Mem Block B Hash Result Little Endian Format
Word 20

RBMDL_21 63D4h RTIC Mem Block B Hash Result Little Endian Format
Word 21

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

934 NXP Semiconductors
Confidential Proprietary

Register Offset Description

RBMDL_22 63D8h RTIC Mem Block B Hash Result Little Endian Format
Word 22

RBMDL_23 63DCh RTIC Mem Block B Hash Result Little Endian Format
Word 23

RBMDL_24 63E0h RTIC Mem Block B Hash Result Little Endian Format
Word 24

RBMDL_25 63E4h RTIC Mem Block B Hash Result Little Endian Format
Word 25

RBMDL_26 63E8h RTIC Mem Block B Hash Result Little Endian Format
Word 26

RBMDL_27 63ECh RTIC Mem Block B Hash Result Little Endian Format
Word 27

RBMDL_28 63F0h RTIC Mem Block B Hash Result Little Endian Format
Word 28

RBMDL_29 63F4h RTIC Mem Block B Hash Result Little Endian Format
Word 29

RBMDL_30 63F8h RTIC Mem Block B Hash Result Little Endian Format
Word 30

RBMDL_31 63FCh RTIC Mem Block B Hash Result Little Endian Format
Word 31

RCMDB_0 6400h RTIC Mem Block C Hash Result Big Endian Format
Word 0

RCMDB_1 6404h RTIC Mem Block C Hash Result Big Endian Format
Word 1

RCMDB_2 6408h RTIC Mem Block C Hash Result Big Endian Format
Word 2

RCMDB_3 640Ch RTIC Mem Block C Hash Result Big Endian Format
Word 3

RCMDB_4 6410h RTIC Mem Block C Hash Result Big Endian Format
Word 4

RCMDB_5 6414h RTIC Mem Block C Hash Result Big Endian Format
Word 5

RCMDB_6 6418h RTIC Mem Block C Hash Result Big Endian Format
Word 6

RCMDB_7 641Ch RTIC Mem Block C Hash Result Big Endian Format
Word 7

RCMDB_8 6420h RTIC Mem Block C Hash Result Big Endian Format
Word 8

RCMDB_9 6424h RTIC Mem Block C Hash Result Big Endian Format
Word 9

RCMDB_10 6428h RTIC Mem Block C Hash Result Big Endian Format
Word 10

RCMDB_11 642Ch RTIC Mem Block C Hash Result Big Endian Format
Word 11

RCMDB_12 6430h RTIC Mem Block C Hash Result Big Endian Format
Word 12

RCMDB_13 6434h RTIC Mem Block C Hash Result Big Endian Format
Word 13

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 935
Confidential Proprietary

Register Offset Description

RCMDB_14 6438h RTIC Mem Block C Hash Result Big Endian Format
Word 14

RCMDB_15 643Ch RTIC Mem Block C Hash Result Big Endian Format
Word 15

RCMDB_16 6440h RTIC Mem Block C Hash Result Big Endian Format
Word 16

RCMDB_17 6444h RTIC Mem Block C Hash Result Big Endian Format
Word 17

RCMDB_18 6448h RTIC Mem Block C Hash Result Big Endian Format
Word 18

RCMDB_19 644Ch RTIC Mem Block C Hash Result Big Endian Format
Word 19

RCMDB_20 6450h RTIC Mem Block C Hash Result Big Endian Format
Word 20

RCMDB_21 6454h RTIC Mem Block C Hash Result Big Endian Format
Word 21

RCMDB_22 6458h RTIC Mem Block C Hash Result Big Endian Format
Word 22

RCMDB_23 645Ch RTIC Mem Block C Hash Result Big Endian Format
Word 23

RCMDB_24 6460h RTIC Mem Block C Hash Result Big Endian Format
Word 24

RCMDB_25 6464h RTIC Mem Block C Hash Result Big Endian Format
Word 25

RCMDB_26 6468h RTIC Mem Block C Hash Result Big Endian Format
Word 26

RCMDB_27 646Ch RTIC Mem Block C Hash Result Big Endian Format
Word 27

RCMDB_28 6470h RTIC Mem Block C Hash Result Big Endian Format
Word 28

RCMDB_29 6474h RTIC Mem Block C Hash Result Big Endian Format
Word 29

RCMDB_30 6478h RTIC Mem Block C Hash Result Big Endian Format
Word 30

RCMDB_31 647Ch RTIC Mem Block C Hash Result Big Endian Format
Word 31

RCMDL_0 6480h RTIC Mem Block C Hash Result Little Endian
Format Word 0

RCMDL_1 6484h RTIC Mem Block C Hash Result Little Endian
Format Word 1

RCMDL_2 6488h RTIC Mem Block C Hash Result Little Endian
Format Word 2

RCMDL_3 648Ch RTIC Mem Block C Hash Result Little Endian
Format Word 3

RCMDL_4 6490h RTIC Mem Block C Hash Result Little Endian
Format Word 4

RCMDL_5 6494h RTIC Mem Block C Hash Result Little Endian
Format Word 5

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

936 NXP Semiconductors
Confidential Proprietary

Register Offset Description

RCMDL_6 6498h RTIC Mem Block C Hash Result Little Endian
Format Word 6

RCMDL_7 649Ch RTIC Mem Block C Hash Result Little Endian
Format Word 7

RCMDL_8 64A0h RTIC Mem Block C Hash Result Little Endian
Format Word 8

RCMDL_9 64A4h RTIC Mem Block C Hash Result Little Endian
Format Word 9

RCMDL_10 64A8h RTIC Mem Block C Hash Result Little Endian
Format Word 10

RCMDL_11 64ACh RTIC Mem Block C Hash Result Little Endian
Format Word 11

RCMDL_12 64B0h RTIC Mem Block C Hash Result Little Endian
Format Word 12

RCMDL_13 64B4h RTIC Mem Block C Hash Result Little Endian
Format Word 13

RCMDL_14 64B8h RTIC Mem Block C Hash Result Little Endian
Format Word 14

RCMDL_15 64BCh RTIC Mem Block C Hash Result Little Endian
Format Word 15

RCMDL_16 64C0h RTIC Mem Block C Hash Result Little Endian
Format Word 16

RCMDL_17 64C4h RTIC Mem Block C Hash Result Little Endian
Format Word 17

RCMDL_18 64C8h RTIC Mem Block C Hash Result Little Endian
Format Word 18

RCMDL_19 64CCh RTIC Mem Block C Hash Result Little Endian
Format Word 19

RCMDL_20 64D0h RTIC Mem Block C Hash Result Little Endian
Format Word 20

RCMDL_21 64D4h RTIC Mem Block C Hash Result Little Endian
Format Word 21

RCMDL_22 64D8h RTIC Mem Block C Hash Result Little Endian
Format Word 22

RCMDL_23 64DCh RTIC Mem Block C Hash Result Little Endian
Format Word 23

RCMDL_24 64E0h RTIC Mem Block C Hash Result Little Endian
Format Word 24

RCMDL_25 64E4h RTIC Mem Block C Hash Result Little Endian
Format Word 25

RCMDL_26 64E8h RTIC Mem Block C Hash Result Little Endian
Format Word 26

RCMDL_27 64ECh RTIC Mem Block C Hash Result Little Endian
Format Word 27

RCMDL_28 64F0h RTIC Mem Block C Hash Result Little Endian
Format Word 28

RCMDL_29 64F4h RTIC Mem Block C Hash Result Little Endian
Format Word 29

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 937
Confidential Proprietary

Register Offset Description

RCMDL_30 64F8h RTIC Mem Block C Hash Result Little Endian
Format Word 30

RCMDL_31 64FCh RTIC Mem Block C Hash Result Little Endian
Format Word 31

RDMDB_0 6500h RTIC Mem Block D Hash Result Big Endian Format
Word 0

RDMDB_1 6504h RTIC Mem Block D Hash Result Big Endian Format
Word 1

RDMDB_2 6508h RTIC Mem Block D Hash Result Big Endian Format
Word 2

RDMDB_3 650Ch RTIC Mem Block D Hash Result Big Endian Format
Word 3

RDMDB_4 6510h RTIC Mem Block D Hash Result Big Endian Format
Word 4

RDMDB_5 6514h RTIC Mem Block D Hash Result Big Endian Format
Word 5

RDMDB_6 6518h RTIC Mem Block D Hash Result Big Endian Format
Word 6

RDMDB_7 651Ch RTIC Mem Block D Hash Result Big Endian Format
Word 7

RDMDB_8 6520h RTIC Mem Block D Hash Result Big Endian Format
Word 8

RDMDB_9 6524h RTIC Mem Block D Hash Result Big Endian Format
Word 9

RDMDB_10 6528h RTIC Mem Block D Hash Result Big Endian Format
Word 10

RDMDB_11 652Ch RTIC Mem Block D Hash Result Big Endian Format
Word 11

RDMDB_12 6530h RTIC Mem Block D Hash Result Big Endian Format
Word 12

RDMDB_13 6534h RTIC Mem Block D Hash Result Big Endian Format
Word 13

RDMDB_14 6538h RTIC Mem Block D Hash Result Big Endian Format
Word 14

RDMDB_15 653Ch RTIC Mem Block D Hash Result Big Endian Format
Word 15

RDMDB_16 6540h RTIC Mem Block D Hash Result Big Endian Format
Word 16

RDMDB_17 6544h RTIC Mem Block D Hash Result Big Endian Format
Word 17

RDMDB_18 6548h RTIC Mem Block D Hash Result Big Endian Format
Word 18

RDMDB_19 654Ch RTIC Mem Block D Hash Result Big Endian Format
Word 19

RDMDB_20 6550h RTIC Mem Block D Hash Result Big Endian Format
Word 20

RDMDB_21 6554h RTIC Mem Block D Hash Result Big Endian Format
Word 21

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

938 NXP Semiconductors
Confidential Proprietary

Register Offset Description

RDMDB_22 6558h RTIC Mem Block D Hash Result Big Endian Format
Word 22

RDMDB_23 655Ch RTIC Mem Block D Hash Result Big Endian Format
Word 23

RDMDB_24 6560h RTIC Mem Block D Hash Result Big Endian Format
Word 24

RDMDB_25 6564h RTIC Mem Block D Hash Result Big Endian Format
Word 25

RDMDB_26 6568h RTIC Mem Block D Hash Result Big Endian Format
Word 26

RDMDB_27 656Ch RTIC Mem Block D Hash Result Big Endian Format
Word 27

RDMDB_28 6570h RTIC Mem Block D Hash Result Big Endian Format
Word 28

RDMDB_29 6574h RTIC Mem Block D Hash Result Big Endian Format
Word 29

RDMDB_30 6578h RTIC Mem Block D Hash Result Big Endian Format
Word 30

RDMDB_31 657Ch RTIC Mem Block D Hash Result Big Endian Format
Word 31

RDMDL_0 6580h RTIC Mem Block D Hash Result Little Endian
Format Word 0

RDMDL_1 6584h RTIC Mem Block D Hash Result Little Endian
Format Word 1

RDMDL_2 6588h RTIC Mem Block D Hash Result Little Endian
Format Word 2

RDMDL_3 658Ch RTIC Mem Block D Hash Result Little Endian
Format Word 3

RDMDL_4 6590h RTIC Mem Block D Hash Result Little Endian
Format Word 4

RDMDL_5 6594h RTIC Mem Block D Hash Result Little Endian
Format Word 5

RDMDL_6 6598h RTIC Mem Block D Hash Result Little Endian
Format Word 6

RDMDL_7 659Ch RTIC Mem Block D Hash Result Little Endian
Format Word 7

RDMDL_8 65A0h RTIC Mem Block D Hash Result Little Endian
Format Word 8

RDMDL_9 65A4h RTIC Mem Block D Hash Result Little Endian
Format Word 9

RDMDL_10 65A8h RTIC Mem Block D Hash Result Little Endian
Format Word 10

RDMDL_11 65ACh RTIC Mem Block D Hash Result Little Endian
Format Word 11

RDMDL_12 65B0h RTIC Mem Block D Hash Result Little Endian
Format Word 12

RDMDL_13 65B4h RTIC Mem Block D Hash Result Little Endian
Format Word 13

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 939
Confidential Proprietary

Register Offset Description

RDMDL_14 65B8h RTIC Mem Block D Hash Result Little Endian
Format Word 14

RDMDL_15 65BCh RTIC Mem Block D Hash Result Little Endian
Format Word 15

RDMDL_16 65C0h RTIC Mem Block D Hash Result Little Endian
Format Word 16

RDMDL_17 65C4h RTIC Mem Block D Hash Result Little Endian
Format Word 17

RDMDL_18 65C8h RTIC Mem Block D Hash Result Little Endian
Format Word 18

RDMDL_19 65CCh RTIC Mem Block D Hash Result Little Endian
Format Word 19

RDMDL_20 65D0h RTIC Mem Block D Hash Result Little Endian
Format Word 20

RDMDL_21 65D4h RTIC Mem Block D Hash Result Little Endian
Format Word 21

RDMDL_22 65D8h RTIC Mem Block D Hash Result Little Endian
Format Word 22

RDMDL_23 65DCh RTIC Mem Block D Hash Result Little Endian
Format Word 23

RDMDL_24 65E0h RTIC Mem Block D Hash Result Little Endian
Format Word 24

RDMDL_25 65E4h RTIC Mem Block D Hash Result Little Endian
Format Word 25

RDMDL_26 65E8h RTIC Mem Block D Hash Result Little Endian
Format Word 26

RDMDL_27 65ECh RTIC Mem Block D Hash Result Little Endian
Format Word 27

RDMDL_28 65F0h RTIC Mem Block D Hash Result Little Endian
Format Word 28

RDMDL_29 65F4h RTIC Mem Block D Hash Result Little Endian
Format Word 29

RDMDL_30 65F8h RTIC Mem Block D Hash Result Little Endian
Format Word 30

RDMDL_31 65FCh RTIC Mem Block D Hash Result Little Endian
Format Word 31

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

940 NXP Semiconductors
Confidential Proprietary

10.13.157.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RTIC_Hash_Result

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTIC_Hash_Result

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.157.3 Fields

Field Description

31-0

RTIC_Hash_Re
sult

RTIC_Hash_Result

10.13.158 Recoverable Error Indication Record 0 for RTIC (REIR
0RTIC)

If a recoverable error occurs related to execution of a job from RTIC, error information
will be captured in RTIC's REIR registers. Data for a second recoverable error related to
jobs from RTIC will not be captured until the REIR0RTIC is written. If another bus error
from RTIC occurs before then, the double error status bit (MISS) in REIR0RTIC will be
set. When REIR0RTIC is written, all of RTIC's REIRRTIC registers are cleared and error
capture is re-enabled.

10.13.158.1 Offset

Register Offset

REIR0RTIC 6E00h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 941
Confidential Proprietary

10.13.158.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

M
IS

S

R
es

er
ve

d

T
Y

P
E

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.158.3 Fields

Field Description

31

MISS

If MISS=1, a second recoverable error associated with RTIC occurred before REIR0RTIC was written
following a previous RTIC recoverable error.

30-26

—

Reserved

25-24

TYPE

This field indicates the type of the recoverable error.

If TYPE = 00b : reserved

If TYPE = 01b : memory access error

If TYPE = 10b : reserved

If TYPE = 11b : reserved

23-0

—

Reserved

10.13.159 Recoverable Error Indication Record 2 for RTIC (REIR
2RTIC)

See the description for Recoverable Error Indication Record 0 for RTIC (REIR0RTIC).

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

942 NXP Semiconductors
Confidential Proprietary

10.13.159.1 Offset

Register Offset Description

REIR2RTIC 6E08h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

10.13.159.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.159.3 Fields

Field Description

63-0

ADDR

This register holds the address associated with the recoverable RTIC error.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 943
Confidential Proprietary

10.13.160 Recoverable Error Indication Record 4 for RTIC (REIR
4RTIC)

See the description for Recoverable Error Indication Record 0 for RTIC (REIR0RTIC).

10.13.160.1 Offset

Register Offset

REIR4RTIC 6E10h

10.13.160.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R MIX ERR
Reserved

RWB AXPROT AXCACHE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

D
ID

IC
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.160.3 Fields

Field Description

31-30

MIX

This field holds the memory interface index associated with the recoverable error.

29-28

ERR

This field holds the AXI error response associated with the recoverable error.

27-24

—

Reserved

23

RWB

This field specifies whether the memory access was a read or write.

22-20 This field holds the AXI protection transaction attribute used for the memory access.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

944 NXP Semiconductors
Confidential Proprietary

Field Description

AXPROT

19-16

AXCACHE

This field holds the AXI cache control transaction attribute used for the memory access.

15

—

Reserved

14-11

DID

This field holds the DID associated with the recoverable error.

10-0

ICID

This field holds the ICID associated with the recoverable error.

10.13.161 Recoverable Error Indication Record 5 for RTIC (REIR
5RTIC)

See the description for Recoverable Error Indication Record 0 for RTIC (REIR0RTIC).

10.13.161.1 Offset

Register Offset

REIR5RTIC 6E14h

10.13.161.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

S
M

A

S
A

F
E

R
es

er
ve

d

B
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 945
Confidential Proprietary

10.13.161.3 Fields

Field Description

31-26

—

Reserved

25

SMA

This field indicates whether the bus transaction associated with the recoverable error was an attempted
access to CAAM Secure Memory.

24

SAFE

SAFE indicates whether the AXI transaction associated with the recoverable error was a "safe"
transaction.

23-20

—

Reserved

19-16

BID

This field holds the block identifier (see Table 10-243) of the source of the AXI transaction associated
with the recoverable error.

15-0

—

Reserved

10.13.162 CCB 0 Class 1 Mode Register Format for Non-Public
Key Algorithms (C0C1MR)

The Class 1 Mode Register is used to tell the Class 1 CHAs which operation is being
requested. The interpretation of this register will be unique for each CHA. The Class 1
Mode Register has several independent definitions, one for Public Key algorithms (see
Section CCB 0 Class 1 Mode Register Format for Public Key Algorithms (C0C1MR_P
K)),one for RNG (see Section CCB 0 Class 1 Mode Register Format for RNG4 (C0C1
MR_RNG)), and one for all others. The Class 1 Mode Register is automatically written
by the OPERATION Command. Using a descriptor, the only way to write to the Class 1
Mode Register is via the OPERATION Command. This register is automatically cleared
when a key is to be encrypted or decrypted using the KEY or FIFO STORE
Commands.This register is also automatically cleared when the signature over a Trusted
Descriptor is checked or a Trusted Descriptor is re-signed.

This section defines the format of the Class 1 Mode Register when used with non-public-
key algorithms. The Non-Public-Key algorithms are those that do not use the PKHA.

Some examples of how to build the Class 1 Mode Register for non-Public Key
algorithms:

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

946 NXP Semiconductors
Confidential Proprietary

Table 10-246. Class 1 Mode Register examples for non-Public Key algorithms

Crypto service
performed

ALG
Mnemonic

AAI
Mnemonic

AS
Mnemonic

ICV Encrypt/

Decrypt/

Protect/

Authenticat
e

ALGORITHM
OPERATION
Command

32-bit Value
Loaded into

C1 Mode Reg

AES GCM AES GCM Init / Finalize yes Decrypt 8201090Eh 0001090Eh

AES Counter with
mod=2128

AES CTR

Modulus 2128

-- no Encrypt 82010001h 00010001h

Triple DES OFB mode
with key parity

DES OFB -- no Decrypt 82021400h 00021400h

10.13.162.1 Offset

Register Offset Description

C0C1MR 8004h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.162.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ALG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

A
A

I

A S

IC
V

_T
E

S
T

E
N

C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.162.3 Fields

Field Description

31-24 Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 947
Confidential Proprietary

Field Description

—

23-16

ALG

Algorithm. This field specifies which algorithm is being selected.

00010000 - AES

00100000 - DES

00100001 - 3DES

00110000 - ARC4

01010000 - RNG

15-13

—

Reserved

12-4

AAI

Additional Algorithm information. This field contains additional mode information associated with the
executed algorithm. See also the section describing the appropriate CHA. For RNG OPERATION
commands the AAI field is interpreted as shown in CCB 0 Class 1 Mode Register Format for RNG4
(C0C1MR_RNG).

NOTE: Some algorithms do not require additional algorithm information and in those cases this field
should be all 0s. The codes listed in the following table(s) are mutually exclusive, i.e., they
cannot be ORed with each other.

Table 10-247. AAI Interpretation for AES

Code Interpretation Code Interpretation

00h CTR (mod 2128) 80h CCM (mod 2128), -1

10h CBC 90h GCM (mod 232)-1

20h ECB

30h CFB128

40h OFB

60h CMAC

70h XCBC-MAC 12h CBC_CS2 (CTS)

Note that for AES the MSB of AAI is the DK (Decrypt Key) bit. Setting the DK bit (i.e. ORing 100h with
any AES code above) tells CAAM that the Key Register was loaded with the AES decrypt key, rather

than the AES encrypt key. See the discussion in Differences between the AES encrypt and decrypt keys

1. CCM and GCM use the key in the Class 1 Key Register.

Table 10-248. AAI Interpretation for DES

Code Interpretation Code Interpretation

10h CBC 30h CFB8

20h ECB 40h OFB

80h ORed with any DES code above: Check odd parity

1. CCM and GCM use the key in the Class 1 Key Register.

3-2

AS

Algorithm State. This field defines the state of the algorithm that is being executed. This may not be used
by every algorithm. For RNG commands, see CCB 0 Class 1 Mode Register Format for RNG4 (C0C1
MR_RNG).

00 - Update

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

948 NXP Semiconductors
Confidential Proprietary

Field Description

01 - Initialize

10 - Finalize

11 - Initialize/Finalize

1

ICV_TEST

ICV Checking / Test AESA fault detection.

(This is the definition of this bit for CHAs other than RNG. For the definition of this bit in RNG commands,
see CCB 0 Class 1 Mode Register Format for RNG4 (C0C1MR_RNG))

For algorithms other than AESA ECB mode: ICV Checking

This bit selects whether the current algorithm should compare the known ICV versus the calculated ICV.
This bit will be ignored by algorithms that do not support ICV checking.

0 - Don't compare

1 - Compare

For AESA ECB mode: Test AESA fault detection

In AESA ECB mode, this bit activates fault detection testing by injecting bit level errors into AESA core
logic as defined in the first 128 bits of the context.

0 - Don't inject bit errors

1 - Inject bit errors

0

ENC

Encrypt/Decrypt.

(This is the definition of this bit for CHAs other than RNG. For the definition of this bit in RNG commands,
see CCB 0 Class 1 Mode Register Format for RNG4 (C0C1MR_RNG).)

This bit selects encryption or decryption. This bit is ignored by all algorithms that do not have distinct
encryption and decryption modes.

0 - Decrypt.

1 - Encrypt.

1. CCM and GCM use the key in the Class 1 Key Register.

10.13.163 CCB 0 Class 1 Mode Register Format for Public Key
Algorithms (C0C1MR_PK)

The Class 1 Mode Register is used to tell the Class 1 CHAs which operation is being
requested. The interpretation of this register will be unique for each CHA. The Class 1
Mode Register has several independent definitions, one for Public Key algorithms (see
Section CCB 0 Class 1 Mode Register Format for Public Key Algorithms (C0C1MR_P
K)),one for RNG (see Section CCB 0 Class 1 Mode Register Format for RNG4 (C0C1
MR_RNG)), and one for all others. The Class 1 Mode Register is automatically written
by the OPERATION Command. Using a descriptor, the only way to write to the Class 1
Mode Register is via the OPERATION Command. This register is automatically cleared

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 949
Confidential Proprietary

when a key is to be encrypted or decrypted using the KEY or FIFO STORE
Commands.This register is also automatically cleared when the signature over a Trusted
Descriptor is checked or a Trusted Descriptor is re-signed.

The following figure shows the Class 1 Mode Register format that is used with public
key algorithms, which are algorithms that use PKHA. The Class 1 Mode register is
automatically cleared following a PKHA Command. The bit assignments for the
PKHA_MODE field shown in CCB 0 Class 1 Mode Register Format for Public Key
Algorithms (C0C1MR_PK) will be different depending on which of the three types of
PKHA functions is being called. The three function types are: 1) Clear Memory, 2)
Modular Arithmetic, and 3) Copy Memory. Detailed descriptions of their mode formats
can be found in Table PKHA OPERATION : clear memory function, Table PKHA
OPERATION : Arithmetic Functions and Table PKHA OPERATION : copy memory
functions.

10.13.163.1 Offset

Register Offset Description

C0C1MR_PK 8004h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.163.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved PKHA_MODE_MS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKHA_MODE_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.163.3 Fields

Field Description

31-20 Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

950 NXP Semiconductors
Confidential Proprietary

Field Description

—

19-16

PKHA_MODE_
MS

PKHA_MODE most-significant 4 bits. The format of the PKHA_MODE field differs depending on which of
the three types of PKHA functions is being executed. The three function types are: 1) Clear Memory, 2)
Modular Arithmetic, and 3) Copy Memory. Detailed descriptions of their mode formats can be found in
Table PKHA OPERATION : clear memory function, Table PKHA OPERATION : Arithmetic Functions and
Table PKHA OPERATION : copy memory functions.

15-12

—

Reserved

11-0

PKHA_MODE_L
S

PKHA_MODE least significant 12 bits. The format of the PKHA_MODE field differs depending on which
of the three types of PKHA functions is being executed. The three function types are: 1) Clear Memory, 2)
Modular Arithmetic, and 3) Copy Memory. Detailed descriptions of their mode formats can be found in
Table PKHA OPERATION : clear memory function, Table PKHA OPERATION : Arithmetic Functions and
Table PKHA OPERATION : copy memory functions.

10.13.164 CCB 0 Class 1 Mode Register Format for RNG4 (C0C1
MR_RNG)

The Class 1 Mode Register is used to tell the Class 1 CHAs which operation is being
requested. The interpretation of this register will be unique for each CHA. The Class 1
Mode Register has several independent definitions, one for Public Key algorithms (see
Section CCB 0 Class 1 Mode Register Format for Public Key Algorithms (C0C1MR_P
K)),one for RNG (see Section CCB 0 Class 1 Mode Register Format for RNG4 (C0C1
MR_RNG)), and one for all others. The Class 1 Mode Register is automatically written
by the OPERATION Command. Using a descriptor, the only way to write to the Class 1
Mode Register is via the OPERATION Command. This register is automatically cleared
when a key is to be encrypted or decrypted using the KEY or FIFO STORE
Commands.This register is also automatically cleared when the signature over a Trusted
Descriptor is checked or a Trusted Descriptor is re-signed.

When the Class 1 Mode register is used to control the RNG, the following format is used.

10.13.164.1 Offset

Register Offset Description

C0C1MR_RNG 8004h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 951
Confidential Proprietary

10.13.164.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ALG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

S K A
I

P S O
B

P

N
Z

B

R
es

er
ve

d

S H A S P R T
S

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.164.3 Fields

Field Description

31-24

—

Reserved

23-16

ALG

Algorithm. This field specifies which algorithm is being selected.

01010000 - RNG

15-13

—

Reserved

12

SK

Secure Key. For RNG OPERATION commands this bit of the AAI field is interpreted as the Secure Key
field. If SK=1 and AS=00 (Generate), the RNG will generate data to be loaded into the JDKEK, TDKEK
and TDSK. If a second Generate command is issued with SK=1, a Secure Key error will result. If SK=0
and AS=00 (Generate), the RNG will generate data to be stored as directed by the FIFO STORE
command. The SK field is ignored if AS!=00.

0 - The destination for the RNG data is specified by the FIFO STORE command.

1 - The RNG data will go to the JDKEKR, TDKEKR and DSKR.

11

AI

Additional Input Included. For RNG OPERATION commands this bit of the AAI field is interpreted as the
Additional Input Included field. If AS=00 (Generate) and AI=1, the 256 bits of additional data supplied via
the Class 1 Context Register will be used as additional entropy during random number generation. If
AS=10 (Reseed) and AI=1, the additional data supplied via the Class 1 Context register will be used as
additional entropy input during the reseeding operation. The AI field is ignored if AS=01 (Instantiate) or
AS=11 (Uninstantiate).

0 - No additional entropy input has been provided.

1 - Additional entropy input has been provided.

10

PS

Personalization String Included. For RNG OPERATION commands this bit of the AAI field is interpreted
as the Personalization String Included field. If AS=01 (Instantiate) and PS=1, a personalization string of
256 bits supplied via the Class 1 Context register is used as additional entropy input during instantiation.
Note that the personalization string does not need to be random. A device-unique value can be used to

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

952 NXP Semiconductors
Confidential Proprietary

Field Description

further guarantee that no two RNGs are ever instantiated with the same seed value. (Note that the
entropy generated by the TRNG already ensures this with high probability.) The PS field is ignored if AS!
=01.

0 - No personalization string is included.

1 - A personalization string is included.

9

OBP

Odd Byte Parity. For RNG Operation commands this bit of the AAI field is interpreted as the Odd Byte
Parity field. If AS=00 (Generate) and OBP=1, every byte of data generated during random number
generation will have odd parity. That is, the 128 possible bytes values that have odd parity will be
generated at random. If AS=00 (Generate) and OBP=0 and NZB=0, all 256 possible byte values will be
generated at random. The OBP field is ignored if AS≠00.

0 - No odd byte parity.

1 - Generate random data with odd byte parity.

8

NZB

NonZero bytes. For RNG OPERATION commands this bit of the AAI field is interpreted as the NonZero
Bytes field. If AS=00 (Generate) and NZB=1, no byte of data generated during random number
generation will be 00h, but (if OBP=0) the remaining 255 values will be generated at random. Note that
setting NZB=1 has no effect if OBP=1, since zero bytes are already excluded when odd byte parity is
selected. If AS=00h (Generate) and OBP=0 and NZB=0, all 256 possible byte values will be generated at
random. The NZB field is ignored if AS!=00h.

0 - Generate random data with all-zero bytes permitted.

1 - Generate random data without any all-zero bytes.

7-6

—

Reserved. For RNG commands these bits of the AAI field are reserved.

5-4

SH

State Handle. For RNG OPERATION commands these bits of the AAI field are interpreted as the State
Handle field. The command is issued to the State Handle selected via this field. An error will be
generated if the selected state handle is not implemented.

00 - State Handle 0

01 - State Handle 1

10 - Reserved

11 - Reserved

3-2

AS

Algorithm State. For RNG OPERATION commands these bits select RNG commands as shown below:

AS Value State Handle is already
instantiated

State Handle is NOT already
instantiated

00 Generate Generate random data per the mode
in which the state handle was
instantiated.

Error

01 Instantiate Error Instantiate the state handle in either
test mode or non-deterministic mode
as specified by TST, and either to
support prediction resistance or not
to support prediction resistance as
specified by PR.

10 Reseed Reseed the state handle. Error

11 Uninstantiate Uninstantiate the state handle. Error

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 953
Confidential Proprietary

Field Description

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in Test mode
but a Generate operation requests non-deterministic data from State Handle 0. This permits
deterministic testing of the built-in protocols prior to setting the RNGSH0 bit in the Security
Configuration register. Setting RNGSH0 would normally be performed during the boot process after
testing is complete.

1

PR

Prediction Resistance. For RNG OPERATION commands this bit is interpreted as:

AS Value PR = 0 PR = 1

00 Generate Do NOT reseed prior to generating
new random data

If the state handle was instantiated to
support prediction resistance, reseed
prior to generating new random data.
If the state handle was NOT
instantiated to support prediction
resistance, generate an error.

01 Instantiate Instantiate the state handle to NOT
support prediction resistance

Instantiate the state handle to
support prediction resistance

10 Reseed Reseed the state handle. PR bit is
ignored.

Reseed the state handle. PR bit is
ignored.

11 Uninstantiate Uninstantiate the state handle. PR bit
is ignored.

Uninstantiate the state handle. PR bit
is ignored.

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in Test mode
but a Generate operation requests non-deterministic data from State Handle 0. This permits
deterministic testing of the built-in protocols prior to setting the RNGSH0 bit in the Security
Configuration register. Setting RNGSH0 would normally be performed during the boot process after
testing is complete.

0

TST

Test Mode Request. For RNG OPERATION commands this bit is interpreted as:

AS Value TST = 0 TST = 1

00 Generate If the selected state handle is in non-
deterministic mode, generate new
random data.

If the selected state handle is in
deterministic mode, generate a Test
error.-1

If the selected state handle is in
deterministic mode, generate new
random data.

If the selected state handle is in non-
deterministic mode, generate a Test
error..

01 Instantiate Instantiate the state handle in normal
(non-deterministic) mode.

Instantiate the state handle in test
(deterministic) mode.

10 Reseed If the selected state handle is in non-
deterministic mode, reseed the state
handle.

If the selected state handle is in
deterministic mode, generate a Test
error.

If the selected state handle is in non-
deterministic mode, reseed the state
handle.

If the selected state handle is in
deterministic mode, generate a Test
error.

11 Uninstantiate Uninstantiate the state handle. TST
bit is ignored.

Uninstantiate the state handle. TST
bit is ignored.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

954 NXP Semiconductors
Confidential Proprietary

Field Description

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in Test mode
but a Generate operation requests non-deterministic data from State Handle 0. This permits
deterministic testing of the built-in protocols prior to setting the RNGSH0 bit in the Security
Configuration register. Setting RNGSH0 would normally be performed during the boot process after
testing is complete.

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in Test mode but a Generate
operation requests non-deterministic data from State Handle 0. This permits deterministic testing of the built-in protocols
prior to setting the RNGSH0 bit in the Security Configuration register. Setting RNGSH0 would normally be performed
during the boot process after testing is complete.

10.13.165 CCB 0 Class 1 Key Size Register (C0C1KSR)

The Class 1 Key Size Register is used to tell the Class 1 CHA the size of the key that was
loaded into the Class 1 Key Register. The Class 1 Key Size Register must be written after
the key is written into the Class 1 Key Register. Writing to the Class 1 Key Size Register
will prevent the user from modifying the Class 1 Key Register. The Class 1 Key Size
Register is automatically written by the KEY Command except in the following cases.
When AFHA Sboxes are loaded the Class 1 Key Size Register is not loaded because no
key size is required. When the PKHA E-RAM is loaded the PKHA E Size Register is
automatically loaded with the correct size, rather than loading the Class 1 Key Size
Register.

10.13.165.1 Offset

Register Offset Description

C0C1KSR 800Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 955
Confidential Proprietary

10.13.165.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved C1KS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.165.3 Fields

Field Description

31-7

—

Reserved

6-0

C1KS

Class 1 Key Size. This is the size of a Class 1 Key measured in bytes

10.13.166 CCB 0 Class 1 Data Size Register (C0C1DSR)

The Class 1 Data Size Register is used to tell the Class 1 CHA the amount of data that
will be loaded into the Input Data FIFO. For bit-oriented operations, the value in the
NUMBITS field is appended to the C1CY and C1DS fields to form a data size that is
measured in bits. Note that writing to the C1DS field in this register causes the written
value to be added to the previous value in that field. That is, if the C1DS field currently
has the value 14, writing 2 to the least-significant half of the Class 1 Data Size register
(i.e. the C1DS field) will result in a value of 16 in the C1DS field. Although there is a
C1CY field to hold the carry from this addition, care must be taken to avoid overflowing
the 33-bit value held in the concatenation of the C1CY and C1DS fields. Any such
overflow will be lost. Note that some CHAs decrement this register, so reading the
register may return a value less than sum of the values that were written into it. FIFO
LOAD commands can automatically load this register when automatic iNformation FIFO

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

956 NXP Semiconductors
Confidential Proprietary

entries are enabled. This register is cleared whenever a key is decrypted or encrypted.
Since the Class 1 Data Size Registers hold more than 32 bits, they are accessed from the
IP bus as two 32-bit registers.

10.13.166.1 Offset

Register Offset Description

C0C1DSR 8010h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.166.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R NUMBITS
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R

R
es

er
ve

d

C
1C

Y

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C1DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C1DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 957
Confidential Proprietary

10.13.166.3 Fields

Field Description

63-61

NUMBITS

Class 1 Data Size Number of bits. For bit-oriented operations, this value is appended to the C1CY and
C1DS fields to form a data size that is measured in bits. That is, the number of bits of data is given by the
value (C1CY || C1DS || NUMBITS). Note that if NUMBITS is nonzero, C1DS +1 bytes will be written to
the Input Data FIFO, but only NUMBITS bits of the last byte will be consumed by the bit-oriented
operation. Note that the NUMBITS field is not additive, so any write to the field will overwrite the previous
value.

60-33

—

Reserved

32

C1CY

Class 1 Data Size Carry. Although this field is not writable, it will be set if a write to C1DS causes a carry
out of the msb of C1DS.

0 - No carry out of the C1 Data Size Reg.

1 - There was a carry out of the C1 Data Size Reg.

31-0

C1DS

Class 1 Data Size. This is the number of whole bytes of data that will be consumed by the Class 1 CHA.
Note that one additional byte will be written into the Input Data FIFO if the NUMBITS field is nonzero.

10.13.167 CCB 0 Class 1 ICV Size Register (C0C1ICVSR)

The Class 1 ICV Size Register indicates how much of the last block of ICV is valid when
performing AES integrity check modes (e.g. AES-CMAC, AES-GCM). Like the Class 1
Data Size register, the Class 1 ICV Size register is additive. That is, any value written to
the C1ICVS field will be added to the previous value in the field. This register must be
written prior to the corresponding word of data being consumed by AES. In practical
terms, this means the register must be written either prior to the corresponding data being
written to the Input Data FIFO or prior to the iNformation FIFO entry for this data. FIFO
LOAD commands can automatically load it when ICV is loaded.

10.13.167.1 Offset

Register Offset Description

C0C1ICVSR 801Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

958 NXP Semiconductors
Confidential Proprietary

10.13.167.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved C1ICVS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.167.3 Fields

Field Description

31-5

—

Reserved

4-0

C1ICVS

Class 1 ICV Size, in Bytes.

10.13.168 CCB 0 CHA Control Register (C0CCTRL)

The CHA Control Register is used to send control signals to the CHAs. This register is
automatically written between Descriptors. Within a Descriptor, use the LOAD
Command to reset blocks or unload memories.

10.13.168.1 Offset

Register Offset Description

C0CCTRL 8034h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 959
Confidential Proprietary

10.13.168.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W U
B

U
A

U
N

U
B

3

U
B

2

U
B

1

U
B

0

U
A

3

U
A

2

U
A

1

U
A

0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W

R
N

G

M
D

P
K

R
C

4

D
E

S A
E

S C
C

B

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.168.3 Fields

Field Description

31-30

—

Reserved

29

—

Reserved

28

—

Reserved

27

UB

Unload the PKHA B Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B
memory into the Output Data FIFO.

0 - Don't unload the PKHA B Memory.

1 - Unload the PKHA B Memory into OFIFO.

26

UA

Unload the PKHA A Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A
memory into the Output Data FIFO.

0 - Don't unload the PKHA A Memory.

1 - Unload the PKHA A Memory into OFIFO.

25

—

Reserved

24

UN

Unload the PKHA N Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the N
memory into the Output Data FIFO.

0 - Don't unload the PKHA N Memory.

1 - Unload the PKHA N Memory into OFIFO.

23

UB3

Unload the PKHA B3 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B3
memory into the Output Data FIFO.

0 - Don't unload the PKHA B3 Memory.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

960 NXP Semiconductors
Confidential Proprietary

Field Description

1 - Unload the PKHA B3 Memory into OFIFO.

22

UB2

Unload the PKHA B2 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B2
memory into the Output Data FIFO.

0 - Don't unload the PKHA B2 Memory.

1 - Unload the PKHA B2 Memory into OFIFO.

21

UB1

Unload the PKHA B1 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B1
memory into the Output Data FIFO.

0 - Don't unload the PKHA B1 Memory.

1 - Unload the PKHA B1 Memory into OFIFO.

20

UB0

Unload the PKHA B0 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B0
memory into the Output Data FIFO.

0 - Don't unload the PKHA B0 Memory.

1 - Unload the PKHA B0 Memory into OFIFO.

19

UA3

Unload the PKHA A3 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A3
memory into the Output Data FIFO.

0 - Don't unload the PKHA A3 Memory.

1 - Unload the PKHA A3 Memory into OFIFO.

18

UA2

Unload the PKHA A2 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A2
memory into the Output Data FIFO.

0 - Don't unload the PKHA A2 Memory.

1 - Unload the PKHA A2 Memory into OFIFO.

17

UA1

Unload the PKHA A1 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A1
memory into the Output Data FIFO.

0 - Don't unload the PKHA A1 Memory.

1 - Unload the PKHA A1 Memory into OFIFO.

16

UA0

Unload the PKHA A0 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A0
memory into the Output Data FIFO.

0 - Don't unload the PKHA A0 Memory.

1 - Unload the PKHA A0 Memory into OFIFO.

15

—

Reserved

14

—

Reserved

13

—

Reserved

12

—

Reserved

11

—

Reserved

10

—

Reserved

9 Reset Random Number Generator. Writing a 1 to this bit resets the Random Number Generator.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 961
Confidential Proprietary

Field Description

RNG 0 - Do Not Reset

1 - Reset Random Number Generator Block.

8

—

Reserved

7

MD

Reset MDHA. Writing a 1 to this bit resets the Message Digest Hardware Accelerator.

0 - Do Not Reset

1 - Reset Message Digest Hardware Accelerator

6

PK

Reset PKHA. Writing a 1 to this bit resets the Public Key Hardware Accelerator.

0 - Do Not Reset

1 - Reset Public Key Hardware Accelerator

5

—

Reserved

4

—

Reserved

3

RC4

Reset AFHA. Writing a 1 to this bit resets the ARC4 Hardware Accelerator.

0 - Do Not Reset

1 - Reset ARC4 Hardware Accelerator

2

DES

Reset DESA. Writing a 1 to this bit resets the DES Accelerator.

0 - Do Not Reset

1 - Reset DES Accelerator

1

AES

Reset AESA. Writing a 1 to this bit resets the AES Accelerator.

0 - Do Not Reset

1 - Reset AES Accelerator

0

CCB

Reset CCB. Writing a 1 to this bit resets the CCB. If a CHA reset is required, the CHA should be reset
after the CCB is reset to prevent automatic restart of the CHA due to a non-0 CCB Mode Register (see
CnC1MR or CnC2MR) unless a CHA restart is intended. As an alternative to sequential reset of both
CCB and CHA(s), consider setting both the CHA bit(s) and the CCB bit or using the CCB Clear Written
Register.

NOTE: In CAAM versions before era 6, this bit was called 'ALL' and it could be used to reset the CCB
and all CHAs. While this was convenient, it also made the CHA available for sharing, which may
not be what the application requires.

0 - Do Not Reset

1 - Reset CCB

10.13.169 CCB 0 Interrupt Control Register (C0ICTL)

The IRQ Control Register shows the status of all CCB "done" interrupts and "error"
interrupts and provides controls for clearing these interrupts.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

962 NXP Semiconductors
Confidential Proprietary

10.13.169.1 Offset

Register Offset Description

C0ICTL 803Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.169.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
N

E
I

R
es

er
ve

d

M
E

I

P
E

I

R
es

er
ve

d

R
es

er
ve

d

R
C

E
I D

E
I A

E
I

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
N

D
I

R
es

er
ve

d

M
D

I

P
D

I

R
es

er
ve

d

R
es

er
ve

d

R
C

D
I

D
D

I

A
D

I

R
es

er
ve

d

W

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.169.3 Fields

Field Description

31

—

Reserved

30

—

Reserved

29

—

Reserved

28

—

Reserved

27

—

Reserved

26

—

Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 963
Confidential Proprietary

Field Description

25

RNEI

RNG Error Interrupt asserted.

0 - No RNG error detected

1 - RNG error detected

24

—

Reserved

23

MEI

MDHA (hashing) Error Interrupt asserted.

0 - No MDHA error detected

1 - MDHA error detected

22

PEI

PKHA (Public Key) Error Interrupt asserted.

0 - No PKHA error detected

1 - PKHA error detected

21

—

Reserved

20

—

Reserved

19

RCEI

AFHA (ARC4) Error Interrupt asserted.

0 - No AFHA error detected

1 - AFHA error detected

18

DEI

DESA Error Interrupt asserted.

0 - No DESA error detected

1 - DESA error detected

17

AEI

AESA Error Interrupt asserted.

0 - No AESA error detected

1 - AESA error detected

16

—

Reserved

15

—

Reserved

14

—

Reserved

13

—

Reserved

12

—

Reserved

11

—

Reserved

10

—

Reserved

9 RNG done interrupt.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

964 NXP Semiconductors
Confidential Proprietary

Field Description

RNDI Value Read Write

0 No Done Interrupt No change

1 RNG Done Interrupt asserted Clear the RNG Done Interrupt

8

—

Reserved

7

MDI

MDHA (hashing) done interrupt.

Value Read Write

0 No Done Interrupt No change

1 MDHA Done Interrupt asserted Clear the MDHA Done Interrupt

6

PDI

PKHA (Public Key) done interrupt.

Value Read Write

0 No Done Interrupt No change

1 PKHA Done Interrupt asserted Clear the PKHA Done Interrupt

5

—

Reserved

4

—

Reserved

3

RCDI

ARC4 done interrupt.

Value Read Write

0 No Done Interrupt No change

1 ARC4 Done Interrupt asserted Clear the ARC4 Done Interrupt

2

DDI

DESA done interrupt.

Value Read Write

0 No Done Interrupt No change

1 DESA Done Interrupt asserted Clear the DESA Done Interrupt

1

ADI

AESA done interrupt.

Value Read Write

0 No Done Interrupt No change

1 AESA Done Interrupt asserted Clear the AESA Done Interrupt

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 965
Confidential Proprietary

Field Description

0

—

Reserved

10.13.170 CCB 0 Clear Written Register (C0CWR)

The Clear Written Register is used to clear many of the internal registers. This register is
automatically written, if necessary, by DECO between Shared Descriptors. All fields of
this register are self-clearing.

10.13.170.1 Offset

Register Offset Description

C0CWR 8044h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.170.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d
W C

IF

C
O

F

C
1R

S
T

C
2R

S
T

C
1D

C
2D

C
D

S

C
2K

C
2C

C
2D

S

C
2M

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W

C
P

K
E

C
P

K
N

C
P

K
B

C
P

K
A

C
1K

C
1C

C
1I

C
V

C
1D

S

C
1M

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

966 NXP Semiconductors
Confidential Proprietary

10.13.170.3 Fields

Field Description

31

CIF

Clear Input FIFO (and NFIFO). Writing a 1 to this bit causes the Input Data FIFO and iNformation FIFO to
be cleared.

0 - Don't clear the IFIFO.

1 - Clear the IFIFO.

30

COF

Clear Output FIFO. Writing a 1 to this bit causes the Output FIFO to be cleared.

0 - Don't clear the OFIFO.

1 - Clear the OFIFO.

29

C1RST

Reset Class 1 CHA. Writing a 1 to this bit causes a reset to any Class 1 CHA that is currently selected by
this DECO.

0 - Don't reset the Class 1 CHA.

1 - Reset the Class 1 CHA.

28

C2RST

Reset Class 2 CHA. Writing a 1 to this bit causes a reset to any Class 2 CHA that is currently selected by
this DECO.

0 - Don't reset the Class 2 CHA.

1 - Reset the Class 2 CHA.

27

C1D

Clear Class 1 Done Interrupt. Writing a 1 to this bit clears the Class 1 done interrupt.

0 - Don't clear the Class 1 done interrrupt.

1 - Clear the Class 1 done interrrupt.

26

C2D

Clear Class 2 Done Interrupt. Writing a 1 to this bit clears the Class 2 done interrupt.

0 - Don't clear the Class 2 done interrrupt.

1 - Clear the Class 2 done interrrupt.

25

CDS

Clear Descriptor Sharing signal. Writing a 1 to this bit clears the shared_descriptor signal in DECO. This
signal tells DECO, and the protocols, whether this descriptor was shared from a previous run. If CDS is
set via LOAD IMM to the Clear Written register the fact that this descriptor was shared will be forgotten
and the descriptor will behave thereafter as if it was not shared. This is important in protocols where the
protocol expects a "decrypt" key but an "encrypt" key is provided. This may occur when using RJD to re-
key a flow. Note that writing 1 to this bit when the DECO/CCB is under direct software control will not
clear sharing, but that is unimportant because sharing is not possible when the DECO is under direct
software control.

0 - Don't clear the shared descriptor signal.

1 - Clear the shared descriptor signal.

24-23

—

Reserved

22

C2K

Clear the Class 2 Key Register. Writing a one to this bit causes the Class 2 Key and Key Size Registers
to be cleared.

0 - Don't clear the Class 2 Key Register.

1 - Clear the Class 2 Key Register.

21

C2C

Clear the Class 2 Context Register. Writing a one to this bit causes the Class 2 Context Register to be
cleared.

0 - Don't clear the Class 2 Context Register.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 967
Confidential Proprietary

Field Description

1 - Clear the Class 2 Context Register.

20-19

—

Reserved

18

C2DS

Clear the Class 2 Data Size Registers. Writing a one to this bit causes the Class 2 Data Size and ICV
Size Registers to be cleared.

0 - Don't clear the Class 2 Data Size Register.

1 - Clear the Class 2 Data Size Register.

17

—

Reserved

16

C2M

Clear the Class 2 Mode Register. Writing a one to this bit causes the Class 2 Mode Register to be
cleared.

0 - Don't clear the Class 2 Mode Register.

1 - Clear the Class 2 Mode Register.

15

CPKE

Clear the PKHA E Size Register. Writing a one to this bit causes the PKHA E Size Register to be cleared.

0 - Don't clear the PKHA E Size Register..

1 - Clear the PKHA E Size Register.

14

CPKN

Clear the PKHA N Size Register. Writing a one to this bit causes the PKHA N Size Register to be cleared.

0 - Don't clear the PKHA N Size Register.

1 - Clear the PKHA N Size Register.

13

CPKB

Clear the PKHA B Size Register. Writing a one to this bit causes the PKHA B Size Register to be cleared.

0 - Don't clear the PKHA B Size Register.

1 - Clear the PKHA B Size Register.

12

CPKA

Clear the PKHA A Size Register. Writing a one to this bit causes the PKHA A Size Register to be cleared.

0 - Don't clear the PKHA A Size Register.

1 - Clear the PKHA A Size Register.

11-7

—

Reserved

6

C1K

Clear the Class 1 Key Register. Writing a one to this bit causes the Class 1 Key and Key Size Registers
to be cleared.

0 - Don't clear the Class 1 Key Register.

1 - Clear the Class 1 Key Register.

5

C1C

Clear the Class 1 Context Register. Writing a one to this bit causes the Class 1 Context Register to be
cleared.

0 - Don't clear the Class 1 Context Register.

1 - Clear the Class 1 Context Register.

4

—

Reserved

3

C1ICV

Clear the Class 1 ICV Size Register. Writing a one to this bit causes the Class 1 ICV Size Register to be
cleared.

0 - Don't clear the Class 1 ICV Size Register.

1 - Clear the Class 1 ICV Size Register.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

968 NXP Semiconductors
Confidential Proprietary

Field Description

2

C1DS

Clear the Class 1 Data Size Register. Writing a one to this bit causes the Class 1 Data Size Register to
be cleared. This clears AAD Size as well.

0 - Don't clear the Class 1 Data Size Register.

1 - Clear the Class 1 Data Size Register.

1

—

Reserved

0

C1M

Clear the Class 1 Mode Register. Writing a one to this bit causes the Class 1 Mode Register to be
cleared.

0 - Don't clear the Class 1 Mode Register.

1 - Clear the Class 1 Mode Register.

10.13.171 CCB 0 Status and Error Register, most-significant half
(C0CSTA_MS)

The CCB Status and Error Register shows the status of the CCB and its internal registers.
The fields of the CaCSTA are accessed as two 32-bit words.

10.13.171.1 Offset

Register Offset Description

C0CSTA_MS 8048h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.171.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CL2
Reserved

ERRID2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CL1
Reserved

ERRID1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 969
Confidential Proprietary

10.13.171.3 Fields

Field Description

31-28

CL2

Class 2 Algorithms. The Class 2 Algorithms bits indicate which algorithm is asserting an error.

Others reserved.

0100 - MD5, SHA-1, SHA-224, SHA-256

27-20

—

Reserved

19-16

ERRID2

Error ID 2. These bits indicate the type of error that was found while processing the Descriptor. The
Algorithm that is associated with the error can be found in the CL2 field

Others Reserved

0001 - Mode Error

0010 - Data Size Error

0011 - Key Size Error

0110 - Data Arrived out of Sequence Error

1010 - ICV Check Failed

1011 - Internal Hardware Failure

1110 - Invalid CHA combination was selected.

1111 - Invalid CHA Selected

15-12

CL1

Class 1 algorithms. The Class 1 algorithms field indicates which algorithm is asserting an error.

Others reserved

0001 - AES

0010 - DES

0011 - ARC4

0101 - RNG

1000 - Public Key

11-4

—

Reserved

3-0

ERRID1

Error ID 1. These bits indicate the type of error that was found while processing the Descriptor. The
Algorithm that is associated with the error can be found in the CL1 field.

Others reserved.

0001 - Mode Error

0010 - Data Size Error, including PKHA N Memory Size Error

0011 - Key Size Error, including PKHA E Memory Size Error

0100 - PKHA A Memory Size Error

0101 - PKHA B Memory Size Error

0110 - Data Arrived out of Sequence Error

0111 - PKHA Divide by Zero Error

1000 - PKHA Modulus Even Error

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

970 NXP Semiconductors
Confidential Proprietary

Field Description

1001 - DES Key Parity Error

1010 - ICV Check Failed

1011 - Internal Hardware Failure

1100 - CCM AAD Size Error (either 1. AAD flag in B0 =1 and no AAD type provided, 2. AAD flag in B0 = 0
and AAD provided, or 3. AAD flag in B0 =1 and not enough AAD provided - expecting more based on
AAD size.)

1101 - Class 1 CHA is not reset

1110 - Invalid CHA combination was selected

1111 - Invalid CHA Selected

10.13.172 CCB 0 Status and Error Register, least-significant half
(C0CSTA_LS)

The CCB Status and Error Register shows the status of the CCB and its internal registers.
The fields of the CaCSTA are accessed as two 32-bit words.

10.13.172.1 Offset

Register Offset Description

C0CSTA_LS 804Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.172.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

P
IZ

G
C

D

P
R

M

R
es

er
ve

d

S
E

I P
E

I

R
es

er
ve

d

S
D

I P
D

I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
N

B

R
es

er
ve

d

M
B

P B

R
es

er
ve

d

R
es

er
ve

d

R
C

B

D
B

A
B

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 971
Confidential Proprietary

10.13.172.3 Fields

Field Description

31

—

Reserved

30

PIZ

Public Key Operation is Zero. For Finite Field operations the result of a Public Key operation is zero. For
ECC operations, the result is Point at infinity.

0 - The result of a Public Key operation is not zero.

1 - The result of a Public Key operation is zero.

29

GCD

GCD is One. The greatest common divisor of two numbers is one (that is, the two numbers are relatively
prime).

0 - The greatest common divisor of two numbers is NOT one.

1 - The greatest common divisor of two numbers is one.

28

PRM

Public Key is Prime. The given number is probably prime (that is, it passes the Miller-Rabin primality test).

0 - The given number is NOT prime.

1 - The given number is probably prime.

27-22

—

Reserved

21

SEI

Class 2 Error Interrupt. The Class 2 Error Interrupt has been asserted.

0 - No Error

1 - Error Interrupt

20

PEI

Class 1 Error Interrupt. The Class 1 Error Interrupt has been asserted.

0 - No Error

1 - Error Interrupt

19-18

—

Reserved

17

SDI

Class 2 Done Interrupt. The Class 2 Done Interrupt has been asserted.

0 - Not Done

1 - Done Interrupt

16

PDI

Class 1 Done Interrupt. The Class 1 Done Interrupt has been asserted.

0 - Not Done

1 - Done Interrupt

15

—

Reserved

14

—

Reserved

13

—

Reserved

12 Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

972 NXP Semiconductors
Confidential Proprietary

Field Description

—

11

—

Reserved

10

—

Reserved

9

RNB

RNG Block Busy. This bit indicates that the RNG block is busy. The CHA can either be busy processing
data or resetting.

0 - RNG Idle

1 - RNG Busy

8

—

Reserved

7

MB

MDHA Busy. This bit indicates that the MDHA is busy. The CHA can either be busy processing data or
resetting.

0 - MDHA Idle

1 - MDHA Busy

6

PB

PKHA Busy. This bit indicates that the Public Key Hardware Accelerator is busy. The CHA can either be
busy processing data or resetting.

0 - PKHA Idle

1 - PKHA Busy

5

—

Reserved

4

—

Reserved

3

RCB

AFHA Busy. This bit indicates that the ARC4 Hardware Accelerator is busy. The CHA can either be busy
processing data or resetting.

0 - AFHA Idle

1 - AFHA Busy

2

DB

DESA Busy. This bit indicates that the DES Accelerator is busy. The CHA can either be busy processing
data or resetting.

0 - DESA Idle

1 - DESA Busy

1

AB

AESA Busy. This bit indicates that the AES Accelerator is busy. The CHA can either be busy processing
data or resetting.

0 - AESA Idle

1 - AESA Busy

0

—

Reserved

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 973
Confidential Proprietary

10.13.173 CCB 0 Class 1 AAD Size Register (C0C1AADSZR)

The AAD Size Register is used by AES CHAs to determine how much of the last block
of AAD is valid. Like the Class 1 Data Size Register, writing to this register causes the
written value to be added to the previous value in the register. The register is
automatically written by FIFO LOAD commands.

10.13.173.1 Offset

Register Offset Description

C0C1AADSZR 805Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.173.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved AASZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.173.3 Fields

Field Description

31-4

—

Reserved

3-0

AASZ

AAD size in Bytes, mod 16.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

974 NXP Semiconductors
Confidential Proprietary

10.13.174 CCB 0 Class 1 IV Size Register (C0C1IVSZR)

The Class 1 IV Size Register tells AES CHAs how much of the last block of IV is valid.
Like the Class 1 Data Size Register, writing to this register causes the written value to be
added to the previous value in the register. The register is automatically written by FIFO
LOAD commands.

10.13.174.1 Offset

Register Offset Description

C0C1IVSZR 8064h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.174.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IVSZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.174.3 Fields

Field Description

31-4

—

Reserved

3-0

IVSZ

IV size in bytes, mod 16.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 975
Confidential Proprietary

10.13.175 PKHA A Size Register (C0PKASZR)

The PKHA A Size Register is used to indicate the size of the data that will be loaded into
or unloaded from the PKHA A Memory. The PKHA A Size Register must be written
before the data is written into or read from the PKHA A Memory. This will reserve the
PKHA for the current job. The PKHA A Size Register can be automatically written by
the MOVE, FIFO LOAD and FIFO STORE commands.

10.13.175.1 Offset

Register Offset Description

C0PKASZR 8084h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.175.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKASZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.175.3 Fields

Field Description

31-10

—

Reserved

9-0

PKASZ

PKHA A Memory key size in bytes.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

976 NXP Semiconductors
Confidential Proprietary

10.13.176 PKHA B Size Register (C0PKBSZR)

The PKHA B Size Register is used to indicate the size of the data that will be loaded into
or unloaded from the PKHA B Memory. The PKHA B Size Register must be written
before the data is written into or read from the PKHA B Memory. This will reserve the
PKHA for the current job. The PKHA B Size Register can be automatically written by
the FIFO LOAD and FIFO STORE commands.

10.13.176.1 Offset

Register Offset Description

C0PKBSZR 808Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.176.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKBSZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.176.3 Fields

Field Description

31-10

—

Reserved

9-0

PKBSZ

PKHA B Memory key size in bytes.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 977
Confidential Proprietary

10.13.177 PKHA N Size Register (C0PKNSZR)

The PKHA N Size Register is used to indicate the size of the data that will be loaded into
or unloaded from the PKHA N Memory. The PKHA N Size Register must be written
before the data is written into or read from the PKHA N Memory. This will reserve the
PKHA for the current job. The PKHA N Size Register can be automatically written by
the FIFO LOAD and FIFO STORE commands.

10.13.177.1 Offset

Register Offset Description

C0PKNSZR 8094h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.177.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKNSZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.177.3 Fields

Field Description

31-10

—

Reserved

9-0

PKNSZ

PKHA N Memory key size in bytes.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

978 NXP Semiconductors
Confidential Proprietary

10.13.178 PKHA E Size Register (C0PKESZR)

The PKHA E Size Register is used to indicate the size of the data that will be loaded into
or unloaded from the PKHA E Memory. The PKHA E Size Register must be written
before the data is written into or read from the PKHA E Memory. This will reserve the
PKHA for the current job. The PKHA E Size Register is automatically written by the
KEY Command.

10.13.178.1 Offset

Register Offset Description

C0PKESZR 809Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.178.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKESZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.178.3 Fields

Field Description

31-10

—

Reserved

9-0

PKESZ

PKHA E Memory key size in bytes.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 979
Confidential Proprietary

10.13.179 CCB 0 Class 1 Context Register Word a (C0C1CTXR0 -
C0C1CTXR15)

The Class 1 Context Register holds the context for the Class 1 CHAs. This register is 512
bits in length. Individual byte writes are supported when this register is accessed via
descriptor commands, but via the IP bus the Class 1 Context Register is accessible only
as full-word reads or writes to sixteen 32-bit registers. The MSB is located at offset
0100h with respect to the register page. This register is cleared automatically when a
Black Key is being encrypted or decrypted using AES-CCM.

Note that some commands must block until a previous load to the Class 1 Context
Register has completed. Loading the Class 1 Context Register, whether via the KEY
Command, LOAD Command or MOVE Command, sets an internal blocking flag until
the Class 1 Context Register load has completed.

The bit assignments of this register are dependent on the algorithm, and in some cases the
mode of that algorithm. See the appropriate section for the Context Register format used
for that algorithm:

• AES ECB: Section AES ECB mode use of the Context Register
• AES CBC, CBC_CS2, OFB and CFB128: Section AES CBC, OFB, and CFB128

modes use of the Context Register
• AES CTR: Section AES CTR mode use of the Context Register
• AES XCBC_MAC, CMAC: Section AES XCBC-MAC and CMAC Modes use of

the Context Register
• AES CCM: Section AES CCM mode use of the Context Register
• AES GCM: Section AES GCM mode use of the Mode Register
• ARC4: Section AFHA use of the Context Register
• DES: Section DESA Context Register
• Random Numbers: Section RNG use of the Context Register
• Triple DES: Section DESA Context Register

10.13.179.1 Offset

For a = 0 to 15:

Register Offset Description

C0C1CTXRa 8100h + (a × 4h) Accessible only when RQD0 and DEN0 are asserted
in DECORR.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

980 NXP Semiconductors
Confidential Proprietary

10.13.179.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C1CTX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C1CTX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.179.3 Fields

Field Description

31-0

C1CTX

Class 1 Context.

10.13.180 CCB 0 Class 1 Key Registers Word a (C0C1KR0 - C0C1
KR7)

The Class 1 Key Register normally holds the left-aligned key for the Class 1 CHAs. The
MSB is in offset 200h. The Class 1 Key Register is 256 bits in length. Individual byte
writes are supported when this register is accessed via descriptor commands, but via the
IP bus the Class 1 Key Register is accessible only as full-word reads or writes to eight
32-bit registers. Although the Class 1 Key Register is only 32 bytes long, via the KEY
command it is possible to load a key larger than 32 bytes. In this case part of the Class 1
Context Register is used as an "Extended Key Register". The first 32 bytes are loaded
into the Class 1 Key Register, then, starting with the most-significant end, as many 8-byte
chunks of the Class 1 Context Register as required are allocated to the Extended Key
Register and are used to hold the remaining key bytes. The Extended Key Register bytes
cannot be overwritten and will return 0 when read. The remaining bytes are still available
for context data. Clearing the Class 1 Key Register will also clear the Extended Key

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 981
Confidential Proprietary

Register bytes in the Class 1 Context Register. The other bytes in the Class 1 Context
Register will not be cleared. Note that clearing the Class 1 Context Register will not clear
the Extended Key Register bytes.

The Class 1 Key Register can be written via a MOVE Command, a MATH Command, a
LOAD Command or a KEY Command. Before the value in the Class 1 Key Register can
be used in a cryptographic operation, the size of the key must be written into the Class 1
Key Size Register. Once the Class 1 Key Size Register has been written, the Class 1 Key
Register cannot be written again until the Class 1 Key Size Register has been cleared.
Writing the Class 1 Key Register via a KEY Command automatically writes the Class 1
Key Size Register, but if the Class 1 Key Register is written using a MOVE, MATH or
LOAD Command the Class 1 Key Size Register must be written via a separate command
after the Class 1 Key Register has been written. But until the Class 1 Key Size Register
has been written the Class 1 Key Register remains writable via STORE/SEQ STORE,
MATH or MOVE commands and readable via LOAD/SEQ LOAD, MATH or MOVE
commands. If the Class 1 Key Size Register and the Class 1 Key Register have been
cleared via the Clear Written Register, the Class 1 Key Register becomes writable and
readable again. This allows the Class 1 Key Register to be used for temporary storage if it
is not currently needed to hold a cryptographic key.

Even when the Class 1 Key Register holds a key (i.e. the Class 1 Key Size Register has
been written) it may still be possible to store the key in memory in encrypted form. The
FIFO STORE Command can be used to store an encrypted copy of this key (i.e. a Black
Key), unless storing the key has been prohibited via the NWB bit in the KEY Command.
The encrypted key can later be loaded into the Class 1 Key Register via the KEY
Command by setting the ENC bit to indicate that this is a Black (i.e. encrypted) Key. The
Black Key will automatically be decrypted before it is loaded into the Class 1 Key
Register. A Black Key can be loaded as long as the Key Encryption Key (KEK) has not
been changed (as a consequence of a security violation or a POR). Note that the Class 1
Key register is cleared when any key (including Class 2 Keys) is encrypted or decrypted,
so if a Black Key is to be loaded into or stored from the Class 2 Key Register, that must
be done prior to loading a key into the Class 1 Key Register. Similarly, if a key is to be
stored from the Class 1 Key Register as a Black Key and also used in a cryptographic
operation, the cryptographic operation should be performed first, or the key will have to
be loaded a second time.

10.13.180.1 Offset

For a = 0 to 7:

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

982 NXP Semiconductors
Confidential Proprietary

Register Offset Description

C0C1KRa 8200h + (a × 4h) Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.180.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C1KEY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C1KEY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.180.3 Fields

Field Description

31-0

C1KEY

Class 1 Key.

10.13.181 CCB 0 Class 2 Mode Register (C0C2MR)

The Class 2 Mode Register is used to tell the Class 2 CHA which operation is being
requested. The interpretation of this register is unique for each CHA. The Class 2 Mode
Register is automatically written by the OPERATION Command. This register is
automatically cleared when the signature over a Trusted Descriptor is checked or a
Trusted Descriptor is re-signed.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 983
Confidential Proprietary

10.13.181.1 Offset

Register Offset Description

C0C2MR 8404h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.181.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ALG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved AAI AS ICV AP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.181.3 Fields

Field Description

31-24

—

Reserved

23-16

ALG

Algorithm. This field specifies which algorithm has been requested for an OPERATION command.

01000000 - MD5

01000001 - SHA-1

01000010 - SHA-224

01000011 - SHA-256

15-13

—

Reserved

12-4

AAI

Additional Algorithm information. This field contains additional mode information that is associated with
the algorithm that is being executed. A detailed list of additional modes can be found below.

Value Description Valid with ALG

000h Hash without key MD5, SHA-*

001h HMAC using a non-derived key MD5, SHA-*

002h SMAC MD5, SHA-1

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

984 NXP Semiconductors
Confidential Proprietary

Field Description

Value Description Valid with ALG

004h HMAC using a derived key MD5, SHA-*

Others Reserved

3-2

AS

Algorithm State. This field defines the state of the algorithm that is being executed. Not every algorithm
uses this field. Check the individual algorithm sections to see if this field is used.

00 - Update.

01 - Initialize.

10 - Finalize.

11 - Initialize/Finalize.

1

ICV

ICV Checking. If this bit is set, the calculated ICV will be compared against a received ICV. This bit will be
ignored by algorithms that do not support ICV checking.

0 - Don't compare the calculated ICV against a received ICV.

1 - Compare the calculated ICV against a received ICV.

0

AP

Authenticate / Protect. Used by the Performance Counter to determine which count register to update.

0 - Authenticate

1 - Protect

10.13.182 CCB 0 Class 2 Key Size Register (C0C2KSR)

The Class 2 Key Size Register is used to tell the Class 2 CHA the size of the key that was
loaded into the Class 2 Key Register. The Class 2 Key Size Register must be written after
the key is written into the Class 2 Key Register. Writing to the Class 2 Key Size Register
will prevent the user from modifying the Class 2 Key Register. The Class 2 Key Size
Register is automatically written by the Key Command. This register is cleared when
Trusted Descriptors are checked or re-signed.

10.13.182.1 Offset

Register Offset Description

C0C2KSR 840Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 985
Confidential Proprietary

10.13.182.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved C2KS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.182.3 Fields

Field Description

31-8

—

Reserved

7-0

C2KS

Class 2 key size in bytes.

10.13.183 CCB 0 Class 2 Data Size Register (C0C2DSR)

The Class 2 Data Size Register is used to tell the Class 2 CHA the amount of data that
will be loaded into the Input Data FIFO. For bit-oriented operations, the value in the
NUMBITS field is appended to the C2CY and C2DS fields to form a data size that is
measured in bits. Note that writing to the C2DS field in this register causes the written
value to be added to the previous value in that field. That is, if the C2DS field currently
has the value 14, writing 2 to the least-significant half of the Class 2 Data Size register
(i.e. the C2DS field) will result in a value of 16 in the C2DS field. Although there is a
C2CY field to hold the carry from this addition, care must be taken to avoid overflowing
the 33-bit value held in the concatenation of the C2CY and C2DS fields. Any such
overflow will be lost. Note that some CHAs decrement this register, so reading the
register may return a value less than sum of the values that were written into it. FIFO
LOAD commands can automatically load this register when automatic iNformation FIFO

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

986 NXP Semiconductors
Confidential Proprietary

entries are enabled. This register is reset when checking the signature over, or re-signing,
Trusted Descriptors. Since the Class 2 Data Size Register holds more than 32 bits, it is
accessed from the IP bus as two 32-bit registers.

10.13.183.1 Offset

Register Offset Description

C0C2DSR 8410h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.183.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R NUMBITS
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R

R
es

er
ve

d

C
2C

Y

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C2DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C2DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 987
Confidential Proprietary

10.13.183.3 Fields

Field Description

63-61

NUMBITS

Class 2 Data Size Number of bits. For bit-oriented operations, this value is appended to the C2CY and
C2DS fields to form a data size that is measured in bits. That is, the number of bits of data is given by the
value (C2CY || C2DS || NUMBITS). Note that if NUMBITS is nonzero, C2DS +1 bytes will be written to
the Input Data FIFO, but only NUMBITS bits of the last byte will be consumed by the bit-oriented
operation. Note that the NUMBITS field is not additive, so any write to the field will overwrite the previous
value.

60-33

—

Reserved

32

C2CY

Class 2 Data Size Carry. Although this field is not writable, it will be set if a write to C2DS causes a carry
out of the msb of C2DS.

0 - A write to the Class 2 Data Size Register did not cause a carry.

1 - A write to the Class 2 Data Size Register caused a carry.

31-0

C2DS

Class 2 Data Size in Bytes. This is the number of whole bytes of data that will be consumed by the Class
2 CHA. Note that one additional byte will be written into the Input Data FIFO if the NUMBITS field is
nonzero.

10.13.184 CCB 0 Class 2 ICV Size Register (C0C2ICVSZR)

The Class 2 ICV Size Register indicates how much of the last block of ICV is valid when
performing MDHA integrity check operations (e.g. SHA-1, SHA-224, SHA-256,
SHA-384, and MD5). For AES Class 2 operations the Class 2 ICV Size Register
indicates the size of the ICV. Writing to this register causes the written value to be added
to the previous value in the register. This register is automatically written by FIFO
LOAD commands. This register is cleared when checking the signature over, or re-
signing, Trusted Descriptors.

10.13.184.1 Offset

Register Offset Description

C0C2ICVSZR 841Ch Accessible only when RQD0 and DEN0 are asserted
in DECORR.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

988 NXP Semiconductors
Confidential Proprietary

10.13.184.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ICVSZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.184.3 Fields

Field Description

31-4

—

Reserved

3-0

ICVSZ

Class 2 ICV size (mod 8) in bytes. For MDHA, writing 0 to this field will be interpreted as an ICV size of 8
bytes. For AESA, writing 0, 1, 2 or 3 to this field will be interpreted as an ICV size of 16 bytes.

10.13.185 CCB 0 Class 2 Context Register Word a (C0C2CTXR0 -
C0C2CTXR9)

The Class 2 Context Register holds the context for the Class 2 CHAs. This register is 320
bits in length. Individual byte writes are supported when this register is accessed via
descriptor commands, but via the IP bus the Class 2 Context Register is accessible only
as full-word reads or writes to ten 32-bit registers. The MSB is located at offset 500h
with respect to the register page. This register is cleared when checking the signature
over, or re-signing, Trusted Descriptors.

The bit assignments for this register are dependent on the algorithm. See the appropriate
section for the Context Register format used by that algorithm.

• MD5: Section MDHA use of the Context Register
• SHA-*: Section MDHA use of the Context Register

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 989
Confidential Proprietary

10.13.185.1 Offset

For a = 0 to 9:

Register Offset Description

C0C2CTXRa 8500h + (a × 4h) Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.185.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C2CTXR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C2CTXR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.185.3 Fields

Field Description

31-0

C2CTXR

Class 2 Context.

10.13.186 CCB 0 Class 2 Key Register Word a (C0C2KEYR0 -
C0C2KEYR15)

The Class 2 Key Register holds the key for the Class 2 CHAs. For non-derived HMAC
keys, the key is left-aligned in the C2KEYR. Derived HMAC keys consist of two
derivations from the original non-derived HMAC key: For the first derivation the original
HMAC key is XORed with IPAD (a constant byte 36h repeated to fill a block) and then
processed with the underlying hash function. The second derivation consists of the
HMAC key getting XORed with OPAD (a constant byte 5Ch repeated to fill a block) and

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

990 NXP Semiconductors
Confidential Proprietary

then processed with the underlying hash function. Note that the size of the derived
HMAC key is twice the size of of the Message Digest registers for the underlying hash
function. The IPAD-half of the derived key is left-aligned within C2KEYR, while the
OPAD-half of the derived key is left-aligned starting at the mid-point of the C2KEYR.
This register is 512 bits in length. Individual byte writes are supported when this register
is accessed via descriptor commands, but via the IP bus the Class 2 Key Register is
accessible only as full-word reads or writes to sixteen 32-bit registers. The MSB is
located at offset 600h with respect to the start of the register page. This register is
automatically written by KEY commands. The recommended practice is to write the
Class 2 Key Register prior to writing any of the other Class 2 registers. This register is
cleared when checking the signature over, or re-signing, Trusted Descriptors.

10.13.186.1 Offset

For a = 0 to 15:

Register Offset Description

C0C2KEYRa 8600h + (a × 4h) Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.186.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C2KEY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C2KEY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.186.3 Fields

Field Description

31-0

C2KEY

Class 2 Key.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 991
Confidential Proprietary

10.13.187 CCB 0 FIFO Status Register (C0FIFOSTA)

The CCB FIFO Status Register is used during debug to facilitate reading the CCB FIFOs.
Software must keep track of the data written to the Input Data FIFO (CCB 0 Input Data
FIFO (C0IFIFO)), but the data within the Output Data FIFO (CCB 0 Output Data FIFO
(C0OFIFO)) can be read out. Both the Class 1 Alignment Block and the Class 2
Alignment Block (see Alignment blocks) draw data from the Input Data FIFO, and both
the DMA and the DECO Alignment Block draw data from the Output Data FIFO.
Reading the CaFIFOSTA register returns the current heads of the Alignment Block and
DMA queues within these two FIFOs. Note that the values in this register will change as
descriptors are executed, so the register should be read when the DECO is not actively
executing a descriptor.

10.13.187.1 Offset

Register Offset Description

C0FIFOSTA 87C0h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.187.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R C1IQHEAD C2IQHEAD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DMAOQHEAD DECOOQHEAD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

992 NXP Semiconductors
Confidential Proprietary

10.13.187.3 Fields

Field Description

31-24

C1IQHEAD

This is the current head of the Class 1 Alignment Block queue located within the Input Data FIFO. The
value in this field points to the next data that will be pulled from the Input Data FIFO by the Class 1
Alignment Block.

23-16

C2IQHEAD

This is the current head of the Class 2 Alignment Block queue located within the Input Data FIFO. The
value in this field points to the next data that will be pulled from the Input Data FIFO by the Class 2
Alignment Block.

15-8

DMAOQHEAD

This is the current head of the DMA queue located within the Output Data FIFO. The value in this field
points to the next data that will be pulled from the Output Data FIFO by the DMA controller.

7-0

DECOOQHEAD

This is the current head of the DECO Alignment Block queue located within the Output Data FIFO. The
value in this field points to the next data that will be pulled from the Output Data FIFO by the DECO
Alignment Block. This is used during "out snooping" operations, i.e. when data is passed first through a
Class 1 CHA and the results pushed into the OFIFO, and from there the results are sent through a Class
2 CHA.

10.13.188 CCB 0 iNformation FIFO When STYPE != 10b (C0NF
IFO)

The iNformation FIFO (Input Information FIFO) is used to control the movement of data
from any of four sources to any of the three alignment blocks (see Alignment blocks).
The four sources are the Input Data FIFO, the Output Data FIFO, the CCB Padding
Block and the Auxiliary Data FIFO. Note that the only way to get data out of any of these
sources other than via the Output Data FIFO is to use an iNformation FIFO entry.

The depth of the iNformation FIFO is four entries. During normal operation, CAAM will
not cause the iNformation FIFO to overflow. Care must be taken to avoid overflowing
the iNformation FIFO when writing to it directly as this can cause CAAM to hang. This
register can be automatically written by the FIFO LOAD and MOVE commands. (If data
is written to the Input Data FIFO with the LOAD Command, or some other way that does
not automatically generate an info FIFO entry, the user is responsible for writing to the
iNformation FIFO. See LOAD Command destination codes 78h and 7Ah in LOAD
commands.)

A single address is used to write to the iNformation FIFO. The format of non-padding
iNformation FIFO entries (STYPE != 10b) is shown below. The format of padding
iNformation FIFO entries (STYPE == 10b) is shown in CCB 0 iNformation FIFO When
STYPE == 10b (C0NFIFO_2).

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 993
Confidential Proprietary

10.13.188.1 Offset

Register Offset Description

C0NFIFO 87D0h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.188.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W DEST LC2 LC1 FC2 FC1 STYPE DTYPE BND PTYPE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

W O
C

A
S

T

D
L

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.188.3 Fields

Field Description

31-30

DEST

Destination. This specifies if the current entry defines data for the Class 1 CHA and/or Class 2 CHA. It
can also be used to remove data from the FIFOs that are not needed.

00 - DECO Alignment Block. If DTYPE == Eh, data sent to the DECO Alignment Block is dropped. This is
used to skip over input data. An error is generated if a DTYPE other than Eh (drop) or Fh (message) is
used with the DECO Alignment Block destination.

01 - Class 1.

10 - Class 2.

11 - Both Class 1 and Class 2.

29

LC2

Last Class 2. This bit should be set when the data defined in the current iNformation FIFO entry is the last
data going to the CHA or the last data prior to receiving ICV data going to the Class 2 CHA, as well as
following the ICV data. When LC2 == 1 the alignment block will be emptied as well.

0 - This is not the last Class 2 data.

1 - This is the last Class 2 data.

28

LC1

Last Class 1.This bit should be set when the data defined in the current iNformation FIFO entry is the last
data for the Class 1 CHA. When LC1 == 1 a flush will be done and the alignment block will be emptied as
well.

0 - This is not the last Class 1 data.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

994 NXP Semiconductors
Confidential Proprietary

Field Description

1 - This is the last Class 1 data.

27

FC2

Flush Class 2. Same as LC2 except that data size ready for Class 2 is not asserted.

This bit can be set only via a LOAD Command and is only to be used when a MOVE from the Class 2
Alignment Block is to be done and the MOVE Command was executed when automatic information FIFO
entries were disabled. In such cases, setting the LC2 bit could result in unpredictable behavior and the
FC2 bit should be used.

0 - Don't flush Class 2 data.

1 - Flush Class 2 data.

26

FC1

Flush Class 1. Flush the remainder of the data out of the Class 1 alignment block.

0 - Don't flush Class 1 data.

1 - Flush Class 1 data.

25-24

STYPE

Source Type. This field defines the source of the data for the Alignment Block(s). (This is the register
format description when STYPE != 10b. The register uses a different format when STYPE == 10b. See
CCB 0 iNformation FIFO When STYPE == 10b (C0NFIFO_2).) For STYPE != 10b, there are two
interpretations of the STYPE field, depending on the setting of the AST bit:

AST=0 AST=1

STYPE = 00b : Input Data FIFO STYPE = 00b : Auxiliary Data FIFO -1

STYPE = 01b : Output Data FIFO STYPE = 01b : Output Data FIFO Synchronize
Pointers -1

STYPE = 10b : Padding Block. The register format is different for this STYPE. See CCB 0 iNformation
FIFO When STYPE == 10b (C0NFIFO_2).

STYPE = 11b : Out snooping -1 STYPE = 11b : Outsnooping from Auxiliary Data
FIFO -1

1. The Auxiliary Data FIFO can be used to supply auxiliary data to the Alignment Blocks, should this be
required for particular algorithms or protocols. Data is written into the Auxiliary Data FIFO using either
a LOAD IMM command with DST=78h or a MOVE command with DST=Fh. Note that the entry to
consume the data from the Auxiliary Data FIFO should be created in the NFIFO prior to executing a
LOAD IMM or a MOVE (with WC=1) that writes to the Auxiliary Data FIFO, else DECO may hang.

2. The output FIFO maintains two pointers: one for data being pulled by alignment blocks and one for the
DMAs pulling data. When STYPE=01b and AST=0, the alignment block pointer moves independently
from the DMA pointer. In such cases, if one pointer laps the other when reading from the output FIFO,
reading from that pointer must stop until the lapped pointer moves. This prevents data for the other
pointer from being lost. If no DMA transactions are scheduled and the alignment block wants to
consume more data than will fit in the output FIFO, the descriptor will hang. In such situations, instead
use STYPE=01b and AST=1. This combination forces the two pointers to remain synchronized,
allowing the alignment block reads to drain the output FIFO rather than leaving the data in the FIFO
for the DMA to read.

3. When Out snooping is selected, the Class 1 Alignment Block receives data from the Input Data FIFO
and the Class 2 Alignment Block receives data from the Output Data FIFO.

4. This case is similar to the case of STYPE=11b and AST=0. The difference is that the Class 1 CHA
gets its data from the Auxiliary Data FIFO instead of from the Input Data FIFO. The Class 2 Alignment
Block still receives its data from the output FIFO.

23-20

DTYPE

Data Type. This field defines the type of data that is going through the Input Data FIFO. This is used by
the CHA to determine what type of processing needs to be done on the data. As shown below, the
DTYPE is interpreted differently depending on the CHA that is consuming the data.

DTYPE Data type for PKHA Data type for DECO and other CHA(s)

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 995
Confidential Proprietary

Field Description

0h PKHA A0 S-Box (AFHA)

1h PKHA A1 AAD (AES GCM)

2h PKHA A2 IV for (AES GCM)

3h PKHA A3 SAD (AES)

4h PKHA B0 Reserved

5h PKHA B1 Reserved

6h PKHA B2 Reserved

7h PKHA B3 Reserved

8h PKHA N Reserved

9h PKHA E Reserved

Ah Reserved ICV

Ch PKHA A Reserved

Dh PKHA B Reserved

Eh Reserved DECO Ignore (i.e. Skip)

Fh Reserved Message Data

Other DTYPE values are reserved in this instance of CAAM.

1. The Auxiliary Data FIFO can be used to supply auxiliary data to the Alignment Blocks, should this be
required for particular algorithms or protocols. Data is written into the Auxiliary Data FIFO using either
a LOAD IMM command with DST=78h or a MOVE command with DST=Fh. Note that the entry to
consume the data from the Auxiliary Data FIFO should be created in the NFIFO prior to executing a
LOAD IMM or a MOVE (with WC=1) that writes to the Auxiliary Data FIFO, else DECO may hang.

2. The output FIFO maintains two pointers: one for data being pulled by alignment blocks and one for the
DMAs pulling data. When STYPE=01b and AST=0, the alignment block pointer moves independently
from the DMA pointer. In such cases, if one pointer laps the other when reading from the output FIFO,
reading from that pointer must stop until the lapped pointer moves. This prevents data for the other
pointer from being lost. If no DMA transactions are scheduled and the alignment block wants to
consume more data than will fit in the output FIFO, the descriptor will hang. In such situations, instead
use STYPE=01b and AST=1. This combination forces the two pointers to remain synchronized,
allowing the alignment block reads to drain the output FIFO rather than leaving the data in the FIFO
for the DMA to read.

3. When Out snooping is selected, the Class 1 Alignment Block receives data from the Input Data FIFO
and the Class 2 Alignment Block receives data from the Output Data FIFO.

4. This case is similar to the case of STYPE=11b and AST=0. The difference is that the Class 1 CHA
gets its data from the Auxiliary Data FIFO instead of from the Input Data FIFO. The Class 2 Alignment
Block still receives its data from the output FIFO.

19

BND

Boundary padding. Boundary padding is selected if this bit is set. The boundary is always 16 bytes when
STYPE == 10b (Padding Block).

0 - Don't pad.

1 - Pad to the next 16-byte boundary.

18-16

PTYPE

Pad Type. This field is ignored if STYPE != 10b (i.e., not Padding Block). See CCB 0 iNformation FIFO
When STYPE == 10b (C0NFIFO_2) for information on how PTYPE is used when STYPE == 10b.

15

OC

OFIFO Continuation - This bit causes the final word to not be popped from the Output Data FIFO.

0 - Allow the final word to be popped from the Output Data FIFO.

1 - Don't pop the final word from the Output Data FIFO.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

996 NXP Semiconductors
Confidential Proprietary

Field Description

14

AST

Additional Source Types. This bit selects between two meanings of the STYPE field. See the description
of the STYPE field.

13-12

—

Reserved

11-0

DL

Data Length. The number of bytes that will be passed to a CHA. A maximum of 12 bits is supported. This
means for larger chunks of data multiple entries in the iNformation FIFO will be required.

1. The Auxiliary Data FIFO can be used to supply auxiliary data to the Alignment Blocks, should this be required for particular
algorithms or protocols. Data is written into the Auxiliary Data FIFO using either a LOAD IMM command with DST=78h or
a MOVE command with DST=Fh. Note that the entry to consume the data from the Auxiliary Data FIFO should be created
in the NFIFO prior to executing a LOAD IMM or a MOVE (with WC=1) that writes to the Auxiliary Data FIFO, else DECO
may hang.

2. The output FIFO maintains two pointers: one for data being pulled by alignment blocks and one for the DMAs pulling data.
When STYPE=01b and AST=0, the alignment block pointer moves independently from the DMA pointer. In such cases, if
one pointer laps the other when reading from the output FIFO, reading from that pointer must stop until the lapped pointer
moves. This prevents data for the other pointer from being lost. If no DMA transactions are scheduled and the alignment
block wants to consume more data than will fit in the output FIFO, the descriptor will hang. In such situations, instead use
STYPE=01b and AST=1. This combination forces the two pointers to remain synchronized, allowing the alignment block
reads to drain the output FIFO rather than leaving the data in the FIFO for the DMA to read.

3. When Out snooping is selected, the Class 1 Alignment Block receives data from the Input Data FIFO and the Class 2
Alignment Block receives data from the Output Data FIFO.

4. This case is similar to the case of STYPE=11b and AST=0. The difference is that the Class 1 CHA gets its data from the
Auxiliary Data FIFO instead of from the Input Data FIFO. The Class 2 Alignment Block still receives its data from the output
FIFO.

10.13.189 CCB 0 iNformation FIFO When STYPE == 10b (C0NF
IFO_2)

The format of padding iNformation FIFO entries (STYPE == 10b) is shown below. The
format of non-padding iNformation FIFO entries (STYPE != 10b) is shown in CCB 0
iNformation FIFO When STYPE != 10b (C0NFIFO).

10.13.189.1 Offset

Register Offset Description

C0NFIFO_2 87D0h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 997
Confidential Proprietary

10.13.189.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W DEST LC2 LC1 FC2 FC1 STYPE DTYPE BND PTYPE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved Reserved

W PR BM PS PL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.189.3 Fields

Field Description

31-30

DEST

Destination. This specifies if the current entry defines data for the Class 1 CHA and/or Class 2 CHA. It
can also be used to remove data from the FIFOs that are not needed.

00 - DECO Alignment Block. If DTYPE is Eh, data sent to the DECO Alignment Block is dropped. This is
used to skip over input data. An error is generated if a DTYPE other than Eh (drop) or Fh (message) is
used with the DECO Alignment Block destination.

01 - Class 1.

10 - Class 2.

11 - Both Class 1 and Class 2.

29

LC2

Last Class 2. This bit should be set when the data defined in the current iNformation FIFO entry is the last
data going to the CHA or the last data prior to receiving ICV data going to the Class 2 CHA, as well as
following the ICV data. When LC2 == 1 the alignment block will be emptied as well.

0 - This is not the last Class 2 data.

1 - This is the last Class 2 data.

28

LC1

Last Class 1. This bit should be set when the data defined in the current iNformation FIFO entry is the last
data for the Class 1 CHA. When LC1 == 1 a flush will be done and the alignment block will be emptied as
well.

0 - This is not the last Class 1 data.

1 - This is the last Class 1 data.

27

FC2

Flush Class 2. Same as LC2 except that data size ready for Class 2 is not asserted.

This bit can only be set via a LOAD Command and is only to be used when a MOVE from the Class 2
Alignment Block is to be done and the MOVE Command was executed when automatic information FIFO
entries were disabled. In such cases, setting the LC2 bit could result in unpredictable behavior and the
FC2 bit should be used.

0 - Don't flush the Class 2 data.

1 - Flush the Class 2 data.

26

FC1

Flush Class 1. Flush the remainder of the data out of the Class 1 alignment block.

0 - Don't flush the Class 1 data.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

998 NXP Semiconductors
Confidential Proprietary

Field Description

1 - Flush the Class 1 data.

25-24

STYPE

Source Type. This field defines the source of the data for the Alignment Block(s). This is the register
format description when STYPE == 10b (Padding Block). For STYPE != 10b, see CCB 0 iNformation
FIFO When STYPE != 10b (C0NFIFO).

* When Out snooping is selected, the Class 1 Alignment Block receives data from the Input Data FIFO
and the Class 2 Alignment Block receives data from the Output Data FIFO.

** The Auxiliary Data FIFO can be used to supply auxiliary data to the Alignment Blocks, should this be
required for particular algorithms or protocols. Data is written into the Auxiliary Data FIFO using either a
LOAD IMM command with DST=78h or a MOVE command with DST=Fh. Note that the entry to consume
the data from the Auxiliary Data FIFO must be created in the NFIFO prior to executing a LOAD IMM or a
MOVE (with WC=1) that writes to the Auxiliary Data FIFO, else DECO will hang.

23-20

DTYPE

Data Type. This field defines the type of data that is going through the Input Data FIFO. This is used by
the CHA to determine what type of processing needs to be done on the data. As shown below, the
DTYPE is interpreted differently depending on the CHA that is consuming the data.

DTYPE Data type for PKHA Data type for DECO and other CHA(s)

0h PKHA A0 S-Box for AFHA

1h PKHA A1 AAD for AES GCM

2h PKHA A2 IV for AES GCM

3h PKHA A3 SAD for AES

4h PKHA B0 Reserved

5h PKHA B1 Reserved

6h PKHA B2 Reserved

7h PKHA B3 Reserved

8h PKHA N Reserved

9h PKHA E Reserved

Ah Reserved ICV

Ch PKHA A Reserved

Dh PKHA B Reserved

Eh Reserved DECO Ignore (i.e. Skip)

Fh Reserved Message Data

Other DTYPE values are reserved in this instance of CAAM.

19

BND

Boundary padding. Boundary padding is selected if this bit is set. The boundary is always 16 bytes when
STYPE = Padding Block.

0 - Don't add boundary padding.

1 - Add boundary padding.

18-16

PTYPE

Pad Type. This field defines the type of padding that should be performed for N bytes when the STYPE
== 10b (Padding Block). This field is ignored if BND == 0 or STYPE != 10b (Padding Block).

000 - All Zero.

001 - Random with nonzero bytes.

010 - Incremented (starting with 01h), followed by a byte containing the value N-1, i.e., if N==1, a single
byte is output with value 0h.

011 - Random.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 999
Confidential Proprietary

Field Description

100 - All Zero with last byte containing the number of 0 bytes, i.e., if N==1, a single byte is output with
value 0h.

101 - Random with nonzero bytes with last byte 0.

110 - N bytes of padding all containing the value N-1.

111 - Random with nonzero bytes, with the last byte containing the value N-1.

15

PR

Prediction Resistance - If PTYPE specifies random data, setting PR=1 causes the RNG to supply random
data for prediction resistance (i.e. reseeds the PRNG from the TRNG).

0 - No prediction resistance.

1 - Prediction resistance.

14-12

—

Reserved

11

BM

Boundary Minus 1. When this bit is set with boundary padding, then boundary padding to a 4, 8 or 16-
byte boundary minus 1 byte will be executed. For example, if a 16-byte boundary is selected with BM=1,
padding will be done such that only 15 of the 16 bytes are used, leaving the 16th byte available for the
user to fill.

0 - When padding, pad to power-of-2 boundary.

1 - When padding, pad to power-of-2 boundary minus 1 byte.

10

PS

Pad Snoop. When this bit is set then the Class 2 CHA will snoop the padding data from the Output Data
FIFO rather than getting it from the padding block. When snooping, the Class 1 Alignment Block receives
data from the Input FIFO and the Class 2 Alignment Block receives data from the Output Data FIFO.

0 - C2 CHA snoops pad data from padding block.

1 - C2 CHA snoops pad data from OFIFO.

9-7

—

Reserved

6-0

PL

Pad Length. The number of bytes needed to pad the current data. If boundary padding is selected then
this should be set to 4, 8 or 16 bytes. PL includes the length byte or zero byte for all zero last N, random
last N and random last 0 padding types.

10.13.190 CCB 0 Input Data FIFO (C0IFIFO)

Data to be processed by the various CHAs is first pushed into the Input Data FIFO. Note
that although the Input Data FIFO is 64-bits wide, a single 32-bit wide location is used to
write data to the IFIFO. All data written to this location via the IP bus should be in big
endian format. Like the other DECO/CCB registers, the Input Data FIFO supports byte
enables, allowing one to four bytes to be written to the IFIFO from the IP bus, or one to
eight bytes via a descriptor. Although data is normally pushed in multiples of 8 bits, there
is a special mechanism that allows a 4-bit value to be pushed into the Input Data FIFO
(see “Input Data FIFO Nibble Shift Register”, value 76h, in LOAD commands). The
IFIFO is eight entries deep, and each entry is eight bytes. During normal operation
CAAM will never overflow the Input Data FIFO. Care must be used to not overflow the

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1000 NXP Semiconductors
Confidential Proprietary

Input Data FIFO when writing to it directly as results will be unpredictable. FIFO LOAD,
FIFO STORE, LOAD, KEY, and MOVE commands can all automatically write to this
register.

10.13.190.1 Offset

Register Offset Description

C0IFIFO 87E0h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.190.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W IFIFO

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W IFIFO

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.190.3 Fields

Field Description

31-0

IFIFO

Input Data FIFO.

10.13.191 CCB 0 Output Data FIFO (C0OFIFO)

Data that is output from the various CHAs is pushed into the Output Data FIFO. The
OFIFO is eight entries deep, and each entry is eight bytes. During normal operation,
CAAM will never overflow the Output Data FIFO. KEY, MOVE, MATH, and FIFO
STORE commands will all read from the Output Data FIFO. Normally data is pushed in

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1001
Confidential Proprietary

multiples of 8 bits, but there is a special mechanism that allows a 4-bit value to be pushed
into the Output Data FIFO (see Output Data FIFO Nibble Shift Register, value 77h, in
LOAD commands).

There are several commands that can result in data being pushed into the Output Data
FIFO:

• The OPERATION Command can cause a Class 1 CHA to put data into the Output
Data FIFO.

• The KEY Command uses the Output Data FIFO when it decrypts keys. Since the
Output Data FIFO must be empty and all transactions must have completed before
the KEY Command will start, there will be no collision between a CHA push and an
ODFNSR push to the Output Data FIFO.

• The (SEQ) FIFO STORE Command, when encrypting keys, also pushes data into the
Output Data FIFO.

• A LOAD IMMEDIATE can push data directly into the Output Data FIFO. DECO
will automatically stall a LOAD IMMEDIATE if necessary to prevent a collision
with a push from the ODFNSR.

• A LOAD IMMEDIATE to the CHA Control Register can be used to "unload" the
ARC4 S-Box or various PKHA registers into the Output Data FIFO.

• The (SEQ) FIFO STORE Command, when generating random data, also pushes data
into the Output Data FIFO.

Automatic DECO stalling is accomplished as follows. Once the ODFNSR is written, the
stalls described above will continue until the ODFNSR is cleared. That means that the
Class 1 CHA has to assert its done signal and the ODFNSR has to have pushed its final
value into the Output Data FIFO. WARNING: If the DECO is stalling while waiting for
the ODFNSR to empty, and there is no already executed command (such as a FIFO
STORE or MOVE) that will drain the Output Data FIFO sufficiently to allow the
ODFNSR to empty, the DECO will hang.

Internally the Output Data FIFO is 64-bits wide, but since the IP bus is 32-bits wide, the
Output Data FIFO is read via the IP bus using 32-bit word reads. The most-significant
half of the 64-bit word is read from address BASE+x7F4, and the least significant half is
read from address BASE+x7F0. All data read from the OFIFO is little endian.

10.13.191.1 Offset

Register Offset Description

C0OFIFO 87F0h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1002 NXP Semiconductors
Confidential Proprietary

10.13.191.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R OFIFO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R OFIFO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R OFIFO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OFIFO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.191.3 Fields

Field Description

63-0

OFIFO

Output FIFO

10.13.192 DECO0 Job Queue Control Register, most-significant
half (D0JQCR_MS)

This register tells the Descriptor Controller about the current Descriptor. During normal
operation, this register is written by the job queue controller. When a DECO is under the
direct control of software (see Register-based service interface), this register can be read
or written from the IP Register bus. Writing to the most-significant half of this register
causes the Descriptor Controller to start processing. Note that at least the first burst of the

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1003
Confidential Proprietary

Descriptor (including the Job Descriptor Header and the JOB HEADER extension word,
if any) must be written to the Descriptor buffer before the Job Queue Control Register is
written.

10.13.192.1 Offset

Register Offset Description

D0JQCR_MS 8800h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.192.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
T

E
P S

IN
G W

H
L

F
O

U
R

IL E

S
H

R
_F

R
O

M

R
es

er
ve

d

D
W

S

R
es

er
ve

d

S
O

BW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
M

T
D

R
es

er
ve

d

S
R

C

R
es

er
ve

d

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.192.3 Fields

Field Description

31

STEP

Step. When in Single Step Mode, DECO should execute the next command in the descriptor. Note that
protocols are a single step. Only used by the processor that has control of DECO.

0 - DECO has not been told to execute the next command in the descriptor.

1 - DECO has been told to execute the next command in the descriptor.

30

SING

Single Step Mode. This tells DECO to execute this descriptor, including jumps to non-local destinations,
in single step mode. Only used by the processor that has control of DECO.

0 - Do not tell DECO to execute the descriptor in single-step mode.

1 - Tell DECO to execute the descriptor in single-step mode.

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1004 NXP Semiconductors
Confidential Proprietary

Field Description

29

WHL

Whole Descriptor. This bit indicates that the whole Descriptor was given to DECO by the job queue
controller. This bit is set for certain Job Descriptors that are internally generated by CAAM.

0 - DECO has not been given the whole descriptor.

1 - DECO has been given the whole descriptor.

28

FOUR

Four Words. job queue controller is passing at least 4 words of the Descriptor to DECO.

0 - DECO has not been given at least four words of the descriptor.

1 - DECO has been given at least four words of the descriptor.

27

ILE

Immediate Little Endian. This bit controls the byte-swapping of Immediate data embedded within
descriptors. Byte-swapping is controlled when data is transferred between the Descriptor Buffer and any
of the following byte-stream sources and destinations:

• Input Data FIFO
• Output Data FIFO
• Auxiliary Data FIFO
• Class 1 Context register
• Class 2 Context register
• Class 1 Key register
• Class 2 Key register

0 - No byte-swapping is performed for immediate data transferred to or from the Descriptor Buffer.

1 - Byte-swapping is performed for immediate data transferred to or from the Descriptor Buffer.

26-24

SHR_FROM

Share From. This is the DECO block from which this DECO block will get the Shared Descriptor. This
field is only used if the job queue controller wants this DECO to use a Shared Descriptor that is already in
a DECO. This field is ignored when running descriptors via the IP bus (i.e. under the direct control of
software).

23-20

—

Reserved

19

DWS

Double word swap. Causes/allows dword swapping of addresses, and MOVE and MATH immediate
values.

0 - Double Word Swap is NOT set.

1 - Double Word Swap is set.

18-17

—

Reserved

16

SOB

Shared Descriptor burst. If set, the whole shared descriptor was passed to DECO with the Job Descriptor.
When descriptors are executed under direct software control, this bit simply indicates that the Shared
Descriptor has been loaded.

0 - Shared Descriptor has NOT been loaded.

1 - Shared Descriptor HAS been loaded.

15

AMTD

Allow Make Trusted Descriptor. This field is read-only. If this bit is a 1, then a Job Descriptor with the
MTD (Make Trusted Descriptor) bit set is allowed to execute. The bit will be 1 only if the Job Descriptor
was run from a Job Ring with the AMTD bit set to 1 in the Job Ring’s JRaDID Register.

0 - The Allowed Make Trusted Descriptor bit was NOT set.

1 - The Allowed Make Trusted Descriptor bit was set.

14-11

—

Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1005
Confidential Proprietary

Field Description

10-8

SRC

Job Source. Source of the job. Determines which set of DMA configuration attributes (e.g.
JRCFGR_JRa_MS) and endian configuration bits) the DMA should use for bus transactions. It is illegal
for the SRC field to have a value other than that of a Job Ring when running descriptors via the IP bus
(i.e. under the direct control of software).

000 - Job Ring 0

001 - Job Ring 1

010 - Job Ring 2

011 - Reserved

100 - RTIC

101 - Reserved

110 - Reserved

111 - Reserved

7-3

—

Reserved

2-0

ID

Job ID. Unique tag given to each job by its source. Used to tell the source that the job has completed.

10.13.193 DECO0 Job Queue Control Register, least-significant
half (D0JQCR_LS)

This register tells the Descriptor Controller about the current Descriptor. During normal
operation, this register is written by the job queue controller. When a DECO is under the
direct control of software (see Register-based service interface), this register can be read
or written from the IP Register bus. Writing to the most-significant half of this register
causes the Descriptor Controller to start processing. Note that at least the first burst of the
Descriptor (including the Job Descriptor Header and the JOB HEADER extension word,
if any) must be written to the Descriptor buffer before the Job Queue Control Register is
written.

10.13.193.1 Offset

Register Offset Description

D0JQCR_LS 8804h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1006 NXP Semiconductors
Confidential Proprietary

10.13.193.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.193.3 Fields

Field Description

31-0

CMD

Command. In single-step mode, reading CMD returns the first word of the command that this DECO will
execute next. This value is also readable via the STORE Command, but the value read is unpredictable.

10.13.194 DECO0 Descriptor Address Register (D0DAR)

This DECO register holds the address of the currently executing Job Descriptor. When
using DECO in single-step mode (see Register-based service interface), this register must
be written prior to the Job Queue Control Register.

10.13.194.1 Offset

Register Offset Description

D0DAR 8808h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R). Accessible only when RQD0 and DEN0 are
asserted in DECORR.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1007
Confidential Proprietary

10.13.194.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.194.3 Fields

Field Description

63-32

—

Reserved

31-0

DPTR

Descriptor Pointer. Memory address of the Descriptor. Needed for write-back purposes.

10.13.195 DECO0 Operation Status Register, most-significant
half (D0OPSTA_MS)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1008 NXP Semiconductors
Confidential Proprietary

The DECO Operation Status Register is used to show DECO status following descriptor
processing. This includes error conditions (if any), index of the next command within the
descriptor, and condition flags set by Public Key and Math Operations. Since the register
is greater than 32 bits, the OPSTA register is accessed from the IP bus as two 32-bit
registers.

10.13.195.1 Offset

Register Offset Description

D0OPSTA_MS 8810h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.195.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R STATUS_TYPE NLJ
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

C
O

M
M

A
N

D
_I

N
D

E
X

S
T

A
T

U
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.195.3 Fields

Field Description

31-28

STATUS_TYPE

Status Type. The type of status that is being reported for the just-completed command, defined as
follows:

0000 - no error

0001 - DMA error

0010 - CCB error

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1009
Confidential Proprietary

Field Description

0011 - Jump Halt User Status

0100 - DECO error

0101, 0110 - Reserved

0111 - Jump Halt Condition Code

27

NLJ

Non-Local Jump. A jump was non-local. This includes non-local JUMP Commands and SEQ IN PTR RJD
jumps and SEQ IN PTR INL jumps.

0 - The original job descriptor running in this DECO has not caused another job descriptor to be
executed.

1 - The original job descriptor running in this DECO has caused another job descriptor to be executed.

26-15

—

Reserved

14-8

COMMAND_IN
DEX

Command index: A pointer to a 32-bit word within the descriptor. If single stepping, this is the index of the
next command to be executed. If not single stepping, this is the index of the command that is now
executing. In the case of an error that is not a command problem, it is approximately the index of the
command where the error occurred. If the error was due to a command problem, it is the index of the
current command. A command problem is an error that is detectable by DECO as it executes the
command (e.g. an illegal command type). Something that isn't a command problem is an error that
occurs after the command has completed executing (e.g. illegal CHA modes, DMA errors, ICV check
failures).

7-0

STATUS

If ERRTYP indicates no error, this field contains PKHA/Math Status, as defined below. If there was an
error, this field contains Error Status, defined as in the Job Ring Output Status Register DESC ERROR
field (Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR2)).

7

PIZ

Public Key Operation is Zero. For Finite Field operations the result of a Public Key
operation is zero. For ECC operations, the result is Point at infinity.

6

GCD

GCD is One. The greatest common divisor of two numbers (i.e., the two numbers
are relatively prime)

5

PRM

Public Key is Prime. The given number is probably prime (i.e., it passes the Miller-
Rabin primality test)

4 Reserved

3

MN

Math N. The result is negative. Can only be set by add and subtract functions, 0
otherwise

2

MZ

Math Z. The result of a math operation is zero.

1

MC

Math C. The math operation resulted in a carry or borrow.

0

MNV

Math NV. Used for signed compares. This is a combination of the sign and overflow
bits (i.e., Math N XOR Math C)

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1010 NXP Semiconductors
Confidential Proprietary

10.13.196 DECO0 Operation Status Register, least-significant
half (D0OPSTA_LS)

The DECO Operation Status Register is used to show DECO status following descriptor
processing. This includes error conditions (if any), index of the next command within the
descriptor, and condition flags set by Public Key and Math Operations. Since the register
is greater than 32 bits, the OPSTA register is accessed from the IP bus as two 32-bit
registers.

10.13.196.1 Offset

Register Offset Description

D0OPSTA_LS 8814h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.196.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R OUT_CT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OUT_CT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.196.3 Fields

Field Description

31-0

OUT_CT

Output Count. Number of bytes written to sequential out pointer.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1011
Confidential Proprietary

10.13.197 DECO0 Primary DID Status Register (D0PDIDSR)

This register shows the DIDs and ICIDs available to the DECO for processing the current
Descriptor. This register is written by the job queue controller.

10.13.197.1 Offset

Register Offset Description

D0PDIDSR 8820h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.197.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

P
R

IM
_I

C
ID

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

PRIM_DID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.197.3 Fields

Field Description

31-30

—

Reserved

29-19

PRIM_ICID

DECO Primary ICID. When JRaDID[USE_OUT] = 0, this is the ICID that is asserted during all DMA
transactions associated with this Job Ring. When JRaDID[USE_OUT] = 0, this is the ICID value is
asserted for job termination status writes and job descriptor update writes.

18-4

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1012 NXP Semiconductors
Confidential Proprietary

Field Description

3-0

PRIM_DID

DECO Primary DID. When JRaDID[USE_OUT] = 0, this is the DID that is asserted during all DMA
transactions associated with this Job Ring. When JRaDID[USE_OUT] = 0, this is the DID value is
asserted for job termination status writes and job descriptor update writes.

10.13.198 DECO0 Output DID Status Register (D0ODIDSR)

This register shows the DIDs and ICIDs available to the DECO for processing the current
Descriptor. This register is written by the job queue controller.

10.13.198.1 Offset

Register Offset Description

D0ODIDSR 8824h Accessible only when RQD0 and DEN0 are asserted
in DECORR.

10.13.198.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

O
U

T
_I

C
ID

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

OUT_DID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.198.3 Fields

Field Description

31-30 Reserved

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1013
Confidential Proprietary

Field Description

—

29-19

OUT_ICID

DECO Output ICID. When JRaDID[USE_OUT] =1, this is the ICID that is asserted during a data output
DMA transaction. Note that the JRaDID[PRIM_ICID] value is asserted for job termination status writes
and job descriptor update writes.

18-4

—

Reserved

3-0

OUT_DID

DECO Output DID. When JRaDID[USE_OUT] =1, this is the DID that is asserted during a data output
DMA transaction. Note that the JRaDID[PRIM_DID] value is asserted for job termination status writes and
job descriptor update writes.

10.13.199 DECO0 Math Register m_MS (D0MTH0_MS - D0MTH3_
MS)

The Math Registers are used by the DECO to perform Math operations that were
requested via the MATH Command. The Math Registers consist of 4 64-bit registers.
Data is moved into these registers via LOAD, MATH and MOVE commands.

10.13.199.1 Offset

Register Offset

D0MTH0_MS 8840h

D0MTH1_MS 8848h

D0MTH2_MS 8850h

D0MTH3_MS 8858h

10.13.199.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MATH_MS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MATH_MS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1014 NXP Semiconductors
Confidential Proprietary

10.13.199.3 Fields

Field Description

31-0

MATH_MS

MATH register, most-significant 32 bits.

10.13.200 DECO0 Math Register m_LS (D0MTH0_LS - D0MTH3_L
S)

The Math Registers are used by the DECO to perform Math operations that were
requested via the MATH Command. The Math Registers consist of 4 64-bit registers.
Data is moved into these registers via LOAD, MATH and MOVE commands.

10.13.200.1 Offset

Register Offset

D0MTH0_LS 8844h

D0MTH1_LS 884Ch

D0MTH2_LS 8854h

D0MTH3_LS 885Ch

10.13.200.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MATH_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MATH_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1015
Confidential Proprietary

10.13.200.3 Fields

Field Description

31-0

MATH_LS

MATH register, least-significant 32 bits.

10.13.201 DECO0 Gather Table Register 0 Word 0 (D0GTR0_0)

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) CAAM will fetch a burst's worth of entries at a time. A burst is 32 or 64 bytes,
as indicated by the BURST field in the Master Configuration Register. Each register is
128 bits in length, so the data in each register is accessible over the 32-bit register bus as
four 32-bit words.

10.13.201.1 Offset

Register Offset

D0GTR0_0 8880h

10.13.201.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1016 NXP Semiconductors
Confidential Proprietary

10.13.201.3 Fields

Field Description

31-0

—

Reserved

10.13.202 DECO0 Gather Table Register 0 Word 1 (D0GTR0_1)

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) CAAM will fetch a burst's worth of entries at a time. A burst is 32 or 64 bytes,
as indicated by the BURST field in the Master Configuration Register. Each register is
128 bits in length, so the data in each register is accessible over the 32-bit register bus as
four 32-bit words.

10.13.202.1 Offset

Register Offset

D0GTR0_1 8884h

10.13.202.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1017
Confidential Proprietary

10.13.202.3 Fields

Field Description

31-0

ADDRESS_POI
NTER

This field holds the memory address to which this table entry points. This will either be a memory buffer (if
E=0) or a Scatter/Gather Table entry (if E=1).

10.13.203 DECO0 Gather Table Register 0 Word 2 (D0GTR0_2)

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) CAAM will fetch a burst's worth of entries at a time. A burst is 32 or 64 bytes,
as indicated by the BURST field in the Master Configuration Register. Each register is
128 bits in length, so the data in each register is accessible over the 32-bit register bus as
four 32-bit words.

10.13.203.1 Offset

Register Offset

D0GTR0_2 8888h

10.13.203.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
E F Length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1018 NXP Semiconductors
Confidential Proprietary

10.13.203.3 Fields

Field Description

31

E

Extension bit. If set to a 1, then Address Pointer refers to a Scatter/Gather Table entry instead of a
memory buffer. It is an error to set the E bit if the SGT entry is unused (i.e. Length and Address Pointer
all 0s).

0 - Address Pointer points to a memory buffer.

1 - Address Pointer points to a Scatter/Gather Table Entry.

30

F

Final Bit. If set, this is the last entry of this Scatter/Gather Table.

0 - This is not the last entry of the SGT.

1 - This is the last entry of the SGT.

29-0

Length

This field specifies how many bytes of data (for Gather Tables) or available space (for Scatter Tables) are
located at the address pointed to by the Address Pointer.

10.13.204 DECO0 Gather Table Register 0 Word 3 (D0GTR0_3)

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) CAAM will fetch a burst's worth of entries at a time. A burst is 32 or 64 bytes,
as indicated by the BURST field in the Master Configuration Register. Each register is
128 bits in length, so the data in each register is accessible over the 32-bit register bus as
four 32-bit words.

10.13.204.1 Offset

Register Offset

D0GTR0_3 888Ch

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1019
Confidential Proprietary

10.13.204.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved Offset

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.204.3 Fields

Field Description

31-13

—

Reserved

12-0

Offset

Offset (measured in bytes) into memory where significant data is to be found. The use of an offset
permits reuse of a memory buffer without recalculating the address.

10.13.205 DECO0 Scatter Table Register 0 Word 0 (D0STR0_0)

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) CAAM will fetch a burst's worth of entries at a time. A burst is 32 or 64 bytes,
as indicated by the BURST field in the Master Configuration Register. Each register is
128 bits in length, so the data in each register is accessible over the 32-bit register bus as
four 32-bit words.

10.13.205.1 Offset

Register Offset

D0STR0_0 8900h

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1020 NXP Semiconductors
Confidential Proprietary

10.13.205.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.205.3 Fields

Field Description

31-0

—

Reserved

10.13.206 DECO0 Scatter Table Register 0 Word 1 (D0STR0_1)

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) CAAM will fetch a burst's worth of entries at a time. A burst is 32 or 64 bytes,
as indicated by the BURST field in the Master Configuration Register. Each register is
128 bits in length, so the data in each register is accessible over the 32-bit register bus as
four 32-bit words.

10.13.206.1 Offset

Register Offset

D0STR0_1 8904h

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1021
Confidential Proprietary

10.13.206.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.206.3 Fields

Field Description

31-0

ADDRESS_POI
NTER

This field holds the memory address to which this table entry points. This will either be a memory buffer (if
E=0) or a Scatter/Gather Table entry (if E=1).

10.13.207 DECO0 Scatter Table Register 0 Word 2 (D0STR0_2)

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) CAAM will fetch a burst's worth of entries at a time. A burst is 32 or 64 bytes,
as indicated by the BURST field in the Master Configuration Register. Each register is
128 bits in length, so the data in each register is accessible over the 32-bit register bus as
four 32-bit words.

10.13.207.1 Offset

Register Offset

D0STR0_2 8908h

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1022 NXP Semiconductors
Confidential Proprietary

10.13.207.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
E F Length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.207.3 Fields

Field Description

31

E

Extension bit. If set to a 1, then Address Pointer refers to a Scatter/Gather Table entry instead of a
memory buffer. It is an error to set the E bit if the SGT entry is unused (i.e. Length and Address Pointer
all 0s).

0 - Address Pointer points to a memory buffer.

1 - Address Pointer points to a Scatter/Gather Table Entry.

30

F

Final Bit. If set, this is the last entry of this Scatter/Gather Table.

0 - This is not the last entry of the SGT.

1 - This is the last entry of the SGT.

29-0

Length

This field specifies how many bytes of data (for Gather Tables) or available space (for Scatter Tables) are
located at the address pointed to by the Address Pointer.

10.13.208 DECO0 Scatter Table Register 0 Word 3 (D0STR0_3)

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) CAAM will fetch a burst's worth of entries at a time. A burst is 32 or 64 bytes,
as indicated by the BURST field in the Master Configuration Register. Each register is
128 bits in length, so the data in each register is accessible over the 32-bit register bus as
four 32-bit words.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1023
Confidential Proprietary

10.13.208.1 Offset

Register Offset

D0STR0_3 890Ch

10.13.208.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved Offset

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.208.3 Fields

Field Description

31-13

—

Reserved

12-0

Offset

Offset (measured in bytes) into memory where significant data is to be found. The use of an offset
permits reuse of a memory buffer without recalculating the address.

10.13.209 DECO0 Descriptor Buffer Word a (D0DESB0 - D0DE
SB63)

The Descriptor Buffer is used by the DECO to buffer a Descriptor that has been fetched
from memory. The Descriptor Buffer consists of 64 32-bit registers in consecutive
addresses, beginning at the address shown above. For performance reasons, DECO
doesn't execute the commands directly from the Descriptor Buffer. Instead, DECO
executes commands from a four-word pipeline. Since commands vary in length from one
to four words, up to three words in addition to the current command may also be resident

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1024 NXP Semiconductors
Confidential Proprietary

in the pipeline. (They won't be executed if the job terminates or the pipeline is flushed as
described below.) As a result, operations that modify the Descriptor Buffer may not have
an immediate effect on the next few commands that execute. To avoid anomalous
behavior when overwriting the portion of the Descriptor Buffer containing the start of the
currently executing command or the following two or three words, any commands in the
pipeline that the programmer intends to execute should be completely contained within
the pipeline.

There are several ways to flush the pipeline to ensure that recently loaded commands are
executed rather than the pipeline-resident commands:

• Execute a JUMP command with a negative offset
• Use the JOB HEADER or SHARED HEADER commands to do an absolute jump.
• JUMP forward more than 3 words.

Note that the Descriptor Buffer is cleared between unrelated descriptors; that is, if two
successive descriptors to execute in the same DECO do not share the same shared
descriptor.

10.13.209.1 Offset

For a = 0 to 63:

Register Offset

D0DESBa 8A00h + (a × 4h)

10.13.209.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DESBW

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DESBW

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1025
Confidential Proprietary

10.13.209.3 Fields

Field Description

31-0

DESBW

Descriptor Buffer Word. In this instantiation of CAAM the descriptor buffer word registers hold up to 64
32-bit words of the descriptor currently processed by DECO. See Descriptors and descriptor commands
for a definition of descriptor command and associated data words.

10.13.210 DECO0 Debug Job Register (D0DJR)

The DECO Debug registers are intended to assist in debugging when a DECO appears to
be hung. Although the registers can be read by software at any time, software is likely to
obtain inconsistent data if these registers are read while DECO continues to execute new
descriptors because the registers may be updated before the software has finished reading
all the registers. Another mechanism is available for debugging a descriptor once a
suspect descriptor has been identified (see Register-based service interface). Note that the
DECO Debug Job Register has the same format as the most-significant half of the DECO
Job Queue Control Register. Note that this register is read-only.

10.13.210.1 Offset

Register Offset Description

D0DJR 8E00h For DECO0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1026 NXP Semiconductors
Confidential Proprietary

10.13.210.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
T

E
P S

IN
G W

H
L

F
O

U
R

IL E

S
H

R
_F

R
O

M

R
es

er
ve

d

D
W

S

R
es

er
ve

d

G
S

D

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
M

T
D

JD
D

S

R
es

er
ve

d

S
R

C

R
es

er
ve

d

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.210.3 Fields

Field Description

31

STEP

Step. When in Single Step Mode, DECO will execute the next command in the descriptor. Note that
protocols are a single step.

0 - DECO has not been told to execute the next command in the descriptor.

1 - DECO has been told to execute the next command in the descriptor.

30

SING

Single Step Mode. DECO has been told to execute this descriptor, including jumps to non-local
destinations, in single-step mode.

0 - DECO has not been told to execute the descriptor in single-step mode.

1 - DECO has been told to execute the descriptor in single-step mode.

29

WHL

Whole Descriptor. This bit indicates that the whole Descriptor was given to DECO by the job queue
controller (or by the processor that has control of DECO). This bit is set for certain Job Descriptors that
are internally generated by CAAM.

0 - DECO has not been given the whole descriptor.

1 - DECO has been given the whole descriptor.

28

FOUR

Four Words. The job queue controller (or the processor that has control of DECO) has passed at least 4
words of the Descriptor to DECO.

0 - DECO has not been given at least four words of the descriptor.

1 - DECO has been given at least four words of the descriptor.

27

ILE

Immediate Little Endian. This bit controls the byte-swapping of Immediate data embedded within
descriptors. Byte-swapping is controlled when data is transferred between the Descriptor Buffer and any
of the following byte-stream sources and destinations:

• Input Data FIFO
• Output Data FIFO
• Auxiliary Data FIFO

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1027
Confidential Proprietary

Field Description

• Class 1 Context register
• Class 2 Context register
• Class 1 Key register
• Class 2 Key register

0 - No byte-swapping is performed for immediate data transferred to or from the Descriptor Buffer.

1 - Byte-swapping is performed for immediate data transferred to or from the Descriptor Buffer.

26-24

SHR_FROM

Share From. This is the DECO block from which this DECO block will get the Shared Descriptor. This
field is only used if the job queue controller wants this DECO to use a Shared Descriptor that is already in
a DECO. This field is ignored when running descriptors via the IP bus (i.e. under the direct control of
software).

23-20

—

Reserved

19

DWS

Double Word Swap. Double word swapping was set.

0 - Double Word Swap is NOT set.

1 - Double Word Swap is set.

18-17

—

Reserved

16

GSD

Got Shared Descriptor. A Shared Descriptor was already available in a DECO so the DECO didn't need
to fetch the Shared Descriptor from memory.

0 - Shared Descriptor was NOT obtained from another DECO.

1 - Shared Descriptor was obtained from another DECO.

15

AMTD

Allow Make Trusted Descriptor. If this bit is a 1, then a Job Descriptor whose HEADER command has
TDES=11b (candidate trusted descriptor) is allowed to execute. The AMTD bit will be 1 only if the Job
Descriptor was run from a Job Ring with the AMTD bit set to 1 in the Job Ring’s JRaDID Register.

0 - The Allowed Make Trusted Descriptor bit was NOT set.

1 - The Allowed Make Trusted Descriptor bit was set.

14

JDDS

Job Descriptor DID Select. Determines whether the SEQ DID or the Non-SEQ DID is asserted when
reading the Job Descriptor from memory.

0 - Non-SEQ DID

1 - SEQ DID

13-11

—

Reserved

10-8

SRC

Job Source. Source of the job. Determines which set of DMA configuration attributes (e.g.
JRCFGR_JRa_MS) and endian configuration bits) the DMA should use for bus transactions. When
running descriptors via the IP bus (i.e. under the direct control of software), the job queue controller
automatically sets this field to indicate a Job Ring source.

000 - Job Ring 0

001 - Job Ring 1

010 - Job Ring 2

011, 101, 110, 111 - Reserved

100 - RTIC

7-3

—

Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1028 NXP Semiconductors
Confidential Proprietary

Field Description

2-0

ID

Job ID. Unique tag given to each job by its source (see SRC field). Used to tell the source that the job has
completed.

10.13.211 DECO0 Debug DECO Register (D0DDR)

The DECO Debug registers are intended to assist in debugging when a DECO appears to
be hung. Although the registers can be read by software at any time, software is likely to
obtain inconsistent data if these registers are read while DECO continues to execute new
descriptors because the registers may be updated before the software has finished reading
all the registers. Another mechanism is available for debugging a descriptor once a
suspect descriptor has been identified (see Register-based service interface). Note that
this register is read-only.

10.13.211.1 Offset

Register Offset Description

D0DDR 8E04h For DECO0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1029
Confidential Proprietary

10.13.211.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

V
A

LI
D

S D

T
R

C
T

S
E

Q
LS

E
L N
S

E
Q

LS
E

L

D
E

C
O

_S
T

A
T

E

P
D

B
_W

B
_S

T

P
D

B
_S

T
A

LL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

P
T

C
L_

R
U

N

N
L

J

C
M

D
_I

N
D

E
X

C
M

D
_S

T
A

G
E

C
S

A

N
C

B
W

B

B
R

B C
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.211.3 Fields

Field Description

31

VALID

Valid. If VALID=1, there is currently a job descriptor running in this DECO. The descriptor has been
loaded and has started executing and is still executing.

0 - No descriptor is currently running in this DECO.

1 - There is currently a descriptor running in this DECO.

30

SD

Shared Descriptor. The job descriptor that is running in this DECO has received a shared descriptor from
another job descriptor. That is, some other job descriptor used this shared descriptor (in the same DECO
or a different DECO), and this job descriptor is using the shared descriptor without having to load it from
memory. In the case of SERIAL or WAIT sharing, then the keys were shared as well. If the SC bit was on
and if the Shared Descriptor was shared within the same DECO (self-sharing), then the context was also
shared.

0 - This DECO has not received a shared descriptor from another DECO.

1 - This DECO has received a shared descriptor from another DECO.

29-28

TRCT

DMA Transaction Count. This indicates how many outstanding external DMA transactions are pending.
This is the total of reads and writes. In this instance of CAAM DECO is limited to, at most, 4 transactions
(any combination of up to 2 reads and up to 2 writes).

27-26

SEQLSEL

SEQ DID Select. This indicates which type of DID is being used for SEQ commands:

01 - SEQ DID

10 - Non-SEQ DID

11 - Trusted DID

25-24 Non-SEQ DID Select. This indicates which type of DID is being used for Non-SEQ commands:

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1030 NXP Semiconductors
Confidential Proprietary

Field Description

NSEQLSEL 01 - SEQ DID

10 - Non-SEQ DID

11 - Trusted DID

23-20

DECO_STATE

DECO State. The current state of DECO's main state machine.

19-18

PDB_WB_ST

PDB Writeback State. Lower two bits of the state machine that tracks the state of PDB writebacks.

17-16

PDB_STALL

PDB Stall State. The state of the machine that tracks the stalling of PDB writebacks. Used in conjunction
with PDB_WB_ST. Used only if there is more than one DECO.

15

PTCL_RUN

Protocol running. PTCL_RUN=1 indicates that a protocol is running in this DECO.

0 - No protocol is running in this DECO.

1 - A protocol is running in this DECO.

14

NLJ

Took Non-local JUMP. If NLJ=1 the original job descriptor running in this DECO has caused another job
descriptor to be executed. This is true for JUMP NON-LOCAL, SEQ IN PTR INLINE, and SEQ IN PTR
RJD.

0 - The original job descriptor running in this DECO has not caused another job descriptor to be
executed.

1 - The original job descriptor running in this DECO has caused another job descriptor to be executed.

13-8

CMD_INDEX

Command Index. If this DECO is currently executing a command, CMD_INDEX points to that command
within the descriptor buffer.

7-5

CMD_STAGE

Command Stage. Each command executes in a number of steps, or stages. There are 8 possible stages.
CMD_STAGE indicates which stage DECO has reached in the process of executing a command.

4

CSA

Command Stage Aux. A refinement of the CMD_STAGE stages. Some stages may be split into two
substages, and CSA will indicate which of those two substages DECO has reached.

3

NC

No Command. This DECO is not currently executing a command. This can be because the descriptor
isn't executing or DECO is doing a JUMP of some sort.

0 - This DECO is currently executing a command.

1 - This DECO is not currently executing a command.

2

BWB

Burster Write Busy. The WRITE machine in the Burster is busy. This means that the WRITE machine is
scheduling DMA transactions or is waiting for the opportunity to do so. It remains busy until all the
transactions required for a request have been scheduled. STORE, SEQ STORE, FIFO STORE, and SEQ
FIFO STORE commands use the WRITE machine. (The KEY command can also use the WRITE
machine when obtaining a key modifier from the Secure Memory.) The WRITE machine is also used to
update the Shared Descriptor HEADER when propagating DNRand by the Trusted State Machine to
store a computed signature.

0 - The WRITE machine in the Burster is not busy.

1 - The WRITE machine in the Burster is busy.

1

BRB

Burster Read Busy. The READ machine in the Burster is busy. This means that the READ machine is
scheduling DMA transactions or is waiting for the opportunity to do so. It remains busy until all the
transactions required for a request have been scheduled. LOAD, SEQ LOAD, FIFO LOAD, SEQ FIFO
LOAD, and the KEY command all use the READ machine. The read to satisfy RIF in the Shared
Descriptor HEADER also uses the READ machine. The SEQ FIFO STORE command can also use the
READ machine when handling meta data. Jumping non-locally via any method will also use the READ
machine. Commands that reference Scatter/Gather Tables will also cause the READ machine to be used
to read the entries in the tables.

Table continues on the next page...

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1031
Confidential Proprietary

Field Description

0 - The READ machine in the Burster is not busy.

1 - The READ machine in the Burster is busy.

0

CT

Checking Trusted. This DECO is currently generating the signature of a Trusted Descriptor. This may be
to sign, re-sign, or check the signature.

0 - This DECO is NOTcurrently generating the signature of a Trusted Descriptor.

1 - This DECO is currently generating the signature of a Trusted Descriptor.

10.13.212 DECO0 Debug Job Pointer (D0DJP)

The DECO Debug registers are intended to assist in debugging when a DECO appears to
be hung. Although the registers can be read by software at any time, software is likely to
obtain inconsistent data if these registers are read while DECO continues to execute new
descriptors because the registers may be updated before the software has finished reading
all the registers. Another mechanism is available for debugging a descriptor once a
suspect descriptor has been identified (see Register-based service interface). Note that
this register is read-only.

10.13.212.1 Offset

Register Offset Description

D0DJP 8E08h For DECO0. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1032 NXP Semiconductors
Confidential Proprietary

10.13.212.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R JDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.212.3 Fields

Field Description

63-32

—

Reserved

31-0

JDPTR

Job Descriptor Pointer.

10.13.213 DECO0 Debug Shared Pointer (D0SDP)

The DECO Debug registers are intended to assist in debugging when a DECO appears to
be hung. Although the registers can be read by software at any time, software is likely to
obtain inconsistent data if these registers are read while DECO continues to execute new
descriptors because the registers may be updated before the software has finished reading

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1033
Confidential Proprietary

all the registers. Another mechanism is available for debugging a descriptor once a
suspect descriptor has been identified (see Register-based service interface). Note that
this register is read-only.

10.13.213.1 Offset

Register Offset Description

D0SDP 8E10h For DECO0. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

10.13.213.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.213.3 Fields

Field Description

63-32 Reserved

Table continues on the next page...

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1034 NXP Semiconductors
Confidential Proprietary

Field Description

—

31-0

SDPTR

Shared Descriptor Pointer.

10.13.214 DECO0 Debug DID, most-significant half (D0DDR_MS)

The DECO Debug registers are intended to assist in debugging when a DECO appears to
be hung. This register is read-only. Although the registers can be read by software at any
time, software is likely to obtain inconsistent data if these registers are read while DECO
continues to execute new descriptors because the registers may be updated before the
software has finished reading all the registers. Another mechanism is available for
debugging a descriptor once a suspect descriptor has been identified (see Register-based
service interface).

10.13.214.1 Offset

Register Offset Description

D0DDR_MS 8E18h For DECO0

10.13.214.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

O
U

T
_I

C
ID

R
es

er
ve

d

O
U

T
_D

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

P
R

IM
_I

C
ID

P
R

IM
_T

Z

P
R

IM
_D

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1035
Confidential Proprietary

10.13.214.3 Fields

Field Description

31-21

OUT_ICID

Output ICID. When JRaDID[USE_OUT]=0, the value in this field is unused. When JRaDID[USE_OUT]=1,
this ICID value is asserted for external memory data writes, but not for reads or for job completion status
writes or descriptor write-backs.

20

—

Reserved

19-16

OUT_DID

Output DID. When JRaDID[USE_OUT]=0, the value in this field is unused. When JRaDID[USE_OUT]=1,
this DID value is asserted for all external memory data writes, but not for reads or for job completion
status writes or descriptor write-backs.

15-5

PRIM_ICID

Primary ICID. When JRaDID[USE_OUT]=0, the value in this field indicates the ICID asserted for all
external memory accesses. When JRaDID[USE_OUT]=1, this ICID value is asserted for all external
memory reads, and writes for job completion status and descriptor write-backs.

4

PRIM_TZ

Primary TZ. When JRaDID[USE_OUT]=0, the value in this field indicates the TrustZone World value
(PRIM_TZ=1 means SecureWorld) asserted for all external memory accesses. When
JRaDID[USE_OUT]=1, this TZ value is asserted for all external memory reads, and writes for job
completion status and descriptor write-backs.

0 - TrustZone NonSecureWorld

1 - TrustZone SecureWorld

3-0

PRIM_DID

Primary DID. When JRaDID[USE_OUT]=0, the value in this field indicates the DID value asserted for all
external memory accesses. When JRaDID[USE_OUT]=1, this DID value is asserted for all external
memory reads, and writes for job completion status and descriptor write-backs.

10.13.215 DECO0 Debug DID, least-significant half (D0DDR_LS)

The DECO Debug registers are intended to assist in debugging when a DECO appears to
be hung. Note that this register is read-only. Although the registers can be read by
software at any time, software is likely to obtain inconsistent data if these registers are
read while DECO continues to execute new descriptors because the registers may be
updated before the software has finished reading all the registers. Another mechanism is
available for debugging a descriptor once a suspect descriptor has been identified (see
Register-based service interface).

10.13.215.1 Offset

Register Offset Description

D0DDR_LS 8E1Ch For DECO0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1036 NXP Semiconductors
Confidential Proprietary

10.13.215.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

O
U

T
_I

C
ID

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

OUT_DID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.215.3 Fields

Field Description

31-30

—

Reserved

29-19

OUT_ICID

Output ICID. This is the ICID value that is asserted during DMA transactions related to data output
operations.

18-4

—

Reserved

3-0

OUT_DID

DECO Output Domain Identifier. This DID value is asserted during DMA transactions related to data
output operations.

10.13.216 Sequence Output Length Register (SOL0)

The Sequence Out Length Register is used to specify the amount of data for an Output
Sequence (i.e., a series of SEQ STORE or SEQ FIFO STORE commands within a single
descriptor). See SEQ vs non-SEQ commands for a discussion of sequences. See Using
sequences for fixed and variable length data for a discussion of the use of the SOL
register in Output Sequences. The SEQ OUT PTR command can be used to load the SOL
register. The SOL Register can be read or written via the MATH Command (see SRC0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1037
Confidential Proprietary

and DEST fields in MATH and MATHI Commands). When the DECO is under direct
control of software (see Register-based service interface) this register is accessible at the
addresses shown above.

10.13.216.1 Offset

Register Offset Description

SOL0 8E20h For DECO0. Accessible only when RQD0 and DEN0
are asserted in DECORR.

10.13.216.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.216.3 Fields

Field Description

31-0

SOL

Output Sequence Length. This value is used in output data sequences.

SOL can also be used as a general purpose math register.

10.13.217 Variable Sequence Output Length Register (VSOL0)

The Variable Sequence Out Length Register is used to specify a variable amount of data
for an Output Sequence (i.e., a series of SEQ STORE or SEQ FIFO STORE commands
within a single descriptor). See SEQ vs non-SEQ commands for a discussion of
sequences. See Using sequences for fixed and variable length data for a discussion of the

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1038 NXP Semiconductors
Confidential Proprietary

use of the VSOL register in Output Sequences. The VSOL Register can be read or written
via the MATH Command (see SRC0, SRC1 and DEST fields in MATH and MATHI
Commands). When the DECO is under direct control of software (see Register-based
service interface this register is accessible at the addresses shown above.Note that VSOL
is actually a 64-bit register when accessed via a descriptor, but the 32 most-significant
bits are accessible from the IP bus as the UVSOL register, located at offset E34h.

10.13.217.1 Offset

Register Offset Description

VSOL0 8E24h For DECO0. Accessible only when RQD0 and DEN0
are asserted in DECORR.

10.13.217.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
VSOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
VSOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.217.3 Fields

Field Description

31-0

VSOL

This value is used in variable-length output data sequences. VSOL/UVSOL can also be used as a
general purpose math register. See UVSOL register.

10.13.218 Sequence Input Length Register (SIL0)

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1039
Confidential Proprietary

The Sequence In Length Register is used to specify the amount of data for an Input
Sequence (i.e., a series of SEQ LOAD or SEQ FIFO LOAD commands within a single
descriptor). See Section SEQ vs non-SEQ commands for a discussion of sequences. See
Using sequences for fixed and variable length data for a discussion of the use of the SIL
register in Input Sequences. The SIL Register can be read or written via the MATH
Command (see SRC0 and DEST fields in MATH and MATHI Commands). When the
DECO is under direct control of software (see Register-based service interface this
register is accessible at the addresses shown above. This register can also be loaded by
the SEQ IN PTR command.

10.13.218.1 Offset

Register Offset Description

SIL0 8E28h For DECO0. Accessible only when RQD0 and DEN0
are asserted in DECORR.

10.13.218.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.13.218.3 Fields

Field Description

31-0

SIL

This value is used in input data sequences. SIL can also be used as a general purpose math register.

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1040 NXP Semiconductors
Confidential Proprietary

10.13.219 Variable Sequence Input Length Register (VSIL0)

The Variable Sequence In Length Register is used to specify a variable amount of data
for an Input Sequence (i.e., a series of SEQ LOAD or SEQ FIFO LOAD commands
within a single descriptor). See Section SEQ vs non-SEQ commands for a discussion of
sequences. See Using sequences for fixed and variable length data for a discussion of the
use of the VSIL register in Input Sequences. This register is also loaded when RIF is
executed for a Shared Descriptor. The VSIL Register can be read or written via the
MATH Command (see SRC0, SRC1, and DEST fields in MATH and MATHI
Commands). When the DECO is under direct control of software (see Register-based
service interface) this register is accessible at the addresses shown above. Note that VSIL
is actually a 64-bit register when accessed via a descriptor, but the 32 most-significant
bits are accessible from the IP bus as the UVSIL register, located at offset E38h.

10.13.219.1 Offset

Register Offset Description

VSIL0 8E2Ch For DECO0. Accessible only when RQD0 and DEN0
are asserted in DECORR.

10.13.219.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
VSIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
VSIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1041
Confidential Proprietary

10.13.219.3 Fields

Field Description

31-0

VSIL

This value is used in variable-length input data sequences. VSIL/UVSIL can also be used as a general
purpose math register. See UVSIL register.

10.13.220 Protocol Override Register (D0POVRD)

This register can be read or written via the MATH Command (see SRC0, SRC1 and DST
fields in MATH and MATHI Commands and it can be written via a LOAD
IMMEDIATE command (see DST value 07h, Class=11 in LOAD commands). Note that
DPOVRD can be used as a general purpose math register. When the DECO is under
direct control of software (see Register-based service interface this register is accessible
at the addresses shown above.

10.13.220.1 Offset

Register Offset Description

D0POVRD 8E30h For DECO0. Accessible only when RQD0 and DEN0
are asserted in DECORR.

10.13.220.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DPOVRD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DPOVRD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1042 NXP Semiconductors
Confidential Proprietary

10.13.220.3 Fields

Field Description

31-0

DPOVRD

DPOVRD can be used as a general purpose math register.

10.13.221 Variable Sequence Output Length Register; Upper 32
bits (UVSOL0)

VSOL is actually a 64-bit register when accessed via a descriptor, but when accessed via
the IP bus the least-significant 32 bits are accessed as the VSOL register, located at offset
E24h, and the most-significant 32 bits are accessible as the UVSOL register, located at
offset E34h.

10.13.221.1 Offset

Register Offset Description

UVSOL0 8E34h For DECO0. Accessible only when RQD0 and DEN0
are asserted in DECORR.

10.13.221.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
UVSOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
UVSOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1043
Confidential Proprietary

10.13.221.3 Fields

Field Description

31-0

UVSOL

This value is used in variable-length output data sequences. VSOL/UVSOL can also be used as a
general purpose math register. See VSOL register. In some older versions of CAAM the UVSOL register
did not exist, i.e. the VSOL register was only 32 bits. In those older versions when VSOL was the
destination of a right-shift MATH command the source was first truncated to 32 bits and then 0 bits were
shifted in from the left. For backward compatibility, that will continue to be the case for Math lengths of 1,
2 or 4 bytes. But when the Math length is 8 bytes, all 64 bits of the source will be copied into UVOL/VSOL
and then 0 bits will be shifted in from the left.

10.13.222 Variable Sequence Input Length Register; Upper 32
bits (UVSIL0)

VSIL is actually a 64-bit register when accessed via a descriptor, but when accessed via
the IP bus the least-significant 32 bits are accessed as the VSIL register, located at offset
E2Ch, and the most-significant 32 bits are accessible as the UVSIL register, located at
offset E38h.

10.13.222.1 Offset

Register Offset Description

UVSIL0 8E38h For DECO0. Accessible only when RQD0 and DEN0
are asserted in DECORR.

10.13.222.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
UVSIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
UVSIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1044 NXP Semiconductors
Confidential Proprietary

10.13.222.3 Fields

Field Description

31-0

UVSIL

This value is used in variable-length input data sequences. VSIL/UVSIL can also be used as a general
purpose math register. See VSIL register. In some older versions of CAAM the UVSIL register did not
exist, i.e. the VSIL register was only 32 bits. In those older versions when VSIL was the destination of a
right-shift MATH command the source was first truncated to 32 bits and then 0 bits were shifted in from
the left. For backward compatibility, that will continue to be the case for Math lengths of 1, 2 or 4 bytes.
But when the Math length is 8 bytes, all 64 bits of the source will be copied into UVIL/VSIL and then 0 bits
will be shifted in from the left.

Chapter 10 Cryptographic Acceleration and Assurance Module (CAAM)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1045
Confidential Proprietary

CAAM register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1046 NXP Semiconductors
Confidential Proprietary

Chapter 11
Secure Non-Volatile Storage (SNVS)

11.1 SNVS introduction
SNVS is a companion module to the CAAM module and serves as the SOC's central
reporting point for security-relevant events such as the success or failure of boot software
validation and the detection of security threat events. This security event information
determines whether the SoC (hardware and software) is in the proper state to allow the
CAAM to use persistent and ephemeral secrets. Based on configuration fuses and
configured bits within registers, SNVS is able to detect a variety of security violation
inputs and perform the configured policy enforcement actions.

SNVS incorporates both security and non-security functionality.

SNVS security functions:
• Monitor security events in the SoC, and respond as per configured security policy
• Protect certain security-critical data objects

• Master Key - can be used by CAAM when encrypting or decrypting blobs
• One-Time Programmable Master Key (OTPMK) from fuses can be used as

the source of the Master Key
• Zeroizable Master Key (ZMK) - can be used as the source of the Master Key
• OTPMK XOR ZMK (Combined Master Key, CMK) - can be used as the

source of the Master Key
• Monotonic Counter (MC) - a monotonically increasing counter that can be used

for replay detection
• Secure Realtime Counter (SRTC) - realtime counter that can't be altered by

untrusted software
• Preserve state of the data objects listed above (if the SNVS_LP power input is

connected to an uninterrupted power supply)
• ZMK value maintained when main SoC is powered off
• MC value maintained when main SoC is powered off
• SRTC continues to count when main SoC is powered off

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1047
Confidential Proprietary

SNVS non-security functions:
• Realtime Counter (RTC) - a software accessible realtime counter

• RTC can be set to the value in the SRTC
• General Purpose Register - a set of registers used to hold 128 bits of data specified by

software
• If the SNVS_LP power input is connected to an uninterrupted power supply, the

GPR value is maintained when main SoC is powered off
• Chip power-on/power-off - If the SNVS_LP power input is connected to an

uninterrupted power supply and the Power On button input signal is connected to a
power button external to the chip, logic within SNVS_LP can be used to wake the
chip from a power down.

11.1.1 SNVS feature list

The following table summarizes the features of SNVS:

Table 11-1. SNVS feature list

Feature Description Links for Further
Information

Security State Machine
(SSM)

• Receives configuration inputs from SoC fuses
• Receives security violation inputs from the various detectors in the

chip
• Tracks security state
• Generates security state outputs to CAAM and other logic within the

chip
• Can request system hard reset in case of non-recoverable violation
• Programmable high assurance counter (HAC) to control time delay

before system hard reset request generation

Security state machine

Master key checking
and control

• Performs validity checks for the one-time programmable master key
before allowing CAAM to use it

• Performs validity checks for the zeroizable master key before
allowing CAAM to use it

• Selects the device-specific master key value as the OTPMK, the
ZMK, or the bit-wise exclusive OR of both the OTPMK and the ZMK

Configuring Master Key
checking and control

Zeroizable master key
(ZMK).

• The ZMK value can be programmed via software or via a hardware
interface to CAAM's random number generator

• The ZMK value can be selected for use in encapsulating or
decapsulating CAAM blobs

• The ZMK value is zeroized when a security violation occurs
• If the SNVS_LP power input is connected to an uninterrupted power

supply (see SNVS power domains), the value is maintained even
when the main SoC is powered off.

Provisioning the
Zeroizable Master Key

Secure real time
counter (SRTC)

• The SRTC is driven by a dedicated clock that is functionally
independent of the chip configuration.

• The SRTC does not rollover. Instead the SRTC logic issues an
alarm if the SRTC reaches its maximum value.

• Programmable time alarm interrupt

SNVS_LP Secure Real
Time Counter (SRTC)

Table continues on the next page...

SNVS introduction

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1048 NXP Semiconductors
Confidential Proprietary

Table 11-1. SNVS feature list (continued)

Feature Description Links for Further
Information

• Software can program the SRTC to generate an interrupt at a
specific time.

• If the main SoC is powered down at the programmed alarm
time and the wake-up external alarm is enabled, the SRTC
generates a wake-up alarm via an external pin. (Assuming that
the SNVS_LP power input is connected to an uninterrupted
power supply, see SNVS power domains)

• The SRTC value is marked as invalid if an enabled SNVS security
event is detected.

Real time counter
(RTC)

• The RTC is driven by a dedicated clock, which is off when the
system power is down.

• The RTC can be synchronized to the value of the Secure Real Time
Counter.

• Programmable time alarm interrupt

SNVS_HP Real Time
Counter

Monotonic counter • The monotonic counter can only increment.
• The monotonic counter does not rollover. Instead the monotonic

counter logic issues an alarm if the monotonic counter reaches its
maximum value.

• The monotonic counter value is marked as invalid if an enabled
SNVS security event is detected.

• If the SNVS_LP power input is connected to an uninterrupted power
supply (see SNVS power domains), the monotonic counter value is
retained even if the main chip is powered down.

Using the Monotonic
Counter (MC)

General-purpose
register

• The general-purpose register is available to software to store 128
bits of data.

• The general-purpose register is zeroized when a security violation is
detected.

• If the SNVS_LP power input is connected to an uninterrupted power
supply (see SNVS power domains), the general-purpose register
value is retained even if the main chip is powered down.

Using the General-
Purpose Register

Register access
restrictions

• Some registers/values can be written only once per boot cycle. privileged and non-
privileged registers

Violation detection and
reporting

• Detects (internal to the block) the following security violations:
• Scan exit
• Digital Low-Voltage Event for the LP domain
• Invalid OTPMK (ECC check failure)
• ZMK ECC check failure
• SRTC rollover
• MC rollover

• Detects the following security violations:
• Software-reported violations
• 4 security violation inputs

• Direct connections to CAAM to lock out access to the OTPMK/ZMK
and force zeroization of sensitive information

• Configurably triggers a device hard reset.
• Configurably reports to software (interrupts) all security violation and

functional events

Security violation policy

SNVS_LP security
event policy

Wakeup from power off • Input signal from off chip requests SNVS_LP to power on the main
SoC (Assuming that the SNVS_LP power input is connected to an
uninterrupted power supply (see SNVS power domains).

• Hardware debounces the input signal using software-specified signal
bounce characteristics

LP Wake-Up Interrupt
Enable

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1049
Confidential Proprietary

11.1.2 SNVS functional description
The low-power section of SNVS is intended to be initialized at SNVS_LP POR, which
normally occurs very rarely (when a new SNVS_LP power source is installed). At this
time software initializes the SNVS as described in Reset and Initialization of SNVS.
Once configured, much of the security functionality of SNVS operates automatically.
However, there are a few SNVS security functions that involve interaction with software:

• reading the Secure Realtime Counter (SRTC) - this can be read, but not significantly
altered1, by runtime software

• reading or updating the Monotonic Counter (MC) - this can be read or incremented
by runtime software

• SNVS also stores certain data whose integrity or confidentiality must be protected
(e.g. secure real-time clock,monotonic counter,zeroizable master key).

One of the major security functions of SNVS is to sense security-related events on the
device and control the device's security state per the software-configured security policy.
Once SNVS is initialized, sensing these events and initiating a response is handled by
hardware. Certain security-relevant events are detected within SNVS itself (e.g. power on
reset, boot from SoC ROM, digital low-voltage event), whereas other security-related
events are detected via sensors on or off-chip and passed to SNVS via input signals. For
instance, these other sensors might detect voltage or temperature or clock frequency out
of acceptable ranges.

SNVS implements several non-security features that involve software interaction:
• reading or writing the Realtime Counter (RTC) (This is a non-privileged operation.) -

software can also instruct SNVS to load the current SRTC value into the RTC
• reading or writing the General Purpose Register (GPR) (Note that there may be a

significant delay when reading or writing registers in the LP section if the LP clock is
different from the HP clock.)

The following sections describe in more detail the operation of SNVS.

11.2 SNVS Structure
The SNVS incorporates several features that help to ensure the security of data stored in
the device.

• A security state machine that responds to various security conditions
• hardware security violation inputs (See SNVS_LP security event policy)
• software-implemented security checks

1. The SRTC cannot be written after it has been locked by initialization software, but the clock rate can be adjusted
until the adjustment bits are also locked.

SNVS Structure

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1050 NXP Semiconductors
Confidential Proprietary

• Security-state-machine derived outputs that tell the CAAM whether the device state
is Trusted, Secure, NonSecure, or Fail

• Automatic zeroization of the Zeroizable Master Key if an enabled security event is
detected

• Automatic zeroization of the General Purpose Register if an enabled security event is
detected

• A digital low-voltage detector for the LP domain that alerts the security state
machine when a low-voltage event causes a low-voltage detector bit to flip

• Validity flag that indicates if the value in the monotonic counter is valid
• Validity flag that indicates if the value in the secure realtime counter is valid

SNVS is organized as two major sub-modules:
• Low-Power Section of SNVS (SNVS_LP)

The SNVS_LP section provides hardware that enables secure storage and protection
of sensitive data. The SNVS module is designed to safely hold security-related data
such as cryptographic key, time counter, monotonic counter, and general purpose
security information.

The SNVS_LP block implements the following functional units:
• Zeroizable Master Key
• Control and Status Registers
• General Purpose Registers
• Monotonic Counter
• Secure Real Time Counter

When the LP section is powered by an uninterrupted power supply, like a backup
battery, the state of these registers is maintained even when the main chip power is
off. (see SNVS power domains)

• High-Power Section of SNVS (SNVS_HP)

The SNVS_HP section contains all SNVS status and configuration registers. It
implements all features that enable system communication and provisioning of the
SNVS_LP section. The SNVS_HP section also incorporates the security state
machine, which controls the system security state, and the master key control block,
which is responsible for checking and selecting the master key value. The SNVS_HP
also incorporates the Zeroizable Master Key programming mechanism and the
OTPMK logic.

The SNVS_HP provides an interface between SNVS_LP and the rest of the system.

The SNVS_HP block implements the following functional units:
• IP Bus Interface
• SNVS_LP Interface

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1051
Confidential Proprietary

• Security State Machine (SSM)
• Zeroizable Master Key Programming Mechanism
• Master Key Control block
• Real Time Counter with Alarm Control and Status Registers
• Control and status registers

SNVS_HP is in the chip's power supply domain and thus receives power along with
the rest of the chip.

The following figure illustrates the structure of SNVS.

SNVS Structure

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1052 NXP Semiconductors
Confidential Proprietary

IP Bus Interface
& Control

System Security
 Monitor

LP Control

Software
Violation

Software
Fatal Violation

System ResetIP Bus

Interrupts32/
MC Era Bits

System Security Configuration

Secure Scan Enable
System Secure Boot

Trusted State

Secure State

Fail State

Hard Reset Req.

Scan Mode

Scan Enter

Scan Exit

 Scan Control Bus

 Security State

 Security Violations

Config. Inputs

Master Key
Control

256/

256/
 Master Key

OTPMK

 Internal
LP-HP Bus

HP-LP Interface

S
ec

ur
ity

 E
ve

nt

 HP

LP

Isolation Cells

HP Power
Fail Detector

LP POR
Module

C

hi
p

P
ow

er
 F

ai
l

LP

 P
ow

er
-O

n-
R

es
et

LP

 P
ow

er
 S

up
pl

y

C

hi
p

P
ow

er
 S

up
pl

y

VCC

VCC

LP Power Domain

Chip Power Domain

General Purpose Reg

Digital Low-Voltage Detector Low-Voltage Event

STCSOFT.SNVS_SPEC_M845S.008

m845s

Monotonic Counter

Real Time Counter

Time Alarm

Periodic Interrupt

 r
ol

lo
ve

r
time alarm

Secure Real
 Time Counter

Security Event Detection

S
ec

ur
ity

 E
ve

nt

Key Programming
Mechanism

Zeroizable Master Key

 Data Request

 Data Pop

 Data Valid

 Data In 32/

RNG Side Channel

ZMK Reset

PMIC
Control

dumb_pmic_default

pmic_en_b
btn

 Set_pwr_off_irq

Figure 11-1. SNVS Block Diagram

11.2.1 SNVS power domains

In some versions of SNVS (including this version), the LP (Low Power) section is
implemented in an independent power domain from the HP (High Power) section, and
most other logic on the chip. Throughout the SNVS documentation whenever mention is

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1053
Confidential Proprietary

made of "always-on" logic, this assumes a version of SNVS that implements an
independent power domain for the LP section, and that the power for this section is
supplied by an uninterrupted power supply. The purpose for the independent power
domain is so that data can be retained and certain logic can remain functional even when
the main chip logic is powered down. But this is possible only if the LP domain remains
powered via an uninterrupted power supply when the main chip power domain is
powered off. Usually this uninterrupted power supply would be a battery, with possibly
some power management logic to power the LP section from main power (and perhaps
recharge the battery) when main power is on, and switch to battery power when the main
power is off. In versions of SNVS with an independent LP power domain the LP section
can be electrically isolated from the rest of the chip logic to ensure that its logic does not
get corrupted when the main chip is powered down. If the battery runs down or is
removed, an LP POR will occur when the LP section next powers up. Note that some
OEMs may choose to connect LP power to HP/main chip power and dispense with a
battery. In that case the SNVS will operate the same as an SNVS without an independent
LP power domain. No state will be retained in the LP section when the chip is powered
down, and an LP POR will occur whenever there is an HP POR.

11.2.2 Digital Low-Voltage Detector (LVD)

SNVS_LP incorporates a mechanism to detect interruptions of the SNVS_LP power
supply that might cause the LP control, status, and secure counter values to change. The
mechanism works as follows:

1. The LVD register (LPLVDR) is loaded with the known specific value 4173_6166h
as part of the SNVS initialization process.

2. Subsequently, this register's value is continuously compared to the hardwired value
4173_6166h.

3. If the comparison indicates that any bit has changed, a low-voltage violation is
asserted.

Digital low-voltage detection is always enabled and cannot be disabled. At LP POR this
register is reset to all 0's, so the hardwired comparison fails and a low-voltage violation is
reported. Therefore, before programming any feature in the SNVS the low-voltage
violation should be cleared. The initialization software should write the proper value
(4173_6166h) into LPLVDR (see SNVS_LP Digital Low-Voltage Detector Register
(LPLVDR)) and should then clear the low-voltage event record in the LP status register
(see SNVS_LP Status Register (LPSR)).

The following figure shows the LVD mechanism.

SNVS Structure

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1054 NXP Semiconductors
Confidential Proprietary

 Digital Low-Voltage Violation

 41736166h
(Hardwired value is in hexadecimal format)

 Low-Voltage Detector Register

 Compare

 32/

 32/

Figure 11-2. Digital low-voltage detector

11.2.3 SNVS clock sources
The SNVS has the following clock sources:

• System peripheral clock input. This clock is used by the SNVS's internal logic, for
example, the Security State Machine. This clock can be gated outside of the module
when the SNVS indicates that it is not in use.

• HP RTC clock. This clock is used by SNVS_HP real-time counter. This clock does
not need to be synchronous with other clocks.

11.3 Security violation policy
SNVS is intended to detect, and potentially initiate a response to, various security-
relevant events in the chip. The nature of the response to various types of security-
relevant events can be set by configuring the SNVS security policy appropriately. SNVS
detects certain security-relevant events either within its HP section, or via "Security
Violation" inputs to the HP section. The following security-relevant events are detected
within SNVS_HP hardware:

• OTPMK Hamming code error
• ZMK Hamming code error

The following security-relevant events are detected external to SNVS and are reported to
SNVS_HP via "Security Violation" input signals:

• CAAM Security Violation
• JTAG Active
• Watchdog 2 reset
• Security Violation 3 (reserved)
• External Boot
• Security Violation 5 (reserved)

Software can also report a security violation to SNVS by writing into the SNVS_HP
Command register (HPCOMR).

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1055
Confidential Proprietary

In addition to the SNVS_HP-detected security-relevant events mentioned, SNVS also
detects certain other security-related events in the SNVS_LP section and reacts to them
even when main SoC power is off:

• Digital Low-Voltage Event Violation
• SRTC Rollover Violation
• MC Rollover Violation

The SoC firmware specifies SNVS's response to security violations by configuring the
SNVS_HP security policy. At boot time the SoC boot firmware also checks the status of
the SNVS_LP section. If the LP section has not been securely initialized, or an enabled
LP security event has occurred, or the SNVS_LP power source is interrupted, the status
check will indicate that the state of the LP section is invalid, and the boot firmware will
configure the SNVS_LP security policy. The configured security policy determines how
security-related events affect the SoC security state, which is tracked by the SNVS
Security State Machine as explained in the next section.

11.3.1 Security state machine

SNVS implements a security state machine (SSM) that tracks the security state of the
SoC. The states and state transitions of the SSM affect certain security actions taken by
SNVS and CAAM. For instance, in some security states CAAM will use a test key for
blob operations, whereas in other security states CAAM will use a secret key. Some state
transitions cause SNVS and CAAM to zeroize certain secret values.

The following figure and table describe the SSM's states and transitions.

Security violation policy

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1056 NXP Semiconductors
Confidential Proprietary

Init.

Check

Trusted

Secure

Non
Secure

Soft
Fail

Hard
Fail

any
state

software or
security violation

software
- if booting securely

software software
(can be disabled)

software
(can be disabled)

software or
fatal violation

software or
fatal violation

software or
security violation

HAC is enabled
and HAC counter

is zero

software or
security violation

system reset

Figure 11-3. Security State Machine

Table 11-2. Security State Machine State Definitions

SSM State What happens in this state Security state
signals sent to

CAAM:

Transitions from this SSM State to:

Init

(System enters
this state at
main SoC
POR.)

In this state the SSM ignores all security
violations sources; security violations
are not recorded and not responded to
in the SNVS_HP domain.

SNVS registers cannot be programmed
in this state.

Non-Secure (i.e. not
Secure, not Trusted
and not Fail)

• Check state - if the clocks are stable
and fuse values can be read
accurately the SSM transitions from
Init state to Check state.

Check System performs the check sequence,
which consists of various hardware
health checks. While in Check, the
SNVS receives various inputs, including

Non-Secure (i.e. not
Secure, not Trusted
and not Fail)

• Trusted state - If software writes a 1
to the control bit in the HP Command
Register while the SSM is in Check
state, this initiates a transition to
Trusted state. The transition is

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1057
Confidential Proprietary

Table 11-2. Security State Machine State Definitions
(continued)

SSM State What happens in this state Security state
signals sent to

CAAM:

Transitions from this SSM State to:

the fuse values from the SFP, security
violation status, and a pass/fail
indication from the boot firmware.

SNVS registers cannot be programmed
in this state, with the exception of
several bits in the HP Command
Register.

allowed if the system is booting from
ROM internal to the chip, or if the
System Security Configuration is Fab
(000). Upon transition to Trusted
state, SNVS_LP is reset if it was
previously provisioned in the Non-
secure state.

• Non-secure state - If a non-fatal
security violation is detected while in
Check state the SSM transitions to the
Non-secure state.

• Soft Fail state - If a fatal violation is
detected while in Check state the
SSM transitions to the Soft Fail state.

Non-Secure In this state, the secure and trusted
mode indication signals are not set. In
Non-Secure state any write accesses to
the SNVS_LP registers are denied if
SNVS_LP was provisioned in the
Trusted state or Secure state.

Non-Secure (i.e. not
Secure, not Trusted
and not Fail)

• Soft Fail state - If a fatal violation is
detected while in Non-Secure state
the SSM transitions to the Soft Fail
state.

Trusted In this state, the trusted and secure
mode indication signals are asserted.
The fact that the SSM is in the Trusted
state indicates that there are no
hardware security violations and that
HAB was satisfied with its security
checks (including validating the
signature over the next boot software).
In this state SNVS signals to
Cryptographic Acceleration and
Assurance Module indicating that
Cryptographic Acceleration and
Assurance Module is allowed to use the
Trusted/Secure state values of the blob
master key, black key encryption keys,
and trusted descriptor signing keys.
Note that the PRI_BLOB bits in the
Cryptographic Acceleration and
Assurance Module Security
Configuration register affect the
derivation of the blob master key only
when the SSM is in Trusted state.

Trusted, Secure • Secure state - If software writes to
the SSM_ST bit in the HP Command
Register while SSM is in the Trusted
state, this will trigger a transition to
Secure state.

• Soft Fail state - If the SSM detects a
security violation condition while SSM
is in the Trusted state, the SSM
immediately (without clock) transitions
to the Soft Fail state. If software writes
to the HP Command register's
SW_FSV or SW_SV bits while the
SSM is in the Trusted state, the SSM
will transition to Soft Fail state.

Secure In this state, the secure mode indication
signal is asserted and trusted mode
indication signal is de-asserted. This
indicates that Cryptographic
Acceleration and Assurance Module is
allowed to use the Trusted/Secure state
values of the blob master key, black key
encryption keys, and trusted descriptor
signing keys. The only difference

Secure • Trusted state - If software writes to
the SSM_ST bit in the HP Command
Register while SSM is in the Secure
state, this will trigger a transition to
Trusted state. (The Secure state to
Trusted state transition can be

Table continues on the next page...

Security violation policy

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1058 NXP Semiconductors
Confidential Proprietary

Table 11-2. Security State Machine State Definitions
(continued)

SSM State What happens in this state Security state
signals sent to

CAAM:

Transitions from this SSM State to:

between Secure and Trusted states is
that the derivation of the blob master
key is different. The PRI_BLOB bits in
the Cryptographic Acceleration and
Assurance Module Security
Configuration register factor into the
blob master key derivation only in
Trusted state. This is intended to allow
HAB and/or secure provisioning
software to encrypt/decrypt blobs that
cannot be encrypted or decrypted by
runtime software.

disabled by setting the SSM_ST_DIS
bit in the HP Command Register.)

• Soft Fail state - If the SSM detects a
security violation condition while SSM
is in the Secure state, the SSM
immediately (without clock) transitions
to the Soft Fail state. If software writes
to the HP Command register's
SW_FSV or SW_SV bits while the
SSM is in the Secure state, the SSM
will transition to Soft Fail state.

Soft fail Upon transitioning to Soft Fail the SNVS
signals the Cryptographic Acceleration
and Assurance Module to use the test
master key for blobs and to zeroize the
KEKs, TDSK and all key registers. The
SNVS also generates an interrupt to
inform software of the Soft Fail, and if
configured to do so, starts the
HAC_Counter countdown toward Hard
Fail. The device can operate with the
SSM in the Soft Fail state indefinitely;
however, no operations involving the
Cryptographic Acceleration and
Assurance Module can occur unless the
SNVS is transitioned from Soft Fail
state to the Non-Secure state.
Transition from Soft Fail to the Non-
Secure state can be triggered by
software via a write to the HP
Command register SSM_ST bit, unless
the HAC counter is actively counting or
the transition to the Non-Secure state
has been disabled via the
SSM_SFNS_DIS bit. But the black keys
and trusted descriptors that existed
prior to the entry into Soft Fail will not
be recoverable even in Non-Secure
state and until the SoC is reset, the
Cryptographic Acceleration and
Assurance Module will be unable to
perform blob operations with the secret
master key. SNVS registers cannot be
programmed in this state, except for
several bits in the HP Command
Register.

Fail • Hard Fail state - If the HP Command
Register HAC_EN bit is 1 when the
SSM enters the Soft Fail state, the
High Assurance Counter is loaded
from the High Assurance Counter IV
register and then the High Assurance
Counter begins counting down.
Software can stop this counter by
writing to the HAC_STOP bit in the
HP Command Register. If software
fails to stop the High Assurance
Counter before it counts down to zero
the SSM transitions to the Hard Fail
state. This acts as a "deadman
switch" to reset the SoC if the
software is hung.

• Non-Secure stateSoftware can
initiate a transition from Soft-Fail state
to Non-Secure state by writing a 1 to
the SSM_ST bit in the HP Command
Register, unless the transition has
been disabled by setting the
SSM_ST_DIS bit in the HP Command
Register or the High Assurance
Counter has been activated but not
stopped, or a fatal security violation is
active. In these cases the SSM stays
in the soft fail state.

Hard Fail Entering this state triggers the hard
reset request output, which should be
used in the system to perform a

Fail • Hard-Fail state - One the SSM enters
the Hard-Fail state it remains in the
Hard-Fail state until the system is
reset.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1059
Confidential Proprietary

Table 11-2. Security State Machine State Definitions

SSM State What happens in this state Security state
signals sent to

CAAM:

Transitions from this SSM State to:

hardware reset without the aid of
software. SNVS registers cannot be
programmed in this state.

All HP security violation sources are classified into one of three categories: disabled,
non-fatal security, and fatal security. Disabled security violations have no effect on the
SSM. Fatal security violations always result in the SSM transition to the Soft Fail state.
The non-fatal security violations result in a transition from Check to Non-Secure or from
Trusted/Secure states to Soft Fail state.

• Disabled violation - SNVS records the violation but does not otherwise react to the
violation.

• Non-fatal security violation - SNVS records the violation but does not cause security
registers to be cleared

• Fatal security violation - SNVS records the violation and causes security registers to
be cleared.

Regardless of the category all security violation events are recorded in the corresponding
status registers.

11.3.2 SNVS interrupts, alarms, and security violations

When SNVS detects enabled security events, SNVS responds as dictated by the security
policies pre-configured by software. This security policy configuration specifies under
what circumstances SNVS asserts the following interrupt and alarm signals:

Table 11-3. Interrupts and alarms summary

Interrupt/violation Security Event Default
configuration1

Configuration
options

SNVS security interrupt Security violation input asserted Disable Enable/disable

SSM transitions to the soft fail state Enable -

LP security violation asserted Disable Enable/disable

SNVS security violation SSM transitions to the soft fail state Enable -

SNVS hard failure reset SSM transitions to the hard fail state Enable -

1. Default behavior refers to the setting after Reset

Security violation policy

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1060 NXP Semiconductors
Confidential Proprietary

11.3.3 Configuring SNVS's response to a security event
SNVS's response to hardware or software reporting a security violation depends on the
state of the Security state machine, and the security policy that software has configured in
SNVS. Software configures the SNVS security policy by writing to the following
registers:

• SNVS_HP Security Interrupt Control Register (HPSICR) - enables or disables
generating the security interrupt when specific security violation events are detected

• SNVS_HP Security Violation Control Register (HPSVCR) - configures specific
security violation event inputs as fatal or non-fatal or disabled

• SNVS_HP High Assurance Counter IV Register (HPHACIVR) - sets the delay
between the occurrence of an SSM transition from soft fail state to hard fail state

• SNVS_HP Lock Register (HPLR) - locks part or all of the security configuration set
in SNVS_HP

• SNVS_LP Control Register (LPCR) - configures certain LP security event responses:
• whether GPRs are zeroized in response to a security event
• whether an LP low-voltage event alerts the PMIC
• whether a wake-up interrupt is requested when an LP section security event

occurs
• whether the SRTC stops counting when a security violation occurs

• SNVS_HP Security Violation Control Register (HPSVCR) - configures whether
specific HP section security violation event inputs cause an LP section security
violation, which zeroizes sensitive data in the LP section

• SNVS_LP Lock Register (LPLR) - locks part or all of the security configuration set
in SNVS_LP

If the SNVS SSM is in the Trusted or Secure state, the occurrence of a security violation
triggers a transition to the Soft Fail state. The transition to Soft Fail state is reported to
CAAM, which will also take certain response actions.

The consequences of an SSM transition to Soft Fail include:

• Zeroization of the JDKEK, TDKEK and TDSK values in CAAM
• Zeroization of the JDKEK effectively zeroizes all normal Black Keys
• Zeroization of the TDKEK effectively zeroizes all Trusted Black Keys
• Zeroization of the TDSK invalidates all Trusted Descriptors

• Zeroization of the ZMK value in SNVS_LP
• Zeroization of the ZMK effectively zeroizes all blobs encrypted using the ZMK

or using ZMK XOR OTPMK
• Zeroization of the GPR value in SNVS_LP

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1061
Confidential Proprietary

• Zeroization of the GPR protects the confidentiality of key or other secret data
stored in the GP register

• Lock out of the master key (OTPMK, ZMK or OTPMK XOR ZMK) until the next
POR (and successful secure boot)

• Lock out prevents Trusted or Secure blobs from being decrypted until POR (and
successful secure boot)

Note that software can continue to run following a transition to Soft Fail, and both SNVS
and CAAM remain operable. However, it is inadvisable to continue normal operation
until the SoC has been reset. Whatever event triggered the transition from Secure or
Trusted to Soft Fail state may have left the SoC in a vulnerable condition. Also, as
explained below, after such a transition certain CAAM security functions will be
inoperable or unsecure.

• Attempting to decrypt Secure and Trusted blobs following a transition to Soft Fail
will produce an error indication. (Since the Master Key is unavailable, the signature
on the blobs will be incorrect.)

• Attempting to use pre-Fail-transition CCM-encrypted Black Keys will produce an
error indication. (The JDKEK and TDKEK values will be incorrect now that they
have been zeroized, consequently the CCM cryptographic signature will be
incorrect).

• Attempting to use pre-Fail-transition Trusted Descriptors will produce an error
indication. (The TDSK value will be incorrect now that it has been zeroized,
consequently the cryptographic signature will be incorrect).

• Using pre-Fail-transition ECB-encrypted Black Keys will not produce an error
indication because there is no cryptographic signature on ECB-encrypted Block
Keys. (Using these keys will simply yield an incorrect result.)

• Encrypting blobs will not produce an error, but these blobs will not be effectively
protected. (Since the Master Key is unavailable, the test key will be used.)

• Generating either CCM-encrypted or ECB-encrypted Black Keys will not produce an
error, but these Black Keys will not be effectively protected. (Since the JDKEK and
TDKEK have been zeroized, Black Keys will be encrypted with a known value.)

Consequently, operation following a transition from Secure or Trusted to Soft Fail state
should be limited to recovery and debugging. In response to a Soft Fail, a security
violation interrupt service routine should read the SNVS HP_Status Register and
HP_Security Violation Status Register and write their values to NVRAM to log the
occurrence and root cause of the security violation.

11.3.4 SNVS_LP security event policy

The tables below provide information about the SNVS_LP security event policy.

Security violation policy

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1062 NXP Semiconductors
Confidential Proprietary

Table 11-4. SNVS_LP security events

Security event Default
behavior1

Configuration
options2

Comments

Internal to LP Sources3

SRTC Rollover Violation Disable • Enable
• Disable

Asserted when SRTC is enabled and it reaches maximal value
(all ones)

MC Rollover Violation Disable • Enable
• Disable

Asserted when MC is enabled and it reaches maximal value (all
ones)

From HP Section

LP software violation Enable • Enable
• Disable

Asserted by software

HP Security Violation Inputs
SV0, SV1, SV2, SV4,

(See SNVS_LP security
event policy)

Disable

../inst

• Enable
• Disable

Asserted on the Security Violation Port

1. Default behavior refers to the setting after LP POR, before the LP Security Violation policy is configured.
2. The configuration is set in the LPSECR and LPSVCR registers. Once set, the configuration can be locked to prevent

further changes.
3. These security events can also be asserted and detected in the system power-down mode.

When an LP security violation is generated, the violation is reported to the SNVS_HP
section. The source of the violation is recorded in the LP status register.

11.3.5 High Assurance Counter

If a security event occurs that transitions SNVS to the Soft Fail state, the software that is
intended to respond to this transition may fail to act because it has become corrupted.
SNVS implements a software "deadman" switch that is intended to deal with this case.
The deadman switch consists of the High Assurance Counter (HAC) and the various
other registers and register bit fields that control the HAC.

If enabled, the HAC begins counting down toward 0 when the SNVS Security State
Machine (SSM) transitions to Soft Fail state. If software does not stop the count before it
reaches 0, the security state machine will transition to the Hard Fail state. Transitioning to
Hard Fail state is intended to cause the chip to reset.

If the HAC will be used, sofware should write the HAC initial value to the High
Assurance Counter IV Register and then write a 1 to the HAC_LOAD (High Assurance
Counter Load) bit and a 1 to the HAC_EN (High Assurance Counter Enable) in the HP
Command Register. This will load the initial value into the HAC Register and enable the
HAC for counting. Once the HAC register is initialized and enabled, software should
write a 1 to the HAC_L (High Assurance Configuration Lock) bit in the HP Lock
Register to prevent malicious or corrupted software from altering the HAC configuration.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1063
Confidential Proprietary

If a security event causes the SSM to transition to SOFT FAIL state the HAC will start
counting, one count per system clock, from the initial value down to 0. While the SSM is
in SOFT FAIL state software can halt the count by writing a 1 to the HAC_STOP bit in
the HP Command Register. If software later writes a 0 to HAC_STOP the count will
resume at the current value in the HAC. If software writes a 1 to the HAC_CLEAR bit in
the HP Command Register, the HAC will be cleared, regardless of the state of the SSM.
If the SSM is in the Soft Fail state at that time the SSM will immediately transition to the
Hard Fail state. If the SSM is in any other state when the HAC is cleared the SSM will
transition to Hard Fail immediately after transitioning to Soft Fail (assuming the HAC is
enabled).

11.4 Runtime Procedures
SNVS implements a number of features that are intended to be accessed by software at
runtime (as opposed to accessed at boot time). These features include:

• Real Time Clock (see SNVS_HP Real Time Counter)
• Secure Real Time Clock (see SNVS_LP Secure Real Time Counter (SRTC))
• General Purpose Register (see Using the General-Purpose Register)
• Monotonic Counter (see Using the Monotonic Counter (MC))

Procedures for using these features are described in the following sections.

11.4.1 Using SNVS Timer Facilities

SNVS incorporates timer facilities that can optionally generate an interrupt at a specified
time. As described in the following sections, SNVS_HP incorporates a Real Time
Counter that is available for general use, and SNVS_LP incorporates a Secure Real Time
Counter intended for security applications.

11.4.1.1 SNVS_HP Real Time Counter

SNVS_HP implements a real time counter that can be read or written by any application;
it has no privileged software access restrictions. When the chip is powered down the RTC
is not active and it is reset at chip POR. The RTC can be used to generate a functional
interrupt request either at a specific time, or at a specific frequency, or both. To generate
an interrupt request at a specific time HPTA_EN is set to 0, the desired time is written to
HPTA_MS and HPTA_LS and then HPTA_EN is set to 1. HPTA_EN, HPTA_MS and
HPTA_LS can be written by any software that has access to SNVS registers; there are no

Runtime Procedures

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1064 NXP Semiconductors
Confidential Proprietary

privileged access restrictions. The counter can be synchronized to the SNVS_LP SRTC
by writing to the HP_TS bit of SNVS_HP Control Register. This is particularly useful if
the SNVS_LP is powered from an uninterrupted power source because the RTC can then
be set from a chip-internal time source.

11.4.1.2 SNVS_LP Secure Real Time Counter (SRTC)
SNVS_LP implements a secure real time counter. The SRTC differs from the Realtime
Counter (RTC) implemented in the HP section in the following ways:

• If the SNVS_LP power input is connected to an uninterrupted power supply, the
SRTC retains its state and continues counting even when the main chip is powered
down.

• When the RTC reaches its maximum value it simply rolls over to all 0s. The SRTC is
a non-rollover counter, which means that the SRTC does not rollover to all zeros
when it reaches the maximum value of all ones. Instead, a time rollover indication is
generated to the SNVS_LP security event monitor, which generates a security
violation and interrupt.

• The RTC can be written at any time. The SRTC can be locked so that a new value
cannot be written into the SRTC.

• The RTC can be synchronized to the SRTC by writing to the HP_TS bit of
SNVS_HP Control Register.

• The SRTC can be calibrated so that its count frequency tracks some other time
source.

• The SRTC can be marked as valid or invalid, so software knows whether the SRTC
value can be trusted.

• The SRTC can be configured to capture the time of a security violation.

The SRTC is intended for security applications that require real time. Some examples are:
• data rights management schemes in which the rights expire at a certain date and time
• audit logs that record the date and time of security-relevant events
• security protocols that rely on real time to ensure freshness or for event ordering

To ensure that the SRTC cannot be modified in order to circumvent time-based security
policies, the SRTC can be programmed only when SRTC is not active and not locked,
meaning the SRTC_ENV, SRTC_SL, and SRTC_HL bits are not set. If the SRTC will be
used for security purposes, at SNVS_LP POR trusted software (e.g. boot firmware)
should check if SRTC is enabled and valid (SRTC_ENV=1). If SRTC_ENV=0 the
trusted software should set the SRTC from a trustworthy time source and then set
SRTC_ENV, SRTC_SL and SRTC_HL to 1. When SRTC_SL=1 the SRTC cannot be
written until main chip reset. When SRTC_HL=1 the SRTC cannot be written until
SNVS_LP POR.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1065
Confidential Proprietary

The SRTC can be used to generate a functional interrupt request at a particular time by
setting the desired time in the LP Time Alarm register (LPTAR) and setting LPTA_EN to
1. Note that the functional interrupt request is shared by both the LP time alarm and the
HP time alarm, so the interrupt handler for the SNVS functional alarm should check the
HPTA bit in the HPSR and/or the LPTA in the LPSR to distinguish between these two
alarm sources.

The SRTC counting speed can be adjusted to match the speed of some other time source
via a calibration mechanism. When the LPCALB_EN, LPCALB_SL, and LPCALB_HL
bits are 0 a value can be written into the LPCALB_VAL field of the LP Control Register.
When LPCALB_EN is 1, every 32768 ticks of the SRTC the adjustment value specified
in the LPCALB_VAL field will be added to the SRTC. If needed, at LP POR the
LPCALB_VAL field should be set by trusted software and then LPCALB_EN set to 1.
Whether the SRTC calibration mechanism is used or not, trusted software should set
LPCALB_SL, and LPCALB_HL bits to 1 to prevent misuse of the calibration
mechanism.

11.4.1.3 RTC/SRTC control bits setting

All SNVS registers are programmed from the register bus, consequently any software-
initiated changes are synchronized with the IP clock. Several registers can also change
synchronously with the RTC/SRTC clock after they are programmed. To avoid IP clock
and RTC/SRTC clock synchronization issues, the following values can be changed only
when the corresponding function is disabled.

Table 11-5. RTC/SRTC synchronized values list

Function Value/register Control bit setting

HP section

HP Real Time Counter HPRTCMR and HPRTCLR Registers RTC_EN = 0 : HPRTCMR/HPRTCLR
can be programmed

RTC_EN = 1 : HPRTCMR/HPRTCLR
cannot be programmed

HP Time Alarm HPTAMR and HPTALR Registers HPTA_EN = 0 : HPTAMR/HPTALR can
be programmed

HPTA_EN = 1 : HPTAMR/HPTALR
cannot be programmed

LP section

LP Secure Real Time Counter LPRTCMR and LPRTCLR Registers SRTC_ENV = 0 : LPRTCMR/LPRTCLR
can be programmed

SRTC_ENV = 1 : LPRTCMR/LPRTCLR
cannot be programmed

LP Time Alarm LPTAR Register LPTA_EN = 0 : LPTAR can be
programmed

Runtime Procedures

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1066 NXP Semiconductors
Confidential Proprietary

Table 11-5. RTC/SRTC synchronized values list

Function Value/register Control bit setting

LPTA_EN = 1 : LPTAR cannot be
programmed

Use the following steps to program synchronized values:

1. Check the enable bit value. If set, clear it.

2. Verify that the enable bit is cleared. There are two reasons to verify the enable bit's
setting:

• Enable bit clearing does not happen immediately; it takes three IP clock cycles and
two RTC/SRTC clock cycles to change the enable bit's value.

• If the enable bit is locked for programming, it cannot be cleared.

3. Program the desired value.

4. Set the enable bit; it takes three IP clock cycles and two RTC/SRTC clock cycles for
the bit to set.

NOTE
Incrementing the value programmed into RTC/SRTC registers
by two compensates for the two RTC/SRTC clock cycle delay
that is required to enable the counter.

11.4.1.4 Reading RTC and SRTC values

Software should follow the following procedure to ensure that it has read correct data
from the RTC (HPRTCMR and HPRTCLR) and SRTC (LPSRTCMR and LPSRTCLR)
registers:

• Read the most-significant half and the least-significant half of the RTC/SRTC and
then read both halves again. If the values read are the same both times, the value is
correct.

• If the two consecutive pairs of reads yield different results, perform two more reads.

The worst case scenario may require three sessions of two consecutive pairs of reads.
There are several reasons that the values may be incorrectly read initially:

• Synchronization issues between the RTC/SRTC clock and the system clock
• Since the counter continues to increment, there may be a carry from the least-

significant 32-bits to the most-significant bits in between reading the two halves of
the counter

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1067
Confidential Proprietary

11.4.2 Using Other SNVS Registers

The sections below describe how to use the General Purpose Register.Monotonic
Counter.The sections below describe how to use the General Purpose Register and the
Monotonic Counter.

11.4.2.1 Using the General-Purpose Register

SNVS implements a 128-bit general-purpose register allows software to store a small
amount of data. To maintain backward compatibility with versions of SNVS that
implement only a 32-bit general purpose register, the most-significant word of the
general purpose register is aliased to the original legacy address, and to maintain
backward compatibility with versions of snvs_module_name that implement a 128-bit
general purpose register, the most-significant half of the general purpose register is
aliased to the previous legacy address address. The data in the GPR will be retained
during system power-down mode as long as the SNVS_LP remains powered by an
uninterrupted power source.If LP Control Register GPR_Z_DIS bit is 0, the GPR will be
zeroized if an enabled security event occurs.

11.4.2.2 Using the Monotonic Counter (MC)

The following figure shows the MC and its rollover security violation.

Figure 11-4. SNVS_LP monotonic counter

Runtime Procedures

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1068 NXP Semiconductors
Confidential Proprietary

Some security applications require a monotonic counter (MC) that cannot be returned to
any previous value during the product's lifetime. For instance, the MC can be used to
detect replay of a cryptographic blob by including the current monotonic counter value in
the blob when it is encrypted, and checking this value against the current value in the MC
register when the blob is decrypted. If more than one blob must be replay-protected,
when any blob is to be updated the MC value would be incremented and all the blobs
would be refreshed with the updated MC value. Alternatively, software monotonic
counters could be maintained in a "monotonic counter blob", which would be replay-
protected via the hardware MC. In this case any time that a blob is to be updated its
software monotonic counter would be incremented, the MC would be incremented, and
the monotonic counter blob would be refreshed with the updated value of the software
monotonic counter and the updated MC value. If the application can tolerate a limited
window for replay, the overhead could be reduced by only updating the monotonic
counter blob once an hour, or perhaps once a day. Software could create even more
elaborate anti-replay mechanisms using a tree of monotonic counter blobs, with the
hardware MC at the root.

Because the MC cannot be allowed to repeat a value, it cannot set to a lower value than it
currently holds. In the unlikely case that it reaches its maximum value, it does not
rollover. Instead, a monotonic counter rollover indication is generated to the SNVS_LP
security event monitor. This generates a security violation to the SSM and an interrupt to
the host processor.

The MON_COUNTER fields of the MC register are implemented in flip flops within the
LP section. If LP power is lost, the MON_COUNTER value will be lost. To preserve
monotonicity in this event, the most significant bits of MC (the MC_ERA_BITS field)
are derived from fuses. This ensures that the MC_ERA_BITS value is preserved across
LP section power failures. The next time that the chip powers up following an LP section
power failure, the chip's boot firmware will note that the monotonic counter value is
invalid and will blow another of the fuses that drive the MC_ERA_bits field. This will
result in a larger value in the MC_ERA MC field and since this field forms the most-
significant bits of MC, this guarantees that the new value of MC is greater than any of its
past values.

11.5 Configuring Master Key checking and control
During cryptographic blob operations CAAM uses a key derivation function to create a
256-bit blob key encryption key (BKEK). The BKEK is used to encrypt or decrypt a 256-
bit random key that is actually used to encrypt or decrypt the content of the blob. Note
that the BKEK is nonvolatile so that blobs generated during one power-on cycle can be
decrypted during later power-on cycles. One of the inputs to the BKEK key derivation

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1069
Confidential Proprietary

function is the Master Key. When CAAM is in the non-Secure or Fail mode, a test value
is used for this Master Key. But when CAAM is in the Trusted or Secure mode the key
value used is the Master Key supplied by the SNVS. Software configures SNVS via the
LP Master Key Control Register's MASTER_KEY_SEL (Master Key Select) field so that
the Master Key supplied to CAAM comes from one of the following sources:

• One Time Programmable Master Key (OTPMK): This value is permanently burned
into fuses. The 256-bit value includes an embedded 9-bit Hamming code so that
hardware can verify the integrity of the key. This code is capable of detecting all
single, double, and triple bit errors in the key value. The construction of the
Hamming code is described in Error Code for the OTPMK. The hardware checks for
an all-zero value of the OTPMK. If the OTPMK Hamming code check fails or the
OTPMK is not programmed at all (all 0s), the hardware will report a "bad key" error,
which will prevent the chip from reaching the Trusted/Secure state.

• Zeroizable Master Key (ZMK): This value is stored in the ZMK registers of the low
power (LP) section of the SNVS. The ZMK value is retained when the main SoC
power is off because power is supplied to the SNVS LP section from an
uninterrupted power source. The ZMK value is automatically erased in response to
fatal security violations. OEMs have two options for provisioning a ZMK:

• Software Programming: Software can write directly to the SNVS's ZMK
registers. Once software has finished writing all of the ZMK registers, software
sets the ZMK_Valid bit. The value to be written into the ZMK can be
determined by any appropriate method. For instance, a random value could be
obtained from the CAAM's RNG, or software could program the ZMK registers
with a secret value shared among the OEM's devices. Unlike the OTPMK, the
ZMK value does not include an embedded Hamming code. Instead, additional
ECC protection bits are automatically generated by hardware and stored in the
SNVS LP section.

• Hardware Programming: SNVS and CAAM can be configured so that a 256-bit
random value is generated in the CAAM's random number generator and loaded
directly into the SNVS's ZMK registers via a private hardware interface.
Additional ECC protection bits are automatically generated by the SNVS and
stored in the SNVS LP section along with the ZMK.

• Combined Master Key (CMK): SNVS can be configured so that the Master Key is
the bitwise XOR of the OTPMK registers and the ZMK registers. This bitwise XOR
is called the CMK.

When SNVS detects a fatal security violation, SNVS signals the CAAM to switch to the
Test key instead of the Master Key value when encrypting or decrypting blobs. Until the
next successful secure boot CAAM will not be able to decrypt any blobs that were
generated while CAAM was in Trusted or Secure mode. Note that the Master Key is used
by the CAAM only as a key derivation key, and only during blob operations. It is never

Configuring Master Key checking and control

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1070 NXP Semiconductors
Confidential Proprietary

used to directly encrypt or decrypt user selected data. Within the CAAM the Master Key
value is combined with a number of other inputs to derive a blob key encryption key
(BKEK). During blob creation the BKEK is used to encrypt a 256-bit blob key obtained
from the CAAM's RNG. This random blob key is used to encrypt the content of the blob.
The encrypted blob key is stored as part of the blob. During blob decryption the BKEK is
recreated so that the encrypted blob key can be decrypted, and then used to decrypt the
blob content.

11.5.1 Error Code for the OTPMK

The Hamming code used for the 256-bit OTPMK has nine code bits. It can detect all 1, 2,
and 3 bit errors in the codeword. It also detects most, but not all, errors of more than 3
bits. Therefore, the OTPMK actually contains 247 random bits.

Numbering the bits in the OTPMK from zero to 255, the code bits are bits 0, 1, 2, 4, 8,
16, 32, 64, and 128. All remaining bits are data bits. Each of these code bits is the XOR
of a subset of the bits in the entire code word.

To determine which bits are used to form each code bit, look at the binary representation
of the bit position of each code bit (ignoring bit zero for the time being) in the following
table.

Table 11-6. Error codes

Code bit Binary representation

0 00000000

1 00000001

2 00000010

4 00000100

8 00001000

16 00010000

32 00100000

64 01000000

128 10000000

For code bit number 1, there is a single one in its binary representation. This code bit is
the XOR of all bit positions that also have a one in this same point in their binary
representation (i.e., all odd bit positions). The same is true for the other code bits,
excepting code bit 0. For example, code bit 2 is the XOR of bits 3, 6, 7, 10, 11, 14, 15,...,
254, 255, and code bit 128 is the XOR of all bits from 129 through 255 inclusive. After
all of the other code bits have been calculated, code bit zero is simply the XOR of all of
the other bits, including the code bits.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1071
Confidential Proprietary

Another way of looking at this is to ask which code bits does a data bit affect. If we look
at the binary representation of the bit position of a data bit, the 1s represent the code bits
that this data bit affects. For example, data bit 99 (01100011) is XORed into code bits 1,
2, 32, 64, and bit 0 (the overall parity bit).

11.5.2 Provisioning the Zeroizable Master Key

The ZMK is programmed after or during initialization of the SNVS_LP. The ZMK can
be provisioned either by software or by hardware. After the ZMK has been provisioned,
the value is retained even when power is off in the most of the chip. The SNVS's LP
section (SNVS_LP) includes the following registers for storing and locking the
Zeroizable Master Key (ZMK).

Register Overview

SNVS_LP Zeroizable Master
Key Registers

Eight 32-bit registers store a 256-bit value called the Zeroizable Master Key (ZMK). The ZMK
provides essentially the same function as the OTPMK from the Security Fuse Processor,
except that the ZMK value can be zeroized if a security violation is detected. Upon detection
of a security violation both the ZMK and the OTPMK are rendered unavailable during the
current boot cycle, but in addition the ZMK is zeroized, which renders the ZMK value
unavailable upon all subsequent boot cycles.

SNVS_LP Lock Register This register controls read and write access to all other SNVS_LP registers. Once a bit in the
SNVS_LP Lock Register is set, it cannot be cleared without a device reset.

SNVS_LP Master Key Control
Register

SNVS_LP Master Key Control determines whether the ZMK, the OTPMK, or the XOR of the
two, will be used by the CAAM when creating cryptographic blobs. This register also:

• controls the programming mode for the ZMK (software, or hardware via CAAM's
Random Number Generator)

• stores the ZMK's Error Correcting Code
• implements a valid bit that indicates that the ZMK has been provisioned

SNVS_LP Status Register Provides status information about the SNVS Low Power section's security state, including
hardware security violations that are directly detected within the SNVS_LP. The ZMK cannot
be provisioned if the SNVS_LP is in a Fail state.

The SNVS_LP Master Key Control Register gives OEMs the option of directly writing a
ZMK value to the ZMK Registers, or commanding the SNVS hardware to load a ZMK
by acquiring a 256-bit random number from the CAAM's RNG. When the SNVS_LP
loads its ZMK via the CAAM's RNG, hardware also calculates the associated Hamming
code and loads it into the ZMK_ECC_Value field of the SNVS_LP Master Key Control
Register.

To provision ZMK by software do the following:

• Verify that SNVS_LPMKCR [ZMK_HWP] is not set
• Verify that the ZMK registers are not locked for reads and writes. Verify that

SNVS_HPLR [ZMK_WSL], [ZMK_RSL] or SNVS_LPLR [ZMK_WHL],
[ZMK_WHL] are not set.

Configuring Master Key checking and control

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1072 NXP Semiconductors
Confidential Proprietary

• Write key value to the ZMK registers
• Verify that the intended key value is written

• Set SNVS_LPMKCR [ZMK_VAL] to indicate the ZMK is ready to be used by
the CAAM.

• (Optional but recommended) Set SNVS_LPMKCR [ZMK_ECC_EN] to enable
ZMK error correction code verification. Software can verify that the correct
nine-bit codeword is generated by reading ZMK_ECC_VALUE field

• (Optional but recommended) Block software read accesses to the ZMK registers and
ZMK_ECC_VALUE field by setting SNVS_HPLR [ZMK_RSL] and SNVS_LPLR
[ZMK_RHL]

• (Optional but recommended) Block software write accesses to the ZMK registers by
setting SNVS_HPLR [ZMK_WSL] and SNVS_LPLR [ZMK_WHL]

• Set SNVS_HPCOMR [MKS_EN] and SNVS_LPMKCR [MASTER_KEY_SEL] to
select combination of OTPMK and ZMK to be provided to the CAAM

• (Optional but recommended) Block software write accesses to the
MASTER_KEY_SEL field by setting MKS lock bit

• (Optional but recommended) Block software write accesses to SNVS_LPMKCR
[MASTER_KEY_SEL] by setting SNVS_HPLR [MKS_SL].

To provision ZMK by hardware do the following:

• Verify that the ZMK registers are not locked for writes. Check that SNVS_HPLR
[ZMK_WSL], or SNVS_LPLR [ZMK_WHL] are not set

• Set SNVS_LPMKCR [ZMK_HWP]
• Set SNVS_HPCOMR [PROG_ZMK]
• Poll for SNVS_LPMKCR [ZMK_VAL] bit to be set. This bit is set by hardware at

the end of the ZMK programming cycle
• (Optional but recommended) Set SNVS_LPMKCR [ZMK_ECC_EN] to enable

ZMK error correction code verification by hardware. Note that the ZMK Registers
and ZMK_ECC_VALUE field cannot be read by software in the hardware
programming mode, meaning hardware ZMK_ECC checking is the only way to
determine if the ZMK is corrupted.

• (Optional but recommended) Block hardware programming option of the ZMK
Registers by setting SNVS_LPLR [ZMK_WHL]

• Set SNVS_HPCOMR [MKS_EN] and SNVS_LPMKCR [MASTER_KEY_SEL] to
select combination of OTPMK and ZMK to be provided to the CAAM

• (Optional but recommended) Block software write accesses to SNVS_LPMKCR
[MASTER_KEY_SEL] by setting SNVS_HPLR [MKS_SL].

If the ZMK is provisioned by hardware, the ZMK Registers and the ZMK_ECC_VALUE
field in the SNVS_LP Master Key Control Register cannot be read by software.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1073
Confidential Proprietary

11.6 Reset and Initialization of SNVS
SNVS is implemented in two sections (HP and LP) that both must be initialized by
software. If the SNVS_LP is powered by an uninterrupted power source that is separate
from main SoC power, then SNVS can operate in either of two modes, depending upon
whether the main SoC power is on or off. During main SoC power-down SNVS_HP is
powered-down, but SNVS_LP is powered from the backup power supply and is
electrically isolated from the rest of the chip. In this mode SNVS_LP keeps its registers'
values but the LP registers cannot be read or written. During main SoC power-up the
isolation of SNVS_LP is disabled and both SNVS_HP and SNVS_LP are powered from
the main SoC power. Both LP and HP registers can be read and written (locks and
privilege modes permitting). Signals between the SNVS_HP and SNVS_LP sections are
enabled and all SNVS functions are operational.

Since the HP and LP sections reside in different power domains, the POR for the two
sections can occur at different times. If the SNVS_LP section remains powered by an
uninterrupted power source when the main SoC power is off, SNVS_LP is initialized
rarely, typically once when the device is first powered on and again whenever the battery
is replaced. During main SoC power-up the isolation of SNVS_LP is disabled and both
SNVS_HP and SNVS_LP are powered from the main SoC power. Signals between the
SNVS_HP and SNVS_LP sections are enabled and all SNVS functions are operational.
The SNVS_HP section is powered from the main SoC power, so it must be initialized
after the device is powered on. If the SNVS_LP section is powered from the main SoC
power rather than from an uninterrupted power source, the SNVS_LP section must also
be initialized at SoC POR.

• Initializing the LP section
• The following steps should be completed to properly initialize the SNVS LP

section (required only on LP POR, i.e. when the battery is replaced):
• Software should write the proper initialization value (41736166h) into the

LP Digital Low-Voltage Detector Register and clear the low-voltage event
record in the LP status register. See Digital Low-Voltage Detector (LVD)
for more details.

• If the SRTC will be used, set the Secure Real Time Clock.
• If the ZMK will be used, provision the ZMK (see Provisioning the

Zeroizable Master Key
• If the Monotonic Counter will be used, burn an additional Monotonic

Counter Era bit in the fuse bank and reset the Monotonic Counter.
• Initializing the HP section

• The following steps should be completed to properly initialize the SNVS HP
section (required on HP POR, i.e. SoC POR):

Reset and Initialization of SNVS

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1074 NXP Semiconductors
Confidential Proprietary

• Perform normal or secure boot to put the SNVS into a functional state (Non-
secure, Trusted, Secure) (see HP Command Register, SSM_ST bitfield).

• Program SNVS general functions/configurations (see HP Control Register).
• Enable security violations and interrupts in the HP Security Violation

Control Register and the HP Security Interrupt Control Register.
• Select Master Key (OTPMK, ZMK or XOR of the two. Default is OTPMK.)
• Set lock bits. The ms bit of the HP Lock Register should be set before

starting any functional operation. Setting this bit prevents further changes to
the Master Key selection.

HP_Lock
register

CAAM

SFP

SDC

TMP_DETECT

LP_Section

Security
violation
control
register

LockLock

Lock_HAC_EN only

HP_COM
register

If HAC_Enable
is set, setting
HAC_CLEAR is
a security
violation which
causes an
instant hard fail.

IRQ to
MPIC

Each Sec_Vio configured as fatal starts
the HAC in addition to initiating an IRQ. Soft fail

HA counter

HA Counter
initial value

0010000

0007321

Memory zeroization

RESET_REQ

Hard fail
state

27

C
le

ar

Lo
ad

S
to

p

E
na

bl
e

Security
violation
interrupt
control
register

Figure 11-5. Relationship Between the Registers

11.6.1 Checklist for Initialization of the SNVS HP
At SNVS HP POR. software must perform inititialization actions in the SNVS HP section
as indicated in the table below.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1075
Confidential Proprietary

Initialization action

(Some of these actions are
performed in the boot firmware or

software.)

Comments See section

Configure fatal/nonfatal security
violations

At HP POR all security violations default
to disabled or nonfatal.

Configuring SNVS's response to a
security event

SNVS_HP Security Violation Control
Register (HPSVCR)

Configure the High Assurance Counter Can be skipped if HAC is not used.
Defaults to HAC disabled at HP POR.

High Assurance Counter

SNVS_HP High Assurance Counter IV
Register (HPHACIVR)

SNVS_HP High Assurance Counter
Register (HPHACR)

HAC_STOP, HAC_CLEAR,
HAC_LOAD, and HAC_EN in
SNVS_HP Command Register (HPCO
MR)

HAC_L in SNVS_HP Lock Register
(HPLR)

Configure the SNVS interrupt policy By default security violation interrupts
are disabled at HP POR.

SNVS interrupts, alarms, and security
violations

SNVS_HP Security Interrupt Control
Register (HPSICR)

Advance the Security State Machine If software detects a security violation,
force a transition to Soft Fail state, else
cause a transition to Trusted state (and
then to Secure state, if desired).

Security state machine

SW_LPSV, SW_FSV, SW_SV,
SSM_SFNS_DIS, SSM_ST_DIS and
SSM_ST in SNVS_HP Command
Register (HPCOMR)

Select Master Key input to CAAM If ZMK is not used, select OTPMK
(default), else select ZMK or CMK.

Configuring Master Key checking and
control

MASTER_KEY_ SEL in SNVS_LP
Master Key Control Register (LPMKCR)

11.6.2 Checklist for Initialization of the SNVS LP
At SNVS LP POR. software must perform inititialization actions in the SNVS LP section
as indicated in the table below. If the SNVS LP section is powered from the same power
source as SNVS HP section, LP POR will occur at the same time as HP POR.

Reset and Initialization of SNVS

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1076 NXP Semiconductors
Confidential Proprietary

Initialization action

(Some of these actions are
performed in the boot firmware or

software.)

Comments See section

Load the Digital Low-Voltage Detector
Register

Software should load the register with
the value 4173_6166h and then clear
the digital low-voltage detector status
bit in the LP Status Register.

Digital Low-Voltage Detector (LVD)

Burn additional MC_ERA fuse and
initialize Monotonic Counter

Can be skipped if Monotonic Counter is
unused. Should be skipped if SNVS LP
is unpowered when main chip power is
off.

Using the Monotonic Counter (MC)

SNVS_LP Secure Monotonic Counter
MSB Register (LPSMCMR)

SNVS_LP Secure Monotonic Counter
LSB Register (LPSMCLR)

MC_SL in SNVS_HP Lock Register
(HPLR)

MC_HL in SNVS_LP Lock Register
(LPLR)

MC_ENV in SNVS_LP Control Register
(LPCR)

Initialize Secure Real Time Counter Can be skipped if Secure Real Time
Counter is unused. Should be skipped if
SNVS LP is unpowered when main chip
power is off.

SNVS_LP Secure Real Time Counter
(SRTC)

SNVS_LP Secure Real Time Counter
MSB Register (LPSRTCMR)

SNVS_LP Secure Real Time Counter
LSB Register (LPSRTCLR)

SNVS_LP Time Alarm Register (LPTA
R)

SNVS_LP Time Alarm Register (LPTA
R)

LPCALB_VAL, LPCALB_EN,
SRTC_INV_EN, LPTA_EN, SRTC_ENV
in SNVS_LP Control Register (LPCR)

Program the Zeroizable Master Key Can be skipped if Zeroizable Master
Key is unused. Should be skipped if
SNVS LP is unpowered when main chip
power is off.

Provisioning the Zeroizable Master Key

SNVS_LP Zeroizable Master Key
Register (LPZMKR0 - LPZMKR7)

SNVS_LP Master Key Control Register
(LPMKCR)

ZMK_RSL and ZMK_WSL in SNVS_HP
Lock Register (HPLR)

PROG_ZMK in SNVS_HP Command
Register (HPCOMR)

ZMK_ZERO in SNVS_HP Status
Register (HPSR)

ZMK_ECC_FAIL and
ZMK_SYNDROME in SNVS_HP
Security Violation Status Register
(HPSVSR)

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1077
Confidential Proprietary

11.7 SNVS register descriptions

This section contains detailed register descriptions for the SNVS registers. Each
description includes a standard register diagram and register table. The register table
provides detailed descriptions of the register bit and field functions, in bit order.

SNVS registers consist of two types:

• Privileged read/write accessible
• Non-privileged read/write accessible

Privileged read/write accessible registers can only be accessed for read/write by
privileged software. Unauthorized write accesses are ignored, and unauthorized read
accesses return zero. Non-privileged software can access privileged access registers when
the non-privileged software access enable bit is set in the SNVS_HP Command Register.

In addition, all privileged access registers (except HPSVSR and LPSR) can be written to
only if the system security monitor is in one of the three functional states:

• Non-Secure
• Trusted
• Secure

Certain fields in the SNVS_HP Command Register can be written in non-functional
system security monitor states (init, check, soft fail, and hard fail) as follows:

• SW_LPSV, SSM_ST, SW_SV, and SW_FSV can be written in check or soft fail
state.

• The HAC_STOP bit can only be set in soft fail state but can be cleared in either soft
fail or a functional state.

• HAC_LOAD, HAC_CLEAR bits and HPSVSR, LPSR Registers can be accessed in
soft fail or a functional state.

The system security monitor state does not restrict read access to SNVS registers.

Non-privileged read/write accessible registers are read/write accessible by any software.

The LP register values are set only on LP POR and are unaffected by System (HP) POR.
The HP registers are set only on System POR and are unaffected by LP POR.

The following table shows the SNVS main memory map.

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1078 NXP Semiconductors
Confidential Proprietary

11.7.1 SNVS memory map

SNVS base address: 3037_0000h

Offset (hex) Register Width

(In bits)

Access Reset value
(hex)

0 SNVS_HP Lock Register (HPLR) 32 RW 0000_0000

4 SNVS_HP Command Register (HPCOMR) 32 RW 0000_0000

8 SNVS_HP Control Register (HPCR) 32 RW 0000_0000

C SNVS_HP Security Interrupt Control Register (HPSICR) 32 RW 0000_0000

10 SNVS_HP Security Violation Control Register (HPSVCR) 32 RW 0000_0000

14 SNVS_HP Status Register (HPSR) 32 W1C 8000_B000

18 SNVS_HP Security Violation Status Register (HPSVSR) 32 W1C 8000_0000

1C SNVS_HP High Assurance Counter IV Register (HPHACIVR) 32 RW 0000_0000

20 SNVS_HP High Assurance Counter Register (HPHACR) 32 RO 0000_0000

24 SNVS_HP Real Time Counter MSB Register (HPRTCMR) 32 RW 0000_0000

28 SNVS_HP Real Time Counter LSB Register (HPRTCLR) 32 RW 0000_0000

2C SNVS_HP Time Alarm MSB Register (HPTAMR) 32 RW 0000_0000

30 SNVS_HP Time Alarm LSB Register (HPTALR) 32 RW 0000_0000

34 SNVS_LP Lock Register (LPLR) 32 RW 0000_0000

38 SNVS_LP Control Register (LPCR) 32 RW 0000_0020

3C SNVS_LP Master Key Control Register (LPMKCR) 32 RW 0000_0000

40 SNVS_LP Security Violation Control Register (LPSVCR) 32 RW 0000_0000

48 SNVS_LP Security Events Configuration Register (LPSECR) 32 RW 0000_0000

4C SNVS_LP Status Register (LPSR) 32 RW 0000_0008

50 SNVS_LP Secure Real Time Counter MSB Register (LPSRTCMR) 32 RW 0000_0000

54 SNVS_LP Secure Real Time Counter LSB Register (LPSRTCLR) 32 RW 0000_0000

58 SNVS_LP Time Alarm Register (LPTAR) 32 RW 0000_0000

5C SNVS_LP Secure Monotonic Counter MSB Register (LPSMCMR) 32 RW 0000_0000

60 SNVS_LP Secure Monotonic Counter LSB Register (LPSMCLR) 32 RW 0000_0000

64 SNVS_LP Digital Low-Voltage Detector Register (LPLVDR) 32 RW 0000_0000

68 SNVS_LP General Purpose Register 0 (legacy alias) (LPGPR0_legac
y_alias)

32 RW 0000_0000

6C - 88 SNVS_LP Zeroizable Master Key Register (LPZMKR0 - LPZMKR7) 32 RW 0000_0000

90 - 9C SNVS_LP General Purpose Registers 0 .. 3 (LPGPR0 - LPGPR3) 32 RW 0000_0000

BF8 SNVS_HP Version ID Register 1 (HPVIDR1) 32 RO 003E_0103

BFC SNVS_HP Version ID Register 2 (HPVIDR2) 32 RO 0600_0300

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1079
Confidential Proprietary

11.7.2 SNVS_HP Lock Register (HPLR)

The SNVS_HP Lock Register contains lock bits for the SNVS registers. This is a
privileged write register.

11.7.2.1 Offset

Register Offset

HPLR 0h

11.7.2.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

H
A

C
_L

H
P

S
IC

R
_

L H
P

S
V

C
R

_L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

M
K

S
_S

L

LP
S

E
C

R
_S

L R
es

er
ve

d

LP
S

V
C

R
_S

L

G
P

R
_S

L M
C

_S
L

LP
C

A
LB

_S
L

S
R

T
C

_S
L Z
M

K
_R

S
L

Z
M

K
_W

S
L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.2.3 Fields

Field Description

31-29

—

Reserved

28

—

Reserved

27

—

Reserved

Table continues on the next page...

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1080 NXP Semiconductors
Confidential Proprietary

Field Description

26

—

Reserved

25

—

Reserved

24

—

Reserved

23-19

—

Reserved

18

HAC_L

High Assurance Counter Lock

When set, prevents any writes to HPHACIVR, HPHACR, and HAC_EN bit of HPCOMR. Once set, this bit
can only be reset by the system reset.

0 - Write access is allowed

1 - Write access is not allowed

17

HPSICR_L

HP Security Interrupt Control Register Lock

When set, prevents any writes to the HPSICR. Once set, this bit can only be reset by system reset.

0 - Write access is allowed

1 - Write access is not allowed

16

HPSVCR_L

HP Security Violation Control Register Lock

When set, prevents any writes to the HPSVCR. Once set, this bit can only be reset by the system reset.

0 - Write access is allowed

1 - Write access is not allowed

15-10

—

Reserved

9

MKS_SL

Master Key Select Soft Lock

When set, prevents any writes to the MASTER_KEY_SEL field of the LPMKCR. Once set, this bit can
only be reset by the system reset.

0 - Write access is allowed

1 - Write access is not allowed

8

LPSECR_SL

LP Security Events Configuration Register Soft Lock

When set, prevents any writes to the LPSECR. Once set, this bit can only be reset by the system reset.

0 - Write access is allowed

1 - Write access is not allowed

7

—

Reserved

6

LPSVCR_SL

LP Security Violation Control Register Soft Lock

When set, prevents any writes to the LPSVCR. Once set, this bit can only be reset by the system reset.

0 - Write access is allowed

1 - Write access is not allowed

5

GPR_SL

General Purpose Register Soft Lock

When set, prevents any writes to the GPR. Once set, this bit can only be reset by the system reset.

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1081
Confidential Proprietary

Field Description

0 - Write access is allowed

1 - Write access is not allowed

4

MC_SL

Monotonic Counter Soft Lock

When set, prevents any writes (increments) to the MC Registers and MC_ENV bit. Once set, this bit can
only be reset by the system reset.

0 - Write access (increment) is allowed

1 - Write access (increment) is not allowed

3

LPCALB_SL

LP Calibration Soft Lock

When set, prevents any writes to the LP Calibration Value (LPCALB_VAL) and LP Calibration Enable
(LPCALB_EN). Once set, this bit can only be reset by system reset.

0 - Write access is allowed

1 - Write access is not allowed

2

SRTC_SL

Secure Real Time Counter Soft Lock

When set, prevents any writes to the SRTC Registers, SRTC_ENV, and SRTC_INV_EN bits. Once set,
this bit can only be reset by system reset.

0 - Write access is allowed

1 - Write access is not allowed

1

ZMK_RSL

Zeroizable Master Key Read Soft Lock

When set, prevents any software reads to the ZMK Registers and ZMK_ECC_VALUE field of the
LPMKCR. In ZMK hardware programming mode (ZMK_HWP is set), the ZMK and ZMK_ECC_VALUE
cannot be read by software. Regardless of the bit setting, hardware can use the ZMK value when ZMK is
selected. Once set, this bit can only be reset by system reset.

0 - Read access is allowed (only in software Programming mode)

1 - Read access is not allowed

0

ZMK_WSL

Zeroizable Master Key Write Soft Lock

When set, prevents any writes (software and hardware) to the ZMK registers and the ZMK_HWP,
ZMK_VAL, and ZMK_ECC_EN fields of the LPMKCR. Once set, this bit can only be cleared by system
reset.

0 - Write access is allowed

1 - Write access is not allowed

11.7.3 SNVS_HP Command Register (HPCOMR)

The SNVS_HP Command Register contains the command, configuration, and control bits
for the SNVS block. Some fields of this register can be written to in check and soft fail
states in addition to the standard write access in functional states. This is a privileged
write register.

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1082 NXP Semiconductors
Confidential Proprietary

11.7.3.1 Offset

Register Offset

HPCOMR 4h

11.7.3.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

N
P

S
W

A
_E

N

R
es

er
ve

d

H
A

C
_S

T
O

P

H
A

C
_E

N

W

H
A

C
_C

LE
A

R

H
A

C
_L

O
A

D

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

M
K

S
_E

N

R
es

er
ve

d

S
W

_L
P

S
V S

W
_F

S
V S

W
_S

V

R
es

er
ve

d

LP
_S

W
R

_D
I

S

R
es

er
ve

d

S
S

M
_S

F
N

S
_D

I
S

S
S

M
_S

T
_D

I
S

W

P
R

O
G

_Z
M

K

LP
_S

W
R S

S
M

_S
T

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.3.3 Fields

Field Description

31

NPSWA_EN

Non-Privileged Software Access Enable

When set, allows non-privileged software to access all SNVS registers, including those that are privileged
software read/write access only.

0 Only privileged software can access privileged registers

1 Any software can access privileged registers

30-20

—

Reserved

19

HAC_STOP

High Assurance Counter Stop

This bit can be set only when SSM is in soft fail state. When set, it stops the high assurance counter and
prevents transition to the hard fail state. This bit can be cleared in a functional or soft fail state. If the bit is
cleared in the soft fail state, the high assurance counter counts down from the place where it was
stopped.

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1083
Confidential Proprietary

Field Description

0 HAC counter can count down

1 HAC counter is stopped

18

HAC_CLEAR

High Assurance Counter Clear

When set, it clears the High Assurance Counter Register. It can be cleared in a functional or soft fail
state. If the HAC counter is cleared in the soft fail state, the SSM transitions to the hard fail state if high
assurance counter is enabled (HAC_EN is set). This self-clearing bit is always read as zero.

0 - No Action

1 - Clear the HAC

17

HAC_LOAD

High Assurance Counter Load

When set, it loads the High Assurance Counter Register with the value of the High Assurance Counter
Load Register. It can be done in a functional or soft fail state. This self-clearing bit is always read as zero.

0 - No Action

1 - Load the HAC

16

HAC_EN

High Assurance Counter Enable

This bit controls the SSM transition from the soft fail to the hard fail state. When this bit is set and
software fails to stop the HAC before it expires, the SSM transitions to the hard fail state. This bit cannot
be changed once HAC_L bit is set.

0 - High Assurance Counter is disabled

1 - High Assurance Counter is enabled

15-14

—

Reserved

13

MKS_EN

Master Key Select Enable

When not set, the one time programmable (OTP) master key is selected by default. When set, the master
key is selected according to the setting of the master key select field (MASTER_KEY_SEL) of LPMKCR.
Once set, this bit can only be reset by the system reset.

0 - OTP master key is selected as an SNVS master key

1 - SNVS master key is selected according to the setting of the MASTER_KEY_SEL field of LPMKCR

12

PROG_ZMK

Program Zeroizable Master Key

This bit activates ZMK hardware programming mechanism. This mechanism is activated only if the ZMK
is configured to the hardware programming mode and ZMK in not locked for writes. This self-clearing bit
is always read as zero.

0 - No Action

1 - Activate hardware key programming mechanism

11

—

Reserved

10

SW_LPSV

LP Software Security Violation

When set, SNVS_LP treats this bit as a security violation. The LP secure data is zeroized or invalidated
according to the configuration. This security violation may result in a system security monitor transition if
the LP Security Violation is enabled in the SNVS_HP Security Violation Control Register.

9

SW_FSV

Software Fatal Security Violation

When set, the system security monitor treats this bit as a fatal security violation. This security violation
has no effect on the LP section. This command results only in the following transitions of the SSM:

Check State -> Soft Fail

Table continues on the next page...

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1084 NXP Semiconductors
Confidential Proprietary

Field Description

Non-Secure State -> Soft Fail

Trusted State -> Soft Fail

Secure State -> Soft Fail

8

SW_SV

Software Security Violation

When set, the system security monitor treats this bit as a non-fatal security violation. This security
violation has no effect on the LP section. This command results only in the following transitions of the
SSM:

Check -> Non-Secure

Trusted -> Soft Fail

Secure -> Soft Fail

7-6

—

Reserved

5

LP_SWR_DIS

LP Software Reset Disable

When set, disables the LP software reset. Once set, this bit can only be reset by the system reset.

0 - LP software reset is enabled

1 - LP software reset is disabled

4

LP_SWR

LP Software Reset

When set to 1, most registers in the SNVS_LP section are reset, but the following registers are not reset
by an LP software reset:

• Secure Real Time Counter
• Time Alarm Register

This bit cannot be set when the LP_SWR_DIS bit is set. This self-clearing bit is always read as zero.

0 - No Action

1 - Reset LP section

3

—

Reserved

2

SSM_SFNS_DI
S

SSM Soft Fail to Non-Secure State Transition Disable

When set, it disables the SSM transition from soft fail to non-secure state. Once set after the reset this bit
cannot be changed

0 - Soft Fail to Non-Secure State transition is enabled

1 - Soft Fail to Non-Secure State transition is disabled

1

SSM_ST_DIS

SSM Secure to Trusted State Transition Disable

When set, disables the SSM transition from secure to trusted state. Once set after the reset, this bit
cannot be changed.

0 - Secure to Trusted State transition is enabled

1 - Secure to Trusted State transition is disabled

0

SSM_ST

SSM State Transition

Transition state of the system security monitor. This self-clearing bit is always read as zero. This
command results only in the following transitions of the SSM:

Check State → Non-Secure (when Non-Secure Boot and not in Fab Configuration)

Check State --> Trusted (when Secure Boot or in Fab Configuration)

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1085
Confidential Proprietary

Field Description

Trusted State --> Secure

Secure State --> Trusted (if not disabled by SSM_ST_DIS bit)

Soft Fail --> Non-Secure (if not disabled by SSM_SFNS_DIS bit)

11.7.4 SNVS_HP Control Register (HPCR)

The SNVS_HP Control Register contains various control bits of the HP section of SNVS.
This is not a privileged write register.

11.7.4.1 Offset

Register Offset

HPCR 8h

11.7.4.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

B
T

N
_M

A
S

K

B
T

N
_C

O
N

F
IG

R
es

er
ve

d

H
P

_T
SW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

H
P

C
A

LB
_V

A
L

R
es

er
ve

d

H
P

C
A

LB
_E

N

R
es

er
ve

d

H
P

T
A

_E
N

R
T

C
_E

N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1086 NXP Semiconductors
Confidential Proprietary

11.7.4.3 Fields

Field Description

31-28

—

Reserved

27

BTN_MASK

Button interrupt mask.

This bit is used to mask the button (BTN) interrupt request.

0: Interrupt disabled

1: Interrupt enabled

26-24

BTN_CONFIG

Button Configuration.

This field is used to configure which feature of the button (BTN) input signal constitutes "active".

000: Button signal is active high

001: Button signal is active low

010: Button signal is active on the falling edge

011: Button signal is active on the rising edge

100: Button signal is active on any edge

All other patterns are Reserved

23-17

—

Reserved

16

HP_TS

HP Time Synchronize. HP RTC should be disabled when synchronizing counter value.

When set, this updates the HP Real Time Counter with the LP Real Time Counter value. This self-
clearing bit is always read as zero.

0 - No Action

1 - Synchronize the HP Time Counter to the LP Time Counter

15

—

Reserved

14-10

HPCALB_VAL

HP Calibration Value

Defines signed calibration value for the HP Real Time Counter. This field can be programmed only when
RTC Calibration is disabled (HPCALB_EN is not set). This is a 5-bit 2's complement value, hence the
allowable calibration values are in the range from -16 to +15 counts per 32768 ticks of the counter.

00000 - +0 counts per each 32768 ticks of the counter

00001 - +1 counts per each 32768 ticks of the counter

00010 - +2 counts per each 32768 ticks of the counter

01111 - +15 counts per each 32768 ticks of the counter

10000 - -16 counts per each 32768 ticks of the counter

10001 - -15 counts per each 32768 ticks of the counter

11110 - -2 counts per each 32768 ticks of the counter

11111 - -1 counts per each 32768 ticks of the counter

9

—

Reserved

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1087
Confidential Proprietary

Field Description

8

HPCALB_EN

HP Real Time Counter Calibration Enabled

Indicates that the time calibration mechanism is enabled.

0 - HP Timer calibration disabled

1 - HP Timer calibration enabled

7-2

—

Reserved

1

HPTA_EN

HP Time Alarm Enable

When set, the time alarm interrupt is generated if the value in the HP Time Alarm Registers is equal to
the value of the HP Real Time Counter.

0 - HP Time Alarm Interrupt is disabled

1 - HP Time Alarm Interrupt is enabled

0

RTC_EN

HP Real Time Counter Enable. This bit syncs with the 32KHz clock. It won't update with the bus clock.

0 - RTC is disabled

1 - RTC is enabled

11.7.5 SNVS_HP Security Interrupt Control Register (HPSICR)

The HP Security Interrupt Control Register defines the SNVS security interrupt
generation policy. This is a privileged write register.

11.7.5.1 Offset

Register Offset

HPSICR Ch

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1088 NXP Semiconductors
Confidential Proprietary

11.7.5.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

LP
S

V
I_

E
N R

es
er

ve
d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

E
X

T
B

_E
N R
es

er
ve

d

W
D

O
G

2_
E

N

S
JC

_E
N

C
A

A
M

_E
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.5.3 Fields

Field Description

31

LPSVI_EN

LP Security Violation Interrupt Enable

This bit enables generating of the security interrupt to the host processor upon security violation signal
from the LP section.

0 - LP Security Violation Interrupt is Disabled

1 - LP Security Violation Interrupt is Enabled

30-6

—

Reserved

5

—

Reserved

4

EXTB_EN

External Boot Interrupt Enable

Setting this bit to 1 enables generation of the security interrupt to the host processor upon detection of the
External Boot security violation.

0 - External Boot Interrupt is Disabled

1 - External Boot Interrupt is Enabled

3

—

Reserved

2

WDOG2_EN

Watchdog 2 reset Interrupt Enable

Setting this bit to 1 enables generation of the security interrupt to the host processor upon detection of the
Watchdog 2 reset security violation.

0 - Watchdog 2 reset Interrupt is Disabled

1 - Watchdog 2 reset Interrupt is Enabled

1 JTAG Active Interrupt Enable

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1089
Confidential Proprietary

Field Description

SJC_EN Setting this bit to 1 enables generation of the security interrupt to the host processor upon detection of the
JTAG Active security violation.

0 - JTAG Active Interrupt is Disabled

1 - JTAG Active Interrupt is Enabled

0

CAAM_EN

CAAM Security Violation Interrupt Enable

Setting this bit to 1 enables generation of the security interrupt to the host processor upon detection of the
CAAM Security Violation security violation.

0 - CAAM Security Violation Interrupt is Disabled

1 - CAAM Security Violation Interrupt is Enabled

11.7.6 SNVS_HP Security Violation Control Register (HPSVCR)

The HP Security Violation Control Register defines types for each security violation
input. This is a privileged write register.

11.7.6.1 Offset

Register Offset

HPSVCR 10h

11.7.6.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

LP
S

V
_C

F
G R

es
er

ve
d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

E
X

T
B

_C
F

G R
es

er
ve

d

W
D

O
G

2_
C

F
G

S
JC

_C
F

G

C
A

A
M

_C
F

G

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1090 NXP Semiconductors
Confidential Proprietary

11.7.6.3 Fields

Field Description

31-30

LPSV_CFG

LP Security Violation Configuration

This field configures the LP security violation source.

00 - LP security violation is disabled

01 - LP security violation is a non-fatal violation

1x - LP security violation is a fatal violation

29-7

—

Reserved

6-5

—

Reserved

4

EXTB_CFG

External Boot Security Violation Configuration

This field configures the External Boot Security Violation Input. This setting instructs the SSM how to
respond upon detection of the External Boot security violation.

0 - External Boot is a non-fatal violation

1 - External Boot is a fatal violation

3

—

Reserved

2

WDOG2_CFG

Watchdog 2 reset Security Violation Configuration

This field configures the Watchdog 2 reset Security Violation Input. This setting instructs the SSM how to
respond upon detection of the Watchdog 2 reset security violation.

0 - Watchdog 2 reset is a non-fatal violation

1 - Watchdog 2 reset is a fatal violation

1

SJC_CFG

JTAG Active Security Violation Configuration

This field configures the JTAG Active Security Violation Input. This setting instructs the SSM how to
respond upon detection of the JTAG Active security violation.

0 - JTAG Active is a non-fatal violation

1 - JTAG Active is a fatal violation

0

CAAM_CFG

CAAM Security Violation Security Violation Configuration

This field configures the CAAM Security Violation Security Violation Input. This setting instructs the SSM
how to respond upon detection of the CAAM Security Violation security violation.

0 - CAAM Security Violation is a non-fatal violation

1 - CAAM Security Violation is a fatal violation

11.7.7 SNVS_HP Status Register (HPSR)

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1091
Confidential Proprietary

The HP Status Register reflects the internal state of the SNVS. This is not a privileged
write register.

11.7.7.1 Offset

Register Offset

HPSR 14h

11.7.7.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

Z
M

K
_Z

E
R

O

R
es

er
ve

d

O
T

P
M

K
_Z

E
R

O

R
es

er
ve

d

O
T

P
M

K
_S

Y
N

D
R

O
M

E

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

S
Y

S
_S

E
C

U
R

E
_B

O
O

T S
Y

S
_S

E
C

U
R

IT
Y

_C
F

G

S
S

M
_S

T
A

T
E

B
I

B
T

N

R
es

er
ve

d

LP
D

I
S

R
es

er
ve

d

R
es

er
ve

d

H
P

T
A

W

W
1C

W
1C

Reset 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

11.7.7.3 Fields

Field Description

31

ZMK_ZERO

Zeroizable Master Key is Equal to Zero. When set, this bit triggers "bad key" violation if the ZMK is
selected for use. This bit will reset to 1 on LP Section POR. If the LP section is powered by an
uninterrupted power source, once the ZMK has been programmed with a nonzero value this bit will reset
to 0 on HP Section PORs.

Table continues on the next page...

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1092 NXP Semiconductors
Confidential Proprietary

Field Description

0 - The ZMK is not zero.

1 - The ZMK is zero.

30-28

—

Reserved

27

OTPMK_ZERO

One Time Programmable Master Key is Equal to Zero. When set, this bit always triggers "bad key"
violation.

OTPMK_ZERO will normally reset to 0. This will reset to 1 only if the OTPMK has not been programmed
in the fuse bank.

0 - The OTPMK is not zero.

1 - The OTPMK is zero.

26-25

—

Reserved

24-16

OTPMK_SYND
ROME

One Time Programmable Master Key Syndrome

In the case of a single-bit error, the eight lower bits of this value indicate the bit number of error location.
For example, syndrome word 10010110 indicates that key bit 150 (lsb=0) has an error.

The ninth bit of the syndrome word checks parity of the whole key value. This bit is 1 when an odd
number of errors has occurred and it is 0 when the number of errors is even. For example, if one of the
eight bits indicates a failure and the ninth bit is zero then the number of errors in the one time
programmable master key is at least 2 and it cannot be corrected. When one of the syndrome bits is set,
the bad key violation is always generated.

OTPMK_SYNDROME will normally reset to 0x000. This will reset to nonzero only if the OTPMK has an
error in one or more bits.

15

SYS_SECURE_
BOOT

System Secure Boot

If SYS_SECURE_BOOT is 1, the chip boots from internal ROM. In a chip in the field,
SYS_SECURE_BOOT will normally reset to 1. It will reset to 0 only in a test chip.

14-12

SYS_SECURIT
Y_CFG

System Security Configuration

This field reflects the three security configuration inputs to SNVS. These inputs are used in conjunction
with the sys_secure_boot input, which is visible as the SYS_SECURE_BOOT bit.

000 - Fab Configuration - the default configuration of newly fabricated chips

001 - Open Configuration - the configuration after NXP-programmable fuses have been blown

011 - Closed Configuration - the configuration after OEM-programmable fuses have been blown

111 - Field Return Configuration - the configuration of chips that are returned to NXP for analysis

11-8

SSM_STATE

System Security Monitor State

This field contains the encoded state of the SSM's state machine. The encoding of the possible states
are:

0000 - Init

0001 - Hard Fail

0011 - Soft Fail

1000 - Init Intermediate (transition state between Init and Check - SSM stays in this state only one clock
cycle)

1001 - Check

1011 - Non-Secure

1101 - Trusted

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1093
Confidential Proprietary

Field Description

1111 - Secure

7

BI

Button Interrupt

Signal ipi_snvs_btn_int_b was asserted.

6

BTN

Button

Value of the BTN input. This is the external button used for PMIC control.

0: BTN not pressed

1: BTN pressed

5

—

Reserved

4

LPDIS

Low Power Disable

If 1, the low power section has been disabled by means of an input signal to SNVS.

3-2

—

Reserved

1

—

Reserved

0

HPTA

HP Time Alarm

Indicates that the HP Time Alarm has occurred since this bit was last cleared.

0 - No time alarm interrupt occurred.

1 - A time alarm interrupt occurred.

11.7.8 SNVS_HP Security Violation Status Register (HPSVSR)

The HP Security Violation Status Register reflects the HP domain security violation
records. Write a 1 to Security Violation 5 (reserved)-0 to clear the corresponding security
violation detection flag. Note that this does not automatically clear the security violation
signal that is connected to the input, so the security violation may immediately be
detected again. This is a privileged write register.

11.7.8.1 Offset

Register Offset

HPSVSR 18h

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1094 NXP Semiconductors
Confidential Proprietary

11.7.8.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

LP
_S

E
C

_V
IO

R
es

er
ve

d

Z
M

K
_E

C
C

_F
A

IL

R
es

er
ve

d

Z
M

K
_S

Y
N

D
R

O
M

E

W
W

1C

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

S
W

_L
P

S
V S

W
_F

S
V S

W
_S

V

R
es

er
ve

d

R
es

er
ve

d

E
X

T
B

R
es

er
ve

d

W
D

O
G

2

S
J

C

C
A

A
M

W

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.8.3 Fields

Field Description

31

LP_SEC_VIO

LP Security Violation

A security volation was detected in the SNVS low power section. This bit will reset to 1 on LP Section
POR because the Digital Low-Voltage Detector will indicate that an LP section low-voltage event has
occurred. If the LP section is powered by an uninterrupted power source, LP Security Violation will
normally reset to 0 if no LP POR has occurred since the Digital Low-Voltage Detector was written. If a
POR occurred in the LP section, at HP POR the boot ROM firmware will normally detect this and will then
re-initialize the LP section and reset LP Security Violation to 0.

30-28

—

Reserved

27

ZMK_ECC_FAIL

Zeroizable Master Key Error Correcting Code Check Failure

When set, this bit triggers a bad key violation to the SSM and a security violation to the SNVS_LP
section, which clears security sensitive data. Writing a one to this bit clears the record of this failure and
also clears this register's ZMK_SYNDROME field.

0 - ZMK ECC Failure was not detected.

1 - ZMK ECC Failure was detected.

26-25

—

Reserved

24-16 Zeroizable Master Key Syndrome

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1095
Confidential Proprietary

Field Description

ZMK_SYNDRO
ME

The ZMK syndrome indicates the single-bit error location and parity for the ZMK register. It operates
similar to the OTPMK syndrome. This value is set and locked when a ZMK ECC failure is detected. It is
cleared by writing one into ZMK_ECC_FAIL bit.

15

SW_LPSV

LP Software Security Violation

This bit is a read-only copy of the SW_LPSV bit in the HP Command Register.

14

SW_FSV

Software Fatal Security Violation

This bit is a read-only copy of the SW_FSV bit in the HP Command Register.

13

SW_SV

Software Security Violation

This bit is a read-only copy of the SW_SV bit in the HP Command Register.

12-6

—

Reserved

5

—

Reserved

4

EXTB

External Boot security violation was detected.

0 - No External Boot security violation was detected.

1 - External Boot security violation was detected.

3

—

Reserved

2

WDOG2

Watchdog 2 reset security violation was detected.

0 - No Watchdog 2 reset security violation was detected.

1 - Watchdog 2 reset security violation was detected.

1

SJC

JTAG Active security violation was detected.

0 - No JTAG Active security violation was detected.

1 - JTAG Active security violation was detected.

0

CAAM

CAAM Security Violation security violation was detected.

0 - No CAAM Security Violation security violation was detected.

1 - CAAM Security Violation security violation was detected.

11.7.9 SNVS_HP High Assurance Counter IV Register (HPHA
CIVR)

The SNVS_HP High Assurance Counter IV Register contains the initial value for the
high assurance counter. This is a privileged write register.

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1096 NXP Semiconductors
Confidential Proprietary

11.7.9.1 Offset

Register Offset

HPHACIVR 1Ch

11.7.9.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
HAC_COUNTER_IV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
HAC_COUNTER_IV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.9.3 Fields

Field Description

31-0

HAC_COUNTE
R_IV

High Assurance Counter Initial Value

This register is used to set the starting count value to the high assurance counter. This register cannot be
programmed when HAC_L bit is set.

11.7.10 SNVS_HP High Assurance Counter Register (HPHACR)

The SNVS_HP High Assurance Counter Register contains the value of the high
assurance counter. The high assurance counter is a delay introduced before the system
security monitor transitions from soft fail to hard fail state if this transition is enabled.
This is a non-privileged read-only register.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1097
Confidential Proprietary

11.7.10.1 Offset

Register Offset

HPHACR 20h

11.7.10.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R HAC_COUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HAC_COUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.10.3 Fields

Field Description

31-0

HAC_COUNTE
R

High Assurance Counter

When the HAC_EN bit is set and the SSM is in the soft fail state, this counter starts to count down with
the system clock. When the counter reaches zero, the SSM transitions to the Hard Fail State.

• When HAC_STOP bit is set, the HAC Counter is stopped.
• When HAC_CLEAR bit is set, the HAC Counter is cleared.
• When HAC_LOAD bit is set, the HAC Counter is loaded with the value of the HPHACIVR.

11.7.11 SNVS_HP Real Time Counter MSB Register (HPRTCMR)

The SNVS_HP Real Time Counter MSB register contains the 15 most-significant bits of
the HP Real Time Counter. This is not a privileged write register.

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1098 NXP Semiconductors
Confidential Proprietary

11.7.11.1 Offset

Register Offset

HPRTCMR 24h

11.7.11.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
T

C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.11.3 Fields

Field Description

31-15

—

Reserved

14-0

RTC

HP Real Time Counter

The most-significant 15 bits of the RTC. This register can be programmed only when RTC is not active
(RTC_EN bit is not set).

11.7.12 SNVS_HP Real Time Counter LSB Register (HPRTCLR)

The SNVS_HP Real Time Counter LSB register contains the 32 least-significant bits of
the HP real time counter. This is not a privileged write register.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1099
Confidential Proprietary

11.7.12.1 Offset

Register Offset

HPRTCLR 28h

11.7.12.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RTC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.12.3 Fields

Field Description

31-0

RTC

HP Real Time Counter

least-significant 32 bits. This register can be programmed only when RTC is not active (RTC_EN bit is not
set).

11.7.13 SNVS_HP Time Alarm MSB Register (HPTAMR)

The SNVS_HP Time Alarm MSB register contains the most-significant bits of the
SNVS_HP Time Alarm value. This is not a privileged write register.

11.7.13.1 Offset

Register Offset

HPTAMR 2Ch

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1100 NXP Semiconductors
Confidential Proprietary

11.7.13.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

H
P

T
A

_M
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.13.3 Fields

Field Description

31-15

—

Reserved

14-0

HPTA_MS

HP Time Alarm, most-significant 15 bits.

This register can be programmed only when HP time alarm is disabled (HPTA_EN bit is not set).

11.7.14 SNVS_HP Time Alarm LSB Register (HPTALR)

The SNVS_HP Time Alarm LSB register contains the 32 least-significant bits of the
SNVS_HP Time Alarm value. This is not a privileged write register.

11.7.14.1 Offset

Register Offset

HPTALR 30h

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1101
Confidential Proprietary

11.7.14.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
HPTA_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
HPTA_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.14.3 Fields

Field Description

31-0

HPTA_LS

HP Time Alarm, 32 least-significant bits.

This register can be programmed only when HP time alarm is disabled (HPTA_EN bit is not set).

11.7.15 SNVS_LP Lock Register (LPLR)

The SNVS_LP Lock Register contains lock bits for the SNVS_LP registers. This is a
privileged write register.

11.7.15.1 Offset

Register Offset

LPLR 34h

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1102 NXP Semiconductors
Confidential Proprietary

11.7.15.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

M
K

S
_H

L

LP
S

E
C

R
_H

L R
es

er
ve

d

LP
S

V
C

R
_H

L

G
P

R
_H

L M
C

_H
L

LP
C

A
LB

_H
L

S
R

T
C

_H
L Z
M

K
_R

H
L

Z
M

K
_W

H
L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.15.3 Fields

Field Description

31-29

—

Reserved

28

—

Reserved

27

—

Reserved

26

—

Reserved

25

—

Reserved

24

—

Reserved

23-10

—

Reserved

9

MKS_HL

Master Key Select Hard Lock

When set, prevents any writes to the MASTER_KEY_SEL field of the LP Master Key Control Register.
Once set, this bit can only be reset by the LP POR.

0 - Write access is allowed.

1 - Write access is not allowed.

8

LPSECR_HL

LP Security Events Configuration Register Hard Lock

When set, prevents any writes to the LPSECR. Once set, this bit can only be reset by the LP POR.

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1103
Confidential Proprietary

Field Description

0 - Write access is allowed.

1 - Write access is not allowed.

7

—

Reserved

6

LPSVCR_HL

LP Security Violation Control Register Hard Lock

When set, prevents any writes to the LPSVCR. Once set, this bit can only be reset by the LP POR.

0 - Write access is allowed.

1 - Write access is not allowed.

5

GPR_HL

General Purpose Register Hard Lock

When set, prevents any writes to the GPR. Once set, this bit can only be reset by the LP POR.

0 - Write access is allowed.

1 - Write access is not allowed.

4

MC_HL

Monotonic Counter Hard Lock

When set, prevents any writes (increments) to the MC Registers and MC_ENV bit. Once set, this bit can
only be reset by the LP POR.

0 - Write access (increment) is allowed.

1 - Write access (increment) is not allowed.

3

LPCALB_HL

LP Calibration Hard Lock

When set, prevents any writes to the LP Calibration Value (LPCALB_VAL) and LP Calibration Enable
(LPCALB_EN). Once set, this bit can only be reset by the LP POR.

0 - Write access is allowed.

1 - Write access is not allowed.

2

SRTC_HL

Secure Real Time Counter Hard Lock

When set, prevents any writes to the SRTC registers, SRTC_ENV, and SRTC_INV_EN bits. Once set,
this bit can only be reset by the LP POR.

0 - Write access is allowed.

1 - Write access is not allowed.

1

ZMK_RHL

Zeroizable Master Key Read Hard Lock

When set, prevents any software reads to the ZMK registers and ZMK_ECC_VALUE field of the
LPMKCR. In ZMK hardware programming mode (ZMK_HWP is set), software cannot read the ZMK or
ZMK_ECC_VALUE. Regardless of the setting of this bit, hardware can use the ZMK value when ZMK is
selected. Once set, this bit can only be reset by the LP POR.

0 - Read access is allowed (only in software programming mode).

1 - Read access is not allowed.

0

ZMK_WHL

Zeroizable Master Key Write Hard Lock

When set, prevents any writes (software and hardware) to the ZMK registers and ZMK_HWP, ZMK_VAL,
and ZMK_ECC_EN fields of the LPMKCR. Once set, this bit can only be reset by the LP POR.

0 - Write access is allowed.

1 - Write access is not allowed.

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1104 NXP Semiconductors
Confidential Proprietary

11.7.16 SNVS_LP Control Register (LPCR)

The SNVS_LP Control Register contains various control bits of the LP section of SNVS.
This is a privileged write register.

11.7.16.1 Offset

Register Offset

LPCR 38h

11.7.16.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

G
P

R
_Z

_D
I

S

P
K

_O
V

E
R

R
ID

E

P
K

_E
N

O
N

_T
IM

E

D
E

B
O

U
N

C
E

B
T

N
_P

R
E

S
S

_T
IM

E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

LP
C

A
LB

_V
A

L

R
es

er
ve

d

LP
C

A
LB

_E
N

LV
D

_E
N

T
O

P

D
P

_E
N

S
R

T
C

_I
N

V
_E

N

LP
W

U
I_

E
N

M
C

_E
N

V

LP
T

A
_E

N

S
R

T
C

_E
N

V

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

11.7.16.3 Fields

Field Description

31-25

—

Reserved

24

GPR_Z_DIS

General Purpose Registers Zeroization Disable.

1 = Disable zeroization of the GPR registers when a security event occurs.

Table continues on the next page...

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1105
Confidential Proprietary

Field Description

0 = Zeroize the GPR registers when a security event occurs. (Default)

23

PK_OVERRIDE

PMIC On Request Override

The value written to PK_OVERRIDE will be asserted on output signal snvs_lp_pk_override. That signal is
used to override the IOMUX control for the PMIC I/O pad.

22

PK_EN

PMIC On Request Enable

The value written to PK_EN will be asserted on output signal snvs_lp_pk_en. That signal is used to turn
off the pullup/pulldown circuitry in the PMIC I/O pad.

21-20

ON_TIME

The ON_TIME field is used to configure the period of time after BTN is asserted before pmic_en_b is
asserted to turn on the SoC power.

00: 500msec off->on transition time

01: 50msec off->on transition time

10: 100msec off->on transition time

11: 0msec off->on transition time

19-18

DEBOUNCE

This field configures the amount of debounce time for the BTN input signal.

00: 50msec debounce

01: 100msec debounce

10: 500msec debounce

11: 0msec debounce

17-16

BTN_PRESS_TI
ME

This field configures the button press time out values for the PMIC Logic.

00 : 5 secs

01 : 10 secs

10 : 15 secs

11 : long press disabled (pmic_en_b will not be asserted regardlessof how long BTN is asserted)

15

—

Reserved

14-10

LPCALB_VAL

LP Calibration Value

Defines signed calibration value for SRTC. This field can be programmed only when SRTC calibration is
disabled and not locked, i.e. when LPCALB_EN, LPCALB_SL, and LPCALB_HL bits are not set. This is a
5-bit 2's complement value. Hence, the allowable calibration values are in the range from -16 to +15
counts per 32768 ticks of the counter clock

00000 - +0 counts per each 32768 ticks of the counter clock

00001 - +1 counts per each 32768 ticks of the counter clock

00010 - +2 counts per each 32768 ticks of the counter clock

01111 - +15 counts per each 32768 ticks of the counter clock

10000 - -16 counts per each 32768 ticks of the counter clock

10001 - -15 counts per each 32768 ticks of the counter clock

11110 - -2 counts per each 32768 ticks of the counter clock

11111 - -1 counts per each 32768 ticks of the counter clock

9

—

Reserved

8 LP Calibration Enable

Table continues on the next page...

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1106 NXP Semiconductors
Confidential Proprietary

Field Description

LPCALB_EN When set, enables the SRTC calibration mechanism. This bit cannot be changed once LPCALB_SL or
LPCALB_HL bit is set.

0 - SRTC Time calibration is disabled.

1 - SRTC Time calibration is enabled.

7

LVD_EN

Digital Low-Voltage Event Enable

By default the detection of a low-voltage event does not cause the pmic_en_b signal to be asserted.
Setting the Digital Low-Voltage Event Enable bit to 1 enables the low-voltage event for the PMIC.

0 - disabled

1 - enabled

6

TOP

Turn off System Power

Asserting this bit causes a signal to be sent to the Power Management IC to turn off the system power.
This bit will clear once power is off. This bit is only valid when the Dumb PMIC is enabled.

0 - Leave system power on.

1 - Turn off system power.

5

DP_EN

Dumb PMIC Enabled

When set, software can control the system power. When cleared, the system requires a Smart PMIC to
automatically turn power off.

0 - Smart PMIC enabled.

1 - Dumb PMIC enabled.

4

SRTC_INV_EN

If this bit is 1, in the case of a security violation the SRTC stops counting and the SRTC is invalidated
(SRTC_ENV bit is cleared). This is intended to allow software to read the time at which the security
violation occurred. This field cannot be changed once SRTC_SL or SRTC_HL bit is set. Software security
violations stop the SRTC and are unaffected by this field.

0 - SRTC stays valid in the case of security violation (other than a software violation
(HPSVSR[SW_LPSV] = 1 or HPCOMR[SW_LPSV] = 1)).

1 - SRTC is invalidated in the case of security violation.

3

LPWUI_EN

LP Wake-Up Interrupt Enable

This interrupt line should be connected to the external pin and is intended to inform the external chip
about an SNVS_LP event (MC rollover, SRTC rollover, or time alarm). This wake-up signal can be
asserted only when the chip (HP section) is powered down, and the LP section is isolated.

0 LP wake-up interrupt is disabled.

1 LP wake-up interrupt is enabled.

2

MC_ENV

Monotonic Counter Enabled and Valid

When set, the MC can be incremented (by write transaction to the LPSMCMR or LPSMCLR). Once
MC_SL or MC_HL bit is set this bit can be changed only by LP software reset or LP POR.

0 - MC is disabled or invalid.

1 - MC is enabled and valid.

1

LPTA_EN

LP Time Alarm Enable

When set, the SNVS functional interrupt is asserted if the LP Time Alarm Register is equal to the 32
MSBs of the secure real time counter.

0 - LP time alarm interrupt is disabled.

1 - LP time alarm interrupt is enabled.

0 Secure Real Time Counter Enabled and Valid

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1107
Confidential Proprietary

Field Description

SRTC_ENV When set, the SRTC becomes operational. This bit cannot be changed once SRTC_SL or SRTC_HL bit
is set.

0 - SRTC is disabled or invalid.

1 - SRTC is enabled and valid.

11.7.17 SNVS_LP Master Key Control Register (LPMKCR)

The SNVS_LP Master Key Control Register contains the master keys configuration. This
is a privileged write register.

11.7.17.1 Offset

Register Offset

LPMKCR 3Ch

11.7.17.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

Z
M

K
_E

C
C

_V
A

LU
E

R
es

er
ve

d

Z
M

K
_E

C
C

_E
N

Z
M

K
_V

A
L

Z
M

K
_H

W
P

M
A

S
T

E
R

_K
E

Y
_S

E
L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1108 NXP Semiconductors
Confidential Proprietary

11.7.17.3 Fields

Field Description

31-16

—

Reserved

15-7

ZMK_ECC_VAL
UE

Zeroizable Master Key Error Correcting Code Value

This field is automatically calculated and set when one is written into ZMK_ECC_EN bit of this register.
This field cannot be programmed by software. It keeps the ECC value of the Zeroizable Master Key,
which allows checking that ZMK has not been corrupted/altered with time.

Note that this ZMK ECC code is equivalent to the ECC bits encoded into the OTPMK value but for the
ZMK, the ECC value is kept separate from the ZMK value. Read restrictions similar to the ZMK Registers
are applied to this field (see Provisioning the Zeroizable Master Key).

6-5

—

Reserved

4

ZMK_ECC_EN

Zeroizable Master Key Error Correcting Code Check Enable

Writing one to this field automatically calculates and sets the ZMK ECC value in the ZMK_ECC_VALUE
field of this register. When both ZMK value is valid (ZMK_VAL is set) and ZMK ECC check is enabled
(ZMK_ECC_EN is set), the ZMK value is continuously checked for the valid ECC word. If the ZMK ECC
word calculated every clock cycle does not match the one recorded in this register, the ZMK ECC Check
Fail Violation is generated. This bit cannot be programmed when ZMK_WSL or ZMK_WHL bit is set.

0 - ZMK ECC check is disabled.

1 - ZMK ECC check is enabled.

3

ZMK_VAL

Zeroizable Master Key Valid

When set, the ZMK value can be selected by the master key control block for use by cryptographic
modules. In hardware programming mode, hardware sets this bit when the ZMK provisioning is complete.
In software programming mode, software should set this bit. This bit cannot be programmed when
ZMK_WSL or ZMK_WHL bit is set.

0 - ZMK is not valid.

1 - ZMK is valid.

2

ZMK_HWP

Zeroizable Master Key hardware Programming mode

When set, only the hardware key programming mechanism can set the ZMK and software cannot read it.
When not set, the ZMK can be programmed only by software. See Provisioning the Zeroizable Master
Key for details. This bit cannot be programmed when ZMK_WSL or ZMK_WHL bit is set.

0 - ZMK is in the software programming mode.

1 - ZMK is in the hardware programming mode.

1-0

MASTER_KEY_
SEL

Master Key Select

These bits select the SNVS Master Key output when Master Key Select bits are enabled by MKS_EN bit
in the HPCOMR. When MKS_EN bit is not set, the one time programmable master key is selected by
default.This field cannot be programmed when the MKS_SL or the hard lock bit is set.

0x - Select one time programmable master key.

10 - Select zeroizable master key when MKS_EN bit is set .

11 - Select combined master key when MKS_EN bit is set .

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1109
Confidential Proprietary

11.7.18 SNVS_LP Security Violation Control Register (LPSVCR)

The LP Security Violation Control Register configures security violation inputs. This
register cannot be programmed when the LPSVCR Lock bit is set. Note that
configurations of the security violation inputs in the HP section (HPSVCR) and LP
section (LPSVCR Register) are independent and have different functionality. This is a
privileged write register.

11.7.18.1 Offset

Register Offset

LPSVCR 40h

11.7.18.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

E
X

T
B

_E
N R
es

er
ve

d

W
D

O
G

2_
E

N

S
JC

_E
N

C
A

A
M

_E
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.18.3 Fields

Field Description

31-6

—

Reserved

5 Reserved

Table continues on the next page...

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1110 NXP Semiconductors
Confidential Proprietary

Field Description

—

4

EXTB_EN

External Boot Enable

This bit enables External Boot Input. When set, a External Boot causes an LP security violation, which
clears LP sensitive data.

0 - External Boot is disabled in the LP domain.

1 - External Boot is enabled in the LP domain.

3

—

Reserved

2

WDOG2_EN

Watchdog 2 reset Enable

This bit enables Watchdog 2 reset Input. When set, a Watchdog 2 reset causes an LP security violation,
which clears LP sensitive data.

0 - Watchdog 2 reset is disabled in the LP domain.

1 - Watchdog 2 reset is enabled in the LP domain.

1

SJC_EN

JTAG Active Enable

This bit enables JTAG Active Input. When set, a JTAG Active causes an LP security violation, which
clears LP sensitive data.

0 - JTAG Active is disabled in the LP domain.

1 - JTAG Active is enabled in the LP domain.

0

CAAM_EN

CAAM Security Violation Enable

This bit enables CAAM Security Violation Input. When set, a CAAM Security Violation causes an LP
security violation, which clears LP sensitive data.

0 - CAAM Security Violation is disabled in the LP domain.

1 - CAAM Security Violation is enabled in the LP domain.

11.7.19 SNVS_LP Security Events Configuration Register (LPSE
CR)

The SNVS_LP Security Events Configuration Register is used to configure security event
detection in the LP section. This register cannot be programmed when LPSECR is locked
for write. This is a privileged write register.

11.7.19.1 Offset

Register Offset

LPSECR 48h

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1111
Confidential Proprietary

11.7.19.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

O
S

C
B

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

P
O

R
_O

B
S

E
R

V P
F

D
_O

B
S

E
R

V

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

M
C

R
_E

N

S
R

T
C

R
_E

N R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.19.3 Fields

Field Description

31-29

—

Reserved

28

OSCB

Oscillator Bypass

When OSCB=1 the osc_bypass signal is asserted. That signal asks SoC logic external to SNVS to
bypass the SoC's normal SRTC clock source and drive the SRTC clock from an alternate source.

0 - Normal SRTC clock oscillator not bypassed.

1 - Normal SRTC clock oscillator bypassed. Alternate clock can drive the SRTC clock source.

27-16

—

Reserved

15

POR_OBSERV

Power On Reset (POR) Observability Flop

The asynchronous reset input of this flop is connected directly to the output of the POR analog circuitry
(external to the SNVS. This flop can be used to detect brown-out voltage of the POR circuitry.

14

PFD_OBSERV

System Power Fail Detector (PFD) Observability Flop

The asynchronous reset input of this flop is connected directly to the inverted output of the PFD analog
circuitry (external to the SNVS block). This flop can be used to detect brown-out voltage of the PFD
circuitry.

13

—

Reserved

12-9

—

Reserved

Table continues on the next page...

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1112 NXP Semiconductors
Confidential Proprietary

Field Description

8-4

—

Reserved

3

—

Reserved

2

MCR_EN

MC Rollover Enable

When set, an MC Rollover event generates an LP security violation.

0 - MC rollover is disabled.

1 - MC rollover is enabled.

1

SRTCR_EN

SRTC Rollover Enable

When set, an SRTC rollover event generates an LP security violation.

0 - SRTC rollover is disabled.

1 - SRTC rollover is enabled.

0

—

Reserved

11.7.20 SNVS_LP Status Register (LPSR)

The SNVS_LP Status Register reflects the internal state and behavior of the SNVS_LP.
This is a privileged write register.

11.7.20.1 Offset

Register Offset

LPSR 4Ch

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1113
Confidential Proprietary

11.7.20.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

LP S LP
N

S

R
es

er
ve

d

R
es

er
ve

d

S
P

O
F

E O

E
S

V
D

W

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

LV
D

M
C

R

S
R

T
C

R LP
T

A

W
W

1C

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

11.7.20.3 Fields

Field Description

31

LPS

LP Section is Secured

Indicates that the LP section is provisioned/programmed in the secure or trusted state. The first write to
the LP registers in secure or trusted state sets this bit. This bit can never be set together with the LPNS
bit. When set the SNVS_LP section cannot be programmed and ZMK cannot be read in the non-secure
state of the SSM.

0 - LP section was not programmed in secure or trusted state.

1 - LP section was programmed in secure or trusted state.

30

LPNS

LP Section is Non-Secured

Indicates that LP section was provisioned/programmed in the non-secure state. The first successful write
to the LP Registers in non-secure state sets this bit. This bit can never be set together with the LPS bit.
When set, the entire SNVS_LP section (all LP registers) are cleared upon an SSM transition from check
to trusted state.

0 - LP section was not programmed in the non-secure state.

1 - LP section was programmed in the non-secure state.

29-20

—

Reserved

19

—

Reserved

18

SPOF

Set Power Off

The SPO bit is set when the power button is pressed longer than the configured debounce time. Writing
to the SPO bit will clear the set_pwr_off_irq interrupt.

Table continues on the next page...

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1114 NXP Semiconductors
Confidential Proprietary

Field Description

0 - Set Power Off was not detected.

1 - Set Power Off was detected.

17

EO

Emergency Off

This bit is set when a power off is requested.

0 - Emergency off was not detected.

1 - Emergency off was detected.

16

ESVD

External Security Violation Detected

Indicates that a security violation is detected on one of the HP security violation ports. The record of the
port on which the violation has occurred can be found in the HP Security Violation Status Register.

0 - No external security violation.

1 - External security violation is detected.

15-11

—

Reserved

10

—

Reserved

9

—

Reserved

8-7

—

Reserved

6-4

—

Reserved

3

LVD

Digital Low Voltage Event Detected

0 - No low voltage event detected.

1 - Low voltage event is detected.

2

MCR

Monotonic Counter Rollover

0 - MC has not reached its maximum value.

1 - MC has reached its maximum value.

1

SRTCR

Secure Real Time Counter Rollover

0 - SRTC has not reached its maximum value.

1 - SRTC has reached its maximum value.

0

LPTA

LP Time Alarm

0 - No time alarm interrupt occurred.

1 - A time alarm interrupt occurred.

11.7.21 SNVS_LP Secure Real Time Counter MSB Register
(LPSRTCMR)

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1115
Confidential Proprietary

The SNVS_LP Secure Real Time Counter MSB register contains the 15 most-significant
bits of the LP Secure Real Time Counter. This is a privileged write register.

11.7.21.1 Offset

Register Offset

LPSRTCMR 50h

11.7.21.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

S
R

T
CW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. This register is reset at LP POR, but it is not reset by an LP software reset (i.e. writing a 1 to LP_SWR in HPCOMR).

11.7.21.3 Fields

Field Description

31-15

—

Reserved

14-0

SRTC

LP Secure Real Time Counter

The most-significant 15 bits of the SRTC. This register can be programmed only when SRTC is not active
and not locked, meaning the SRTC_ENV, SRTC_SL, and SRTC_HL bits are not set.

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1116 NXP Semiconductors
Confidential Proprietary

11.7.22 SNVS_LP Secure Real Time Counter LSB Register (LPSR
TCLR)

The SNVS_LP Secure Real Time Counter LSB register contains the 32 least-significant
bits of the secure real time counter. This is a privileged write register.

11.7.22.1 Offset

Register Offset

LPSRTCLR 54h

11.7.22.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SRTC

W

Reset

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SRTC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. This register is reset at LP POR, but it is not reset by an LP software reset (i.e. writing a 1 to LP_SWR in HPCOMR).

11.7.22.3 Fields

Field Description

31-0

SRTC

LP Secure Real Time Counter least-significant 32 bits

This register can be programmed only when SRTC is not active and not locked, meaning the
SRTC_ENV, SRTC_SL, and SRTC_HL bits are not set.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1117
Confidential Proprietary

11.7.23 SNVS_LP Time Alarm Register (LPTAR)

The SNVS_LP Time Alarm register contains the 32-bit LP Time Alarm value. This is a
privileged write register.

11.7.23.1 Offset

Register Offset

LPTAR 58h

11.7.23.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
LPTA

W

Reset

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
LPTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. This register is reset at LP POR, but it is not reset by an LP software reset (i.e. writing a 1 to LP_SWR in HPCOMR).

11.7.23.3 Fields

Field Description

31-0

LPTA

LP Time Alarm

This register can be programmed only when the LP time alarm is disabled (LPTA_EN bit is not set).

11.7.24 SNVS_LP Secure Monotonic Counter MSB Register
(LPSMCMR)

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1118 NXP Semiconductors
Confidential Proprietary

The SNVS_LP Secure Monotonic Counter MSB Register contains the monotonic counter
era bits and the most-significant 16 bits of the monotonic counter. The monotonic counter
is incremented by one if there is a write command to the LPSMCMR or LPSMCLR
register. This is a non-privileged read-only register.

11.7.24.1 Offset

Register Offset

LPSMCMR 5Ch

11.7.24.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R MC_ERA_BITS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MON_COUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.24.3 Fields

Field Description

31-16

MC_ERA_BITS

Monotonic Counter Era Bits

These bits are inputs to the module and typically connect to fuses. When the Monotonic Counter is in use
(i.e. enabled and valid and powered by an uninterrupted power source), and the boot software detects
that the Monotonic Counter most-significant 16 Bits and Monotonic Counter LSB Register have been
reset (MC_ENV=0), the boot software can take action to ensure that the value in the monotonic counter
remains monotonic (i.e. never decreasing). The action is to blow an additional MC_ERA_BITS fuse.
Since the MC_ERA_BITS field forms the most-significant field of the monotonic counter, blowing an
additional fuse guarantees that the new monotonic counter value is higher than any previous value. Since
the Monotonic Counter is reset on an LP Software Reset, an excessive number of MC_ERA_BITS fusez
may be consumed if LP Software Reset is used repeatedly.

15-0

MON_COUNTE
R

Monotonic Counter most-significant 16 Bits

Note that writing to this register does not change the value of this field to the value that was
written.

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1119
Confidential Proprietary

Field Description

The 48-bit monotonic counter value (consisting of LPSMCMR[MON_COUNTER] prepended to
LPSMCLR[MON_COUNTER]) is incremented by one when:

• A write transaction to the LPSMCMR or LPSMCLR register is detected.
• The MC_ENV bit is set.
• MC_SL and MC_HL bits are not set.

This value can be reset only by LP software reset or LP POR.

11.7.25 SNVS_LP Secure Monotonic Counter LSB Register
(LPSMCLR)

The SNVS_LP Secure Monotonic Counter LSB Register contains the 32 least-significant
bits of the monotonic counter. The MC is incremented by one if there is a write command
to the LPSMCMR or LPSMCLR register. This is a non-privileged read-only register.

11.7.25.1 Offset

Register Offset

LPSMCLR 60h

11.7.25.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MON_COUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MON_COUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1120 NXP Semiconductors
Confidential Proprietary

11.7.25.3 Fields

Field Description

31-0

MON_COUNTE
R

Monotonic Counter bits

Note that writing to this register does not change the value of this field to the value that was
written.

The 48-bit monotonic counter value (consisting of LPSMCMR[MON_COUNTER] prepended to
LPSMCLR[MON_COUNTER]) is incremented by one when:

• A write transaction to the LPSMCMR or LPSMCLR register is detected.
• The MC_ENV bit is set.
• MC_SL and MC_HL bits are not set.

This value can be reset only by LP software reset or LP POR.

11.7.26 SNVS_LP Digital Low-Voltage Detector Register (LPLV
DR)

The SNVS_LP Digital Low-Voltage Detector Register is a 32-bit read/write register that
is used for storing the low-voltage detector value, as described in Digital Low-Voltage
Detector (LVD). This is a privileged write register.

11.7.26.1 Offset

Register Offset

LPLVDR 64h

11.7.26.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
LVD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
LVD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1121
Confidential Proprietary

11.7.26.3 Fields

Field Description

31-0

LVD

Low-Voltage Detector Value

11.7.27 SNVS_LP General Purpose Register 0 (legacy alias)
(LPGPR0_legacy_alias)

See register SNVS_LP General Purpose Registers 0 .. 3 (LPGPR0 - LPGPR3).

11.7.27.1 Offset

Register Offset

LPGPR0_legacy_alias 68h

11.7.27.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
GPR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GPR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1122 NXP Semiconductors
Confidential Proprietary

11.7.27.3 Fields

Field Description

31-0

GPR

General Purpose Register

When GPR_SL or GPR_HL bit is set, the register cannot be programmed.

11.7.28 SNVS_LP Zeroizable Master Key Register (LPZMKR0 -
LPZMKR7)

The SNVS_LP Zeroizable Master Key Registers contain the 256-bit zeroizable master
key value. This is a privileged write register. These registers are programmable as
follows:

• When ZMK write lock bit is set, they cannot be programmed.
• When ZMK_HWP is not set, they are in software programming mode and can be

programmed only by software.
• When ZMK_HWP is set, they are in hardware programming mode and can be

programmed only by hardware.

These registers cannot be read by software when the ZMK_HWP or ZMK read lock bit is
set.

11.7.28.1 Offset

For a = 0 to 7:

Register Offset

LPZMKRa 6Ch + (a × 4h)

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1123
Confidential Proprietary

11.7.28.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ZMK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ZMK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.28.3 Fields

Field Description

31-0

ZMK

Zeroizable Master Key

Each of these registers contains 32 bits of the 256-bit ZMK value. The least-significant byte is at offset
6Ch.

11.7.29 SNVS_LP General Purpose Registers 0 .. 3 (LPGPR0 -
LPGPR3)

The SNVS_LP General Purpose Register is a 128-bit read/write register located in
SNVS_LP, which can be used by any application for retaining data during an SoC power-
down mode. This is a privileged read/write register. The full GPR register is accessed as
4 32-bit registers located in successive word addresses starting at offset 90h. For
backward compatibility with earlier versions of SNVS, LPGPR0 is also aliased at its
original offset of 68h. New software should access the GPR register at the preferred
offset of 90h.

11.7.29.1 Offset

Register Offset

LPGPR0 90h

Table continues on the next page...

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1124 NXP Semiconductors
Confidential Proprietary

Register Offset

LPGPR1 94h

LPGPR2 98h

LPGPR3 9Ch

11.7.29.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
GPR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GPR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.7.29.3 Fields

Field Description

31-0

GPR

General Purpose Register

When GPR_SL or GPR_HL bit is set, the register cannot be programmed.

11.7.30 SNVS_HP Version ID Register 1 (HPVIDR1)

The SNVS_HP Version ID Register 1 is a non-privileged read-only register that contains
the current version of the SNVS. The version consists of a module ID, a major version
number, and a minor version number.

11.7.30.1 Offset

Register Offset

HPVIDR1 BF8h

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1125
Confidential Proprietary

11.7.30.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R IP_ID

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MAJOR_REV MINOR_REV

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

11.7.30.3 Fields

Field Description

31-16

IP_ID

SNVS block ID

15-8

MAJOR_REV

SNVS block major version number

7-0

MINOR_REV

SNVS block minor version number

11.7.31 SNVS_HP Version ID Register 2 (HPVIDR2)

The SNVS_HP Version ID Register 2 is a non-privileged read-only register that indicates
the current version of the SNVS. Version ID register 2 consists of the following fields:
integration options, ECO revision, and configuration options.

11.7.31.1 Offset

Register Offset

HPVIDR2 BFCh

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1126 NXP Semiconductors
Confidential Proprietary

11.7.31.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R IP_ERA INTG_OPT

W

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ECO_REV CONFIG_OPT

W

Reset 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

11.7.31.3 Fields

Field Description

31-24

IP_ERA

IP Era

00h - Era 1 or 2

03h - Era 3

04h - Era 4

05h - Era 5

06h - Era 6

23-16

INTG_OPT

SNVS Integration Options

15-8

ECO_REV

SNVS ECO Revision

7-0

CONFIG_OPT

SNVS Configuration Options

Chapter 11 Secure Non-Volatile Storage (SNVS)

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1127
Confidential Proprietary

SNVS register descriptions

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1128 NXP Semiconductors
Confidential Proprietary

Appendix A
Cryptographic Acceleration and Assurance Module
(CAAM) Glossary

A.1 Acronyms and abbreviations
Table A-1. Acronyms and abbreviated terms

Term Meaning

AAD Additional Authenticated Data

AES Advanced Encryption Standard - 128-bit block encryption algorithm, using a 128, 192 or 256-bit key.

ARC4 Alleged RC4. Stream Cipher that is compatible with RC4.

AXI AMBA Advanced eXtensible Interface (AXI) Protocol Specification. Defined by Arm Holdings.

CAAM Cryptographic Acceleration and Assurance Module

CBC Cipher Block Chaining

An encryption mode of operation. This is one of the official modes of operation specified for DES and AES.

CCB Cryptographic Control Block

A logic module within CAAM

CCM Counter with CBC-MAC Mode

An authenticated encryption mode of operation.

CFBn Cipher FeedBack

An encryption mode of operation. CFB128 is one of the official modes of operation specified for AES.CFB8
is the official mode of operation specified for DES.

CHA Cryptographic Hardware Accelerator

One of the hardware accelerators used in CAAM

CRJD Control Replacement Job Descriptor

CSP Critical Security Parameter

Security related information (such as secret and private cryptographic keys or authentication data such as
passwords and PINs) whose disclosure or modification can compromise the security of a cryptographic
module. (See FIPS140-2)

CTR Counter mode

An encryption mode of operation used with AES

DECO Descriptor Controller

A logic module within CAAM

Table continues on the next page...

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1129
Confidential Proprietary

Table A-1. Acronyms and abbreviated terms (continued)

Term Meaning

DEK Data Encryption Key.

DES Data Encryption Standard

64-bit block encryption algorithm, using a 64-bit key.

3DES Triple DES

64-bit block encryption algorithm, using a 128 or 196-bit key.

DRBG Deterministic Random Bit Generator

A deterministic algorithm that generates a sequence of numbers whose values are statistically random.
Sometimes called "PRNG" (pseudorandom number generator).

ECB Electronic Code Book

An encryption mode of operation. This is one of the official modes of operation specified for DES and AES.

GM General Memory

Memory that is not within CAAM's Secure Memory

HAB High Assurance Boot software

HMAC A hashing mode of operation used to implement a Message Authentication Code

IPAD Inner padding defined for HMAC consisting of the byte 36h repeated 64 times for MD5, SHA-1, SHA-224 or
SHA-256, and reported 128 times for SHA-384 or SHA-512

ICV Integrity Check Value

A checksum or message digest that allows detection of errors or changes in data.

IJD Inline Job Descriptor

IV Initialization Vector

A value used to initialize some encryption modes of operation

JD Job Descriptor

JDKEK Job Descriptor Key Encryption Key

JQC Job Queue Controller

The hardware that schedules jobs received from the Job Rings and RTIC

JR Job Ring

KMOD Key Modifier (field in SMAP register)

MD5 A message digest algorithm returning a 128-bit hash value

MDHA Message Digest Hardware Accelerator (hashing accelerator block)

MID Master Identity

Signals on the AXI bus that identify the bus master that initiated the transaction

MMU Memory Management Unit

NS Non-secure indication

NS = 0 is secure. This signal is generated by the TrustZone feature implemented in some Arm processors.

NVTK Non-volatile Test Key

OFB Output FeedBack

An encryption mode of operation. This is one of the official modes of operation specified for DES and AES.

OPAD Outer padding defined for HMAC consisting of the byte 5Ch repeated 64 times for MD5, SHA-1, SHA-224
or SHA-256, and reported 128 times for SHA-384 or SHA-512

OTPMK One-time-programmable Master Key

Table continues on the next page...

Acronyms and abbreviations

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1130 NXP Semiconductors
Confidential Proprietary

Table A-1. Acronyms and abbreviated terms (continued)

Term Meaning

PKHA Public Key Hardware Accelerator (ECC, RSA, DH, DSA)

POR Power On Reset.

PRNG Pseudo Random Number Generator

A deterministic algorithm that generates a sequence of numbers whose values are statistically random.
See DRBG.

PSP Public Security Parameter

Security-related public information whose modification can compromise the security of a cryptographic
module.

RNG Random Number Generator

A hardware module within CAAM that generates random numbers based on the interaction of two free
running ring oscillators and uses these random numbers to seed a DRBG.

RJD Replacement Job Descriptor

RTIC Run-Time Integrity Checker

A logic block within CAAM that generates a security event if the integrity of selected memory areas have
been compromised.

SD Shared Descriptors

SHA-1 A message digest algorithm defined in FIPS 180-2 returning a 160-bit hash value.

SHA-224 A message digest algorithm defined in FIPS 180-2 returning a 224-bit hash value.

SHA-256 A message digest algorithm defined in FIPS 180-2 returning a 256-bit hash value.

SHA-384 A message digest algorithm defined in FIPS 180-2 returning a 384-bit hash value.

SHA-512 A message digest algorithm defined in FIPS 180-2 returning a 512-bit hash value.

SMAG Secure Memory Access Group (register)

SMAP Secure Memory Access Permissions (register)

SM Secure Memory

A logic block within CAAM that provides access control and automatic zeroization for RAM

SNVS Secure Non-Volatile Storage

SSP Sensitive Security Parameter

Data whose integrity must be protected

SWRST Software Reset

Register resets caused by writing 1 to the SWRST field in the MCFGR register.

TD Trusted Descriptor

TDSK Trusted Descriptor Signing Key

TDKEK Trusted Descriptor Key Encryption Key

TRK Trusted Root Key

ZMK Zeroizable Master Key

Appendix A Cryptographic Acceleration and Assurance Module (CAAM) Glossary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1131
Confidential Proprietary

A.2 Glossary
Table A-2. Glossary of terms

Term Description

Access control The term 'access control' refers to intentional constraints placed on the ability of bus masters to read
or write data, or execute instructions. Operating systems normally enforce access control over their
processes' access to memory by adjusting the processor's MMU settings appropriately. But the
processor's MMU cannot control the accesses made by other bus masters, including other processors.
The access control features built into CAAM's register interface are designed to control accesses from
multiple bus masters to CAAM register pages.The access control features built into CAAM's Secure
Memory are designed to control accesses from multiple bus masters to Security Memory partitions.
(See Partition.)

Alleged RC4 A stream cipher that is compatible with RC4.

Allocate A processor allocates an unallocated partition to itself by writing into the partition's SMAPJR register. A
processor allocates an unclaimed page of Secure Memory to itself by issuing an Allocate Page
Command by means of the Secure Memory Command Register. (The phrase 'allocated to' is used
interchangeably with 'claimed by'. Also see Own.

Black blob A blob whose input data when exporting and whose output when importing was assumed to be a black
key. When exporting a black blob, the input data is first decrypted using the JDKEK (if the BLOB
Command was in a job descriptor) or TDKEK (if the BLOB command was in a trusted descriptor)
before being encrypted with the blob key. When importing a Black Blob, the data blob is first decrypted
with the Blob Key before being encrypted using the JDKEK (if the BLOB Command was in a job
descriptor) or TDKEK (if the BLOB Command was in a trusted descriptor). (See Red Blob.)

Black key A key that has been encrypted using either the JDKEK or the TDKEK. (See Red Key.)

Blob As used in this Block Guide the term 'blob' refers to a cryptographically protected data object
consisting of a Blob Key encrypted with a Blob Key Encryption Key, a Data Blob encrypted with a Blob
Key, and the MAC Tag resulting from the AES-CCM encryption of the Data Blob.

Blob key The 256-bit random number used for AES-CCM encryption of the data portion of a blob.

Blob key encryption
key

The Blob Key Encryption Key (BKEK) is a 256-bit key used when encrypting cryptographic Blobs
exported from memory. It is intended for use in protecting the confidentiality and integrity of this data.
The BKEK is derived from the Master Key or Non-volatile Test Key, a constant embedded in the
CAAM Descriptor that initiated the Blob operation, the Security mode and the Blob type. (See Master
Key.)

Claim A processor claims ownership of an unallocated partition by writing into the partition's SMAPJR
register. A processor claims an unclaimed page of Secure Memory by issuing an Allocate Page
Command by means of Secure Memory Command Register. (The phrase "claimed by" is used
interchangeably with "allocated to". See also Own.

Critical security
parameter

A critical security parameter (CSP) is security-related information (e.g., secret and private
cryptographic keys, and authentication data such as passwords and PINs) whose disclosure or
modification can compromise the security of a cryptographic module. [from FIPS PUB 140-3 (DRAFT)]
A partition in Secure Memory can be marked as CSP, which causes CAAM to zeroize the pages in the
partition in the event of a security violation, or if the partition is de-allocated. Individual pages that are
de-allocated from a CSP partition are also zeroized.

Data encryption key A data encryption key is a key that can be referenced in a descriptor as a cryptographic key and that is
not one of other keys defined in this glossary. Some examples are: a symmetric key used for
encryption or decryption of session data, a private key used for signing data, a public key used for
verifying a signature, a private or public key used in a key establishment operation, an HMAC key.

De-allocate A processor de-allocates a partition that it owns by issuing a De-allocate Partition Command via the
Secure Memory Allocate Register. A partition marked PSP cannot be de-allocated. If the partition is
marked CSP, the pages of that partition are zeroized before they are returned to the pool of

Table continues on the next page...

Glossary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1132 NXP Semiconductors
Confidential Proprietary

Table A-2. Glossary of terms (continued)

Term Description

unallocated pages. A processor de-allocates a page associated with a partition that the processor
owns by issuing a De-allocate Page Command via the Secure Memory Allocate Register. A page
associated with a PSP partition cannot be de-allocated. A page associated with a CSP partition is
zeroized before it is returned to the pool of unallocated pages.

Decrypt key A decrypt key is used for decrypting data to yield plaintext (unencrypted data). Some cryptographic
algorithms (e.g. AES) successively modify the cryptographic key during the steps of the cryptographic
operation; therefore the decrypt form of the key is different from the encrypt form of the key.

Derived HMAC key A performance improving structure consisting of the HMAC key, XORed with IPAD, and the same
HMAC key XORed with OPAD, both then processed with the underlying HASH function.

Descriptor A descriptor is a sequence of commands that causes CAAM to perform cryptographic functions. There
are three types of descriptors: job descriptors, shared descriptors, and trusted descriptors. Shared
descriptors and trusted descriptors are actually special forms of job descriptors.

Export Exporting is the act of creating (encapsulating) a Blob. It involves protecting the Blob's privacy,
integrity, and optionally, providing protection against replay, utilizing the security mechanisms available
to CAAM and the processor. (See Import)

Fail mode CAAM clears its CSP registers (e.g. key registers) upon entrance to Fail Mode. CAAM enters Fail
Mode when the SNVS's security state machine enters its Fail State. This could be due to the detection
of scan or JTAG testing, or due to the failure of a security module.

General memory
blob key encryption
key

The General Memory Blob Key Encryption Key (GM BKEK) is a 256-bit key used when encrypting
cryptographic Blobs exported from general memory (as opposed to CAAM Secure Memory). It is
intended for use in protecting the confidentiality and integrity of data exported from general memory.
The GM BKEK is derived from the Master Key and a constant embedded in the CAAM Descriptor that
initiated the General Memory Blob operation. The GM BKEK is derived so that its value will be different
than SM BKEK values. (See SM Blob Key Encryption Key, Master Key.)

Hash A hash is the message digest resulting from a hashing operation, such as SHA-1, SHA-256 or MD5. A
cryptographic hashing operation is a collision-resistant one-way function that yields a fixed-length bit
string from a variable length input. A function is collision-resistant if it is difficult to find two input strings
that yield the same Message Digest. A function is one-way if it is computationally infeasible to
calculate the input, given only the Message Digest.

Import Importing is the act of retrieving the data from a blob (decapsulating) . It involves decrypting the blob
and checking its integrity and, optionally, protecting against replay. (See Export)

Job descriptor The term 'job descriptor' means a descriptor that is not a shared descriptor or a trusted descriptor.
Unlike a shared descriptor, a job descriptor can reference another descriptor, and unlike a trusted
descriptor, a job descriptor is not signed.

Job descriptor key
encryption key

The Job Descriptor Key Encryption Key (JDKEK) is a 256-bit key used to protect the confidentiality of
Data Encryption Keys (DEK) referenced by job descriptors. A new JDKEK value is generated by the
CAAM's RNG at each POR, and is used throughout the current power-on cycle to encrypt or decrypt
DEKs "on-the-fly" during job descriptor processing. (See Trusted Descriptor Key Encryption Key.

Key encryption key A Key Encryption Key (KEK) is a cryptographic key used to encrypt other cryptographic keys. CAAM
supports various KEKs that are used in different circumstances. (See JDKEK, TDKEK)

Link table A link table is also referred to by the term "Scatter/Gather Table".

Manager processor The Manager Processor is the processor that is entrusted with configuring various options in CAAM.
This processor is authenticated via its IP bus DID.

Master identifier The master identifier (MID) is a bus master identifier that is transmitted along with the bus address and
data. Since the master identity is used by CAAM to enforce access control, master identity values
must be assigned to bus masters in a manner that unambiguously identifies the set of access control
permissions that are to be enforced on each bus transaction.

Table continues on the next page...

Appendix A Cryptographic Acceleration and Assurance Module (CAAM) Glossary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1133
Confidential Proprietary

Table A-2. Glossary of terms (continued)

Term Description

Master key The master key is a 256-bit secret value that CAAM receives from the SNVS. (See Non-volatile Test
Key, OTP Master Key, Zeroizable Master Key, Secure Memory Blob Key Encryption Key, and
General Memory Blob Key Encryption Key.)

Message digest A message digest (also called a hash) is a fixed-size string that is the result of computing a
cryptographic one-way function of some input data.

Non-volatile test key The Non-volatile Test Key (NVTK) is a 256-bit key hardwired into CAAM. When CAAM is in the Non-
Secure Mode CAAM will use the NVTK to derive Blob key encryption keys rather than using the secret
Master Key. The NVTK value (all 0s) is public knowledge, and is the same in every SOC. It is used for
known-answer tests when testing the CAAM cryptographic hardware.

Non-secure mode CAAM's Non-secure Mode is intended to allow CAAM to be tested without compromising the security
of sensitive data. In this mode a known version of the BKEK (based on the Non-volatile Test Key) is
used for exporting and importing Blobs. Therefore any Blobs exported while in Secure Mode or
Trusted Mode cannot be successfully imported while in Non-secure Mode.

OTP master key The OTP Master Key (OTPMK) is a 256-bit secret value stored in one-time-programmable storage on
the SOC. The value is generally written to the one-time-programmable storage while the SOC is in the
factory. The OTPMK bits are protected with a lock that, when set, prevents modifying the value. In
some configurations SNVS will use the OTPMK to derive the value of the master key that the SNVS
supplies over a private bus to CAAM. Its value cannot otherwise be read, sensed or scanned.

Own The processor that owns a partition can change the access control permissions (and other data) within
the partition's SMAPJR and SMAG2/1JR registers. The processor owns all the pages that are currently
allocated to partitions owned by the processor. (See Claim)

Page As used in this Block Guide, the term 'page' refers to a fixed-size portion of Secure Memory. The size
of a page is determined at synthesis via a parameter. The size of a Secure Memory page may or may
not correspond to the size of virtual memory page as implemented by the processor's MMU. (See
Partition)

Partition A partition of Secure Memory may be unallocated, or it may be allocated to a processor. An AXI bus
master can access an owned partition only if the partition's Access Control Permissions are set to
allow the access. (See Ownership)

Processor A processor is a bus master capable of executing software. Processors are given the privilege of
claiming Secure Memory partitions, allocating and deallocating pages of Secure Memory, assigning
access control permissions, and deallocating partitions.

Public security
parameter

A public security parameter (PSP) is security-related public information whose modification can
compromise the security of a cryptographic module. [from FIPS PUB 140-3 (DRAFT)] The Trusted
Root Key is a PSP.

Red blob A blob whose data input when exporting is assumed to be not encrypted, and whose data output when
importing is not encrypted. (See Black Blob)

Red key A key that is not encrypted. (See Black Key)

Replay Replay is a type of security attack in which old data is presented by a hacker as if it were new data.
For instance, a hacker could replace a new Blob that shows that a software license has expired with
an old Blob that indicates that the license is still valid. The term "replay" is sometimes also used to
refer to a denial of service attack based upon flooding the system with the same message over and
over. If this message is encrypted or cryptographically authenticated, then the attacker may not be
able to generate new messages and instead would "replay" a legitimate message that the attacker had
snooped from the network.

Secure memory Secure Memory is an optional component of CAAM that provides access-controlled storage for
sensitive data. Secure Memory is divided into multiple partitions, each of which may use different
access control settings. (See Claim, Own, Partition, Page)

Secure mode Secure Mode is the normal operating mode of CAAM. The Security State Machine within the SNVS
determines when CAAM is operating in Secure Mode.

Table continues on the next page...

Glossary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1134 NXP Semiconductors
Confidential Proprietary

Table A-2. Glossary of terms (continued)

Term Description

Secure memory blob
key encryption key

The Secure Memory Blob Key Encryption Key (SM BKEK) is a 256-bit key used when encrypting
cryptographic Blobs exported from a Secure Memory partition. It is intended for use in protecting the
confidentiality and integrity of data exported from CAAM Secure Memory. The SM BKEK is derived
from the Master Key and the KMOD field and access control fields from the partition's SMAPJR
register and SMAG2/1JR registers. The SM BKEK is derived so that its value will be different than GM
BKEK values. (See General Memory Blob Key Encryption Key, Master Key)

Secure nonvolatile
storage

SNVS is the Secure Nonvolatile Storage companion logic block to CAAM. It implements a security
alarm detection, and maintains a security state machine. SNVS also includes a low-power portion that
is intended to be powered from an uninterrupted power source when main SOC power is off. Whether
the main SOC power is on or off, the low-power portion provides non-volatile storage for a Zeroizable
Master Key, and accurately maintains a secure real-time clock.

Sensitive data Sensitive data is data that should be protected against unauthorized disclosure.

Sensitive security
parameter

The term 'sensitive security parameters' (SSP) encompasses critical security parameters and public
security parameters. [from FIPS PUB 140-3 (DRAFT)]

SEQ Sequence. For most memory referencing descriptor commands CAAM implements an auto-
incrementing addressing mode using sequence input address and sequence output address registers.
This is intended to faciliate the processing of cryptographic networking protocols.

Shared descriptor A shared descriptor is a special type of job descriptor that can be executed only when it is referenced
by another descriptor. Shared descriptors are intended to contain data, such as keys and sequence
numbers, that are shared by two or more other descriptors.

Trusted descriptor A trusted descriptor is a special type of job descriptor that has some additional access privileges and
some additional security protections. When CAAM is executing a job descriptor, CAAM can use the
data within Secure Memory key partitions (partitions that have SMAPJR[K_D] set) only as keys in
cryptographic operations. When CAAM is executing a trusted descriptor, CAAM can use the data
within key partitions as data in cryptographic operations. This feature allows trusted descriptors to be
used in key derivation and key generation operations. Trusted descriptors are protected from
modification by means of a signature over the descriptor. CAAM verifies the signature before
executing the trusted descriptor, and aborts execution if the signature is incorrect. (See Trusted
Descriptor Signing Key)

Trusted descriptor
signing key

The Trusted Descriptor Signing Key (TDSK) is a key used to sign and verify the signature over trusted
descriptors. A new TDSK value is generated by the CAAM RNG at each POR, and is used throughout
the current power-on cycle. CAAM will allow TDSK to be used to sign a new trusted descriptor only if
the descriptor is submitted via a Job Ring that has AMTD set in its JRaDID register. Otherwise, CAAM
will use TDSK only to verify the signature over a trusted descriptor, or to update the signature on an
existing trusted descriptor that has modified itself during its execution.

Trusted descriptor
key encryption key

The Trusted Descriptor Key Encryption Key (TDKEK) is a key that can be used to protect the
confidentiality of Data Encryption Keys (DEKs) referenced by trusted descriptors. A new TDKEK value
is generated by the CAAM's RNG at each POR, and is used throughout the current power-on cycle to
encrypt or decrypt DEKs "on-the-fly" during trusted descriptor processing. (See Job Descriptor Key
Encryption Key)

Trusted mode Trusted Mode is a special operating mode of CAAM. The Security State Machine within the SNVS
determines when CAAM is operating in Trusted Mode. This mode is implemented so that trusted boot-
time software, or a hypervisor or TrustZone Secure World software can store data in and retrieve data
from Trusted Mode Blobs that are not accessible to software running while CAAM is in Secure Mode
or Non-Secure Mode.

Trusted root key The Trusted Root Key is a public signature key used by HAB to verify the signature over the
Command Sequence File. The key could be RSA (probably 2048 bits) or ECC-DSA (probably 511
bits). The integrity and authenticity of this key is protected by placing a SHA-256 hash of this key in
fuses on the SOC. The fuses are located in a bank with a lock fuse that, when set, prevents any
changes to the hash value.

Table continues on the next page...

Appendix A Cryptographic Acceleration and Assurance Module (CAAM) Glossary

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

NXP Semiconductors 1135
Confidential Proprietary

Table A-2. Glossary of terms (continued)

Term Description

Unallocated An unallocated partition is not associated with any processor. It is available for allocation. A processor
that has access to the Secure Memory can write into the partition's SMAPJR register to claim the
partition. Only the processor that owns the partition can de-allocate that partition. The term
'unallocated' is used interchangeably with the term 'unclaimed'.

Unclaimed The term 'unclaimed' is used interchangeably with the term 'unallocated'.

Word A word of memory or a one-word register contains 32 bits.

Zeroizable master
key

The Zeroizable Master Key (ZMK) is a 256-bit key stored in a register in the low-power domain of
SNVS. In some configurations and security states SNVS will use the ZMK to derive the value of the
Master Key that SNVS supplies over the snvs_master_key signal to CAAM. Its value cannot otherwise
be read or scanned. The value can be generated by the CAAM RNG, and can be loaded automatically
by hardware. The value can be zeroized when a security violation is detected.(See Master Key.)

Zeroize A set of data storage locations is zeroized by overwriting the storage locations with a value (not
necessarily 0) that is independent of the previous content of the storage locations.

Security Reference Manual for i.MX 8M Nano Applications Processor, Rev. 0, 01/2020

1136 NXP Semiconductors
Confidential Proprietary

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2020 NXP B.V.

Document Number IMX8MNSRM
Revision 0, 01/2020

Confidential Proprietary

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Security Reference Manual for i.MX
8M Nano Applications Processor
	Chapter 1: Disclaimer
	Disclaimer

	Chapter 2: Security Overview
	Overview
	Feature summary
	TrustZone architecture
	High-Assurance Boot (HAB)
	HAB process flow
	HAB feature summary

	Secure Non-Volatile Storage (SNVS) module
	SNVS architecture

	Cryptographic Acceleration and Assurance Module (CAAM)
	OCOTP_CTRL
	Central Security Unit (CSU)
	Resource Domain Controller (RDC)
	AHB to IP Peripheral Bridge (AIPSTZ)
	System JTAG Controller (SJC)
	Scan protection

	TrustZone Address Space Controller (TZASC)
	Smart Direct Memory Access Controller (SDMA)
	TrustZone Watchdog (TZ WDOG)

	Chapter 3: Security System Integration
	Master ID allocation
	System-level SNVS connections
	System security violation alarm signals monitored by SNVS

	Security access error
	OCRAM TrustZone support
	Watchdog mechanism
	Security configuration
	Field return for retest procedure

	Chapter 4: System Boot
	Overview
	Boot modes
	Boot mode pin settings
	High-level boot sequence
	Boot From Fuses mode (BOOT_MODE[1:0] = 00b)
	Internal Boot mode (BOOT_MODE[1:0] = 0b10)
	Boot security settings

	Device configuration
	Boot eFUSE descriptions
	GPIO boot overrides

	Device initialization
	Internal ROM/RAM memory map
	Boot block activation
	Clocks at boot time
	Enabling MMU and caches
	Exception handling
	Interrupt handling during boot
	Persistent bits

	Boot devices (internal boot)
	Serial NOR Flash Boot via FlexSPI
	Serial NOR eFUSE Configuration
	FlexSPI Serial NOR Flash Boot Operation
	FlexSPI NOR boot flow chart

	Serial NOR configuration based on FlexSPI interface
	FlexSPI Configuration Block
	Serial NOR configuration block (512 bytes)

	NAND flash
	NAND eFUSE configuration
	NAND flash boot flow and Boot Control Blocks (BCB)
	Firmware configuration block
	Discovered Bad Block Table (DBBT)
	Bad block handling in ROM
	Toggle mode DDR NAND boot
	GPMI and BCH clocks configuration
	Setup DMA for DDR transfers
	Reconfigure timing and speed using values in FCB

	Typical NAND page organization
	BCH ECC page organization
	Metadata

	IOMUX configuration for NAND

	Expansion device
	Expansion device eFUSE configuration
	MMC and eMMC boot
	SD, eSD, and SDXC
	IOMUX configuration for SD/MMC

	Serial NOR through SPI
	Serial(SPI) NOR eFUSE configuration
	ECSPI boot
	ECSPI IOMUX pin configuration

	Boot image
	Primary image offset and IVT offset
	Typical image placement in boot device

	USB boot
	Low-power boot
	SD/MMC manufacture mode
	Using manufacture mode / serial download mode with eMMC

	High-Assurance Boot (HAB)
	HAB API vector table addresses

	Boot information for software

	Chapter 5: Fusemap
	Boot Fusemap
	Lock Fusemap
	Fusemap Descriptions Table

	Chapter 6: On-Chip OTP Controller (OCOTP_CTRL)
	Overview
	Features

	Top-Level Symbol and Functional Overview
	Operation
	Shadow Register Reload
	Fuse and Shadow Register Read
	Fuse and Shadow Register Writes
	Write Postamble

	Fuse Shadow Memory Footprint
	OTP Read/Write Timing Parameters
	Hardware Visible Fuses
	Behavior During Reset
	Secure JTAG control

	Fuse Map
	OCOTP Memory Map/Register Definition
	OCOTP
	OCOTP_HW_OCOTP_CTRLn
	OCOTP_HW_OCOTP_TIMING
	OCOTP_HW_OCOTP_DATA
	OCOTP_HW_OCOTP_READ_CTRL
	OCOTP_HW_OCOTP_READ_FUSE_DATA
	OCOTP_HW_OCOTP_SW_STICKY
	OCOTP_HW_OCOTP_SCSn
	OCOTP_HW_OCOTP_VERSION
	OCOTP_HW_OCOTP_LOCK
	OCOTP_HW_OCOTP_TESTER0
	OCOTP_HW_OCOTP_TESTER1
	OCOTP_HW_OCOTP_TESTER2
	OCOTP_HW_OCOTP_TESTER3
	OCOTP_HW_OCOTP_TESTER4
	OCOTP_HW_OCOTP_TESTER5
	OCOTP_HW_OCOTP_BOOT_CFG0
	OCOTP_HW_OCOTP_BOOT_CFG1
	OCOTP_HW_OCOTP_BOOT_CFG2
	OCOTP_HW_OCOTP_BOOT_CFG3
	OCOTP_HW_OCOTP_BOOT_CFG4
	OCOTP_HW_OCOTP_SRK0
	OCOTP_HW_OCOTP_SRK1
	OCOTP_HW_OCOTP_SRK2
	OCOTP_HW_OCOTP_SRK3
	OCOTP_HW_OCOTP_SRK4
	OCOTP_HW_OCOTP_SRK5
	OCOTP_HW_OCOTP_SRK6
	OCOTP_HW_OCOTP_SRK7
	OCOTP_HW_OCOTP_SJC_RESP0
	OCOTP_HW_OCOTP_SJC_RESP1
	OCOTP_HW_OCOTP_USB_ID
	OCOTP_HW_OCOTP_FIELD_RETURN
	OCOTP_HW_OCOTP_MAC_ADDR0
	OCOTP_HW_OCOTP_MAC_ADDR1
	OCOTP_HW_OCOTP_MAC_ADDR2
	OCOTP_HW_OCOTP_GP10
	OCOTP_HW_OCOTP_GP11
	OCOTP_HW_OCOTP_GP20
	OCOTP_HW_OCOTP_GP21

	Chapter 7: Central Security Unit (CSU)
	Overview
	Features

	Functional description
	Peripheral access policy
	Initialization policy

	Programmable Registers
	CSU
	CSU_CSLn
	CSU_HP0
	CSU_HP1
	CSU_SA
	CSU_HPCONTROL0
	CSU_HPCONTROL1

	Chapter 8: Resource Domain Controller (RDC)
	Overview
	Features

	Functional Description
	Domain ID
	Resource Assignment
	Safe Sharing
	Resource Domain Control and Security Considerations

	Modes of Operation
	Low Power Modes

	Programming Interface
	Master Assignment Registers
	Peripheral Mapping
	Memory Region Map

	RDC Memory Map/Register Definition
	RDC
	RDC_VIR
	RDC_STAT
	RDC_INTCTRL
	RDC_INTSTAT
	RDC_MDAn
	RDC_PDAPn
	RDC_MRSAn
	RDC_MREAn
	RDC_MRCn
	RDC_MRVSn

	RDC SEMA42 Memory Map/Register Definition
	RDC_SEMAPHOREx
	RDC_SEMAPHOREx_GATEn
	RDC_SEMAPHOREx_RSTGT_W
	RDC_SEMAPHOREx_RSTGT_R

	Chapter 9: TrustZone Address Space Controller (TZASC)
	Overview
	Clocks
	Address Mapping in various memory mapping modes

	Chapter 10: Cryptographic Acceleration and Assurance Module (CAAM)
	Overview of CAAM (cryptographic acceleration and assurance module) functionality
	Feature summary
	CAAM implementation
	CAAM submodules
	CAAM Versions with Encryption Disabled

	CAAM modes of operation
	Platform Security State
	The effect of security state on volatile keys
	The effect of security state on non-volatile keys

	Keys available in different security modes
	Keys available in trusted mode
	Keys available in secure mode
	Keys available in non-secure mode
	Keys available in fail mode

	CAAM hardware functional description
	System Bus Interfaces
	AXI master (DMA) interface
	DMA bursts that may read past the end of data structures

	Secure memory interface (AXI slave bus)
	Register interface (IP bus)

	CAAM service interface concepts
	Configuring the Service Interfaces
	CAAM descriptors
	Job termination status/error codes
	Frames and flows
	User data access control and isolation

	Service interfaces
	Job Ring interface
	Configuring and managing the input/output rings, overview
	Managing the input rings
	Managing the output rings
	Controlling access to Job Rings
	Initializing Job Rings
	Job Ring Registers
	Asserting Job Ring interrupts

	Register-based service interface

	Job scheduling
	Job scheduling algorithm
	Job scheduling - DECO-specific jobs

	Job execution hardware
	Descriptor Controller (DECO) and CHA Control Block (CCB)
	Alignment blocks

	Cryptographic hardware accelerators (CHAs) (overview)

	Descriptors and descriptor commands
	Job Descriptors
	Trusted descriptors
	Shared descriptors
	Executing shared descriptors in proper order
	Specifying different types of shared descriptor sharing
	Error sharing

	Changing shared descriptors

	Using in-line descriptors
	Using replacement job descriptors
	Scatter/gather tables (SGTs)
	Using descriptor commands
	Command execution order
	Executing commands when SHR = 0
	Executing commands when SHR = 1
	Executing commands when REO = 0
	Executing commands when REO = 1
	Executing additional HEADER commands
	Jumping to another job descriptor

	Command properties
	Blocking commands
	Load/store checkpoint
	Done checkpoint

	Command types
	SEQ vs non-SEQ commands
	Creating a sequence
	Using sequences for fixed and variable length data
	Transferring meta data
	Rewinding a sequence

	Information FIFO entries
	Output FIFO Operation
	Cryptographic class
	Address pointers
	DECO/CCB behavior for jobs started via the register service interface
	DECO/CCB default actions for one-off jobs
	DECO/CCB actions when sharing descriptors
	Using a CHA more than once in a job

	HEADER command
	KEY commands
	LOAD commands
	FIFO LOAD command
	Bit length data
	FIFO LOAD input data type

	ECPARAM command
	STORE command
	FIFO STORE command
	MOVE, MOVEB, MOVEDW, and MOVE_LEN commands
	ALGORITHM OPERATION command
	PROTOCOL OPERATION Commands
	PKHA OPERATION command
	PKHA OPERATION: clear memory function
	PKHA OPERATION: Arithmetic Functions
	PKHA OPERATION: copy memory functions
	PKHA OPERATION: Elliptic Curve Functions

	SIGNATURE command
	JUMP (HALT) command
	Jump type
	Local conditional jump
	Local conditional increment/decrement jump
	Non-local conditional jump
	Conditional halt
	Conditional halt with user-specified status
	Conditional subroutine call
	Conditional subroutine return

	Test type
	JSL and TEST CONDITION fields
	JUMP command format

	MATH and MATHI Commands
	SEQ IN PTR command
	SEQ OUT PTR command

	Protocol acceleration
	Public Key Cryptography Operations
	Conformance considerations
	Specifying the ECC domain curves for the discrete-log functions
	Discrete-log key-pair generation
	Inputs to the discrete-log key-pair generation function
	Assumptions of the discrete-log key-pair generation function
	Outputs from the discrete-log key-pair generation function
	Operation of the discrete-log key-pair generation function
	Notes associated with the discrete-log key-pair generation function

	Using the Diffie_Hellman function
	Diffie_Hellman requirements
	Inputs to the Diffie-Hellman function
	Assumptions of the Diffie-Hellman function
	Outputs from the Diffie-Hellman function
	Operation of the Diffie-Hellman function
	Notes associated with the Diffie-Hellman function

	Generating DSA and ECDSA signatures
	Inputs to the DSA and ECDSA signature generation function
	Assumptions of the DSA and ECDSA signature generation function
	Outputs from the DSA and ECDSA signature generation function
	Operation of the DSA and ECDSA signature generation function
	Notes associated with the DSA and ECDSA Signature Generation function

	Verifying DSA and ECDSA signatures
	Inputs to the DSA and ECDSA signature verification function
	Assumptions of the DSA and ECDSA signature verification function
	Outputs from the DSA and ECDSA signature verification function
	Operation of the DSA and ECDSA signature verification function
	Notes associated with the DSA and ECDSA Signature Verification function

	Elliptic Curve Public Key Validation
	Inputs to the Elliptic Curve public key validation function
	Outputs from the Elliptic Curve public key validation function
	Operation of the Elliptic Curve public key validation function
	Notes associated with the Elliptic Curve public key validation function

	RSA Finalize Key Generation (RFKG)
	Implementation of the RSA encrypt operation
	Implementation of the RSA decrypt operation

	Key agreement functions
	Implementation of the derived key protocol
	Using DKP with HMAC keys
	Using DKP with ARC4 keys
	Implementation of the Blob Protocol

	Cryptographic hardware accelerators (CHAs)
	Public-key hardware accelerator (PKHA) functionality
	Modular math
	About Montgomery values
	Non-modular Math
	Elliptic-Curve Math
	ECC_MOD: Point math on a standard curve over a prime field (Fp)
	ECC_F2M: Point math on a standard curve over a binary field (F2m)

	PKHA Mode Register
	PKHA functions
	Copy memory, N-Size and Source-Size (COPY_NSZ and COPY_SSZ)
	Clear Memory (CLEAR_MEMORY) function
	Arithmetic Functions
	Integer Modular Addition (MOD_ADD) function
	Integer Modular Subtraction (MOD_SUB_1) function
	Integer Modular Subtraction (MOD_SUB_2) function
	Integer Modular Multiplication (MOD_MUL)
	Integer Modular Multiplication with Montgomery Inputs (MOD_MUL_IM)
	Integer Modular Multiplication with Montgomery Inputs and Outputs (MOD_MUL_IM_OM) Function
	Integer Modular Exponentiation (MOD_EXP and MOD_EXP_TEQ)
	Integer Modular Exponentiation, Montgomery Input (MOD_EXP_IM and MOD_EXP_IM_TEQ) Function
	Integer Simultaneous Modular Exponentiation (MOD_SML_EXP)
	Integer Modular Square (MOD_SQR and MOD_SQR_TEQ)
	Integer Modular Square, Montgomery inputs (MOD_SQR_IM and MOD_SQR_IM_TEQ)
	Integer Modular Square, Montgomery inputs and outputs (MOD_SQR_IM_OM and MOD_SQR_IM_OM_TEQ)
	Integer Modular Cube (MOD_CUBE and MOD_CUBE_TEQ)
	Integer Modular Cube, Montgomery input (MOD_CUBE_IM and MOD_CUBE_IM_TEQ)
	Integer Modular Cube, Montgomery input and output (MOD_CUBE_IM_OM and MOD_CUBE_IM_OM_TEQ)
	Integer Modular Square Root (MOD_SQRT)
	Integer Modulo Reduction (MOD_AMODN)
	Integer Modular Inversion (MOD_INV)
	Integer Montgomery Factor Computation (MOD_R2)
	Integer RERP mod P (MOD_RR)
	Integer Greatest Common Divisor (MOD_GCD)
	Miller_Rabin Primality Test (PRIME_TEST)
	Right Shift A (RIGHT_SHIFT_A) function
	Compare A B (COMPARE) function
	Evaluate A (EVALUATE) function
	Binary Polynomial (F2m) Addition (F2M_ADD) function
	Binary Polynomial (F2m) Modular Multiplication (F2M_MUL)
	Binary Polynomial (F2m) Modular Multiplication with Montgomery Inputs (F2M_MUL_IM) Function
	Binary Polynomial (F2m) Modular Multiplication with Montgomery Inputs and Outputs (F2M_MUL_IM_OM) Function
	Binary Polynomial (F2m) Modular Exponentiation (F2M_EXP and F2M_EXP_TEQ)
	Binary Polynomial (F2m) Simultaneous Modular Exponentiation (F2M_SML_EXP)
	Binary Polynomial (F2m) Modular Square (F2M_SQR and F2M_SQR_TEQ)
	Binary Polynomial (F2m) Modular Square, Montgomery Input (F2M_SQR_IM and F2M_SQR_IM_TEQ)
	Binary Polynomial (F2m) Modular Square, Montgomery Input and Output (F2M_SQR_IM_OM and F2M_SQR_IM_OM_TEQ)
	Binary Polynomial (F2m) Modular Cube (F2M_CUBE and F2M_CUBE_TEQ)
	Binary Polynomial (F2m) Modular Cube, Montgomery Input (F2M_CUBE_IM and F2M_CUBE_IM_TEQ)
	Binary Polynomial (F2m) Modular Cube, Montgomery Input and Output (F2M_CUBE_IM_OM and F2M_CUBE_IM_OM_TEQ)
	Binary Polynomial (F2m) Modulo Reduction (F2M_AMODN)
	Binary Polynomial (F2m) Modular Inversion (F2M_INV)
	Binary Polynomial (F2m) R2 Mod N (F2M_R2) Function
	Binary Polynomial (F2m) Greatest Common Divisor (F2M_GCD) Function

	Elliptic Curve Functions
	ECC Fp Point Add, Affine Coordinates (ECC_MOD_ADD) Function
	ECC Fp Point Add, Affine Coordinates, R2 Mod N Input (ECC_MOD_ADD_R2) Function
	ECC Fp Point Double, Affine Coordinates (ECC_MOD_DBL) Function
	ECC Fp Point Multiply, Affine Coordinates (ECC_MOD_MUL and ECC_MOD_MUL_TEQ) Function
	ECC Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECC_MOD_MUL_R2 and ECC_MOD_MUL_R2_TEQ) Function
	ECC Fp Check Point (ECC_MOD_CHECK_POINT) Function
	ECC Fp Check Point, R2 Mod N Input, Affine Coordinates (ECC_MOD_CHECK_POINT_R2) Function
	ECC F2m Point Add, Affine Coordinates (ECC_F2M_ADD) Function
	ECC F2m Point Add, Affine Coordinates, R2 Mod N Input (ECC_F2M_ADD_R2) Function
	ECC F2m Point Double - Affine Coordinates (ECC_F2M_DBL) Function
	ECC F2m Point Multiply, Affine Coordinates (ECC_F2M_MUL and ECC_F2M_MUL_TEQ) Function
	ECC F2m Point Multiply, R2 Mod N Input, Affine Coordinates (ECC_F2M_MUL_R2 and ECC_F2M_MUL_R2_TEQ) Function
	ECC F2m Check Point (ECC_F2M_CHECK_POINT) Function
	ECC F2m Check Point, R2 (ECC_F2M_CHECK_POINT_R2) Function
	ECM Modular Multiplication (ECM_MOD_MUL_X and ECM_MOD_MUL_X_TEQ) Function
	ECM Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECM_MOD_MUL_X_R2 and ECM_MOD_MUL_X_R2_TEQ) Function
	ECT Modular Multiplication (ECT_MOD_MUL and ECT_MOD_MUL_TEQ) Function
	ECT Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECT_MOD_MUL_R2 and ECT_MOD_MUL_R2_TEQ) Function
	ECT Fp Point Add, Affine Coordinates (ECT_MOD_ADD) Function
	ECT Fp Point Add, Affine Coordinates, R2 Mod N Input (ECT_MOD_ADD_R2) Function
	ECT Fp Check Point (ECT_MOD_CHECK_POINT) Function
	ECT Fp Check Point, R2 (ECT_MOD_CHECK_POINT_R2) Function
	Copy memory, N-Size and Source-Size (COPY_NSZ and COPY_SSZ)
	Right Shift A (R_SHIFT) function
	Compare A B (COMPARE) function
	Evaluate A (EVALUATE) function

	Special values for common ECC domains

	ARC-4 hardware accelerator (AFHA) CHA functionality
	AFHA use of the Mode Register
	AFHA use of the Context Register
	AFHA use of the Key Register
	AFHA use of the Data Size Register
	Save and restore operations in AFHA S-box and AFHA context data
	Sbox and context data operations

	ARC-4 operation considerations

	Data encryption standard accelerator (DES) functionality
	DESA use of the Mode Register
	DESA use of the Key Register
	DESA use of the Key Size Register
	DESA use of the Data Size Register
	DESA Context Register
	Save and store operations in DESA context data

	Random-number generator (RNG) functionality
	RNG features summary
	RNG functional description
	RNG state handles
	RNG NIST certification

	RNG operations
	RNG use of the Key Registers
	RNG use of the Context Register
	RNG use of the Data Size Register

	Message digest hardware accelerator (MDHA) functionality
	MDHA use of the Mode Register
	MDHA use of the Key Register
	Using the MDHA Key Register with normal keys
	Using the MDHA Key Register with Derived HMAC Keys
	Definition and function of Derived HMAC Keys
	Process flow when using the Key Register with Derived HMAC Keys
	Using padding with the Derived HMAC Key to align with storage
	Length of a Derived HMAC Key
	Loading/storing a Derived HMAC Key with a KEY command
	Loading/storing a Derived HMAC Key with a FIFO STORE command
	Sizes of Derived HMAC Keys
	Storing an HMAC-SHA-1 Derived Key in Memory

	MDHA use of the Key Size Register

	MDHA use of the Data Size Register
	MDHA use of the Context Register
	Save and restore operations in MDHA context data

	AES accelerator (AESA) functionality
	Differences between the AES encrypt and decrypt keys
	AESA modes of operation
	AESA use of registers
	AESA use of the parity bit
	AES ECB mode
	AES ECB mode use of the Mode Register
	AES ECB mode use of the Context Register
	AES ECB Mode use of the Data Size Register
	AES ECB Mode use of the Key Register
	AES ECB Mode use of the Key Size Register

	AES CBC, CBC-CS2, OFB, CFB128 modes
	AES CBC, OFB, and CFB128 modes use of the Mode Register
	AES CBC, OFB, and CFB128 modes use of the Context Register
	AES CBC, OFB, and CFB128 modes use of the Data Size Register
	AES CBC, OFB, and CFB128 modes use of the Key Register
	AES CBC, OFB, and CFB128 modes use of the Key Size Register

	AES CTR mode
	AES CTR mode use of the Mode Register
	AES CTR mode use of the Context Register
	AES CTR mode use of the Data Size Register
	AES CTR mode use of the Key Register
	AES CTR mode use of the Key Size Register

	AES XCBC-MAC and CMAC modes
	AES XCBC-MAC and CMAC modes use of the Mode Register
	AES XCBC-MAC and CMAC Modes use of the Context Register
	AES XCBC-MAC and CMAC modes use of the Class 1 ICV Size Register
	AES XCBC-MAC and CMAC modes use of the Data Size Register
	AES XCBC-MAC and CMAC modes use of the Key Register
	AES XCBC-MAC and CMAC modes use of the Key Size Register
	ICV checking in AES XCBC-MAC and CMAC modes

	AESA CCM mode
	Generation encryption
	Decryption verification
	AES CCM mode use of the Mode Register
	AES CCM mode use of the Context Register
	AES CCM mode use of the Data Size Register
	AES CCM mode use of the Key Register
	AES CCM mode use of the Key Size Register
	AES CCM mode use of the ICV check

	AES GCM mode
	GMAC
	GCM data types
	IV processing
	GCM initialization
	AES GCM mode use of the Mode Register
	AES GCM mode use of the Context Register
	AES GCM Mode use of the Data Size Register
	AES GCM mode use of the Class 1 IV Size Register
	AES GCM mode use of the AAD Size Register
	AES GCM mode use of the Class 1 ICV Size Register
	AES GCM mode use of the Key Register
	AES GCM mode use of the Key Size Register
	AES GCM mode use of the ICV check

	Trust Architecture modules
	Run-time Integrity Checker (RTIC)
	RTIC modes of operation
	RTIC initialization and operation
	RTIC use of the Throttle Register
	RTIC use of command, configuration, and status registers
	Initializing RTIC
	RTIC Memory Block Address/Length Registers

	CAAM virtualization and security domain identifiers (SDIDs)
	Access Control
	Virtualization
	Security domain identifiers (SDIDs)
	TrustZone SecureWorld

	Special-purpose cryptographic keys
	Initializing and clearing black and trusted descriptor keys
	Black keys and JDKEK/TDKEK
	Trusted descriptors and TDSK
	Master key and blobs

	Black keys
	Black key encapsulation schemes
	Differences between black and red keys
	Loading red keys
	Loading black keys
	Avoiding errors when loading red and black keys
	Encapsulating and decapsulating black keys
	Types of black keys and their use
	Types of blobs for key storage

	Trusted descriptors
	Why trusted descriptors are needed
	Trusted-descriptor key types and uses
	Trusted descriptors encrypting/decrypting black keys
	Trusted-descriptor blob types and uses
	Trusted descriptors and secure memory
	Configuring the system to create trusted descriptors properly
	Creating trusted descriptors
	Trusted descriptors and descriptor-header bits
	Trusted-descriptor execution considerations

	Blobs
	Blob protocol
	Why blobs are needed
	Blob conformance considerations
	Encapsulating and decapsulating blobs
	Blob types
	Blob types differentiated by format
	Blob types differentiated by content
	Red blobs (for general data)
	Black blobs (for cryptographic keys)
	Enforcing blob content type

	Blob types differentiated by security state
	Blob types differentiated by memory type
	General/Secure Memory blobs and access control
	Differences between general memory and Secure Memory blobs

	Blob encapsulation
	Blob decapsulation

	Critical security parameters
	Secure memory
	CAAM Secure Memory features
	Secure memory controller (SMC) states
	SMC initialize state
	SMC normal state
	SMC fail state

	Secure memory organization
	Secure memory security functions
	Automatic RAM zeroization
	Zeroizing Secure Memory marked "CSP"

	Secure Memory Access Control
	Access control through the OS or hypervisor
	Access control through Job Rings
	Setting Secure Memory access control permissions

	Cryptographic protection of exported data
	Exporting/importing memory type blobs
	Access permissions cryptographically bound to Secure Memory blobs

	Initializing Secure Memory

	Manufacturing-protection chip-authentication process
	Providing data to the manufacturing-protection authentication process
	Specifying the ECC domain curve for the manufacturing-protection functions
	Providing data to the MPPrivk_generation function
	Providing data to the MPPubk_generation function
	Providing data to the MPSign function
	Role of the ROM-resident secure boot firmware

	MPPrivk_generation function
	Differences between the MPPrivk_generation function and the DL KEY PAIR GEN function
	MPPrivk_generation function parameters and operation
	Protocol data block (PDB) for the MPPrivk_generation function

	MPPubk_generation function
	Differences between the MPPubk_generation function and the DL KEY PAIR GEN function
	MPPubk_generation function parameters and operation
	Protocol data block (PDB) for the MPPubk_generation function
	Running the MPPubK generation function at the OEM's facility

	MPSign function
	MPSign function parameters and operation
	Protocol data block (PDB) MPSign function

	CAAM service error detection, recovery (reset), and reconfiguration
	Software CAAM Reset
	Job ring error detection, recovery, reset and reconfiguration
	Job ring user error detection, recovery, reset, and reconfiguration services
	Error recovery
	Unrecoverable conditions
	User reconfiguration options

	Job ring error detection, recovery, reset, and reconfiguration management services
	Recoverable error status notifications
	Ring user access termination procedure
	Ring user (re-)assignment procedure

	RTIC error detection, recovery, reset, and reconfiguration
	RTIC user services
	RTIC management services
	Recoverable error conditions
	Unrecoverable error conditions
	Reconfiguration procedure

	Global and DECO error detection, recovery, reset, and reconfiguration
	Global and DECO user services
	Global CAAM and DECO management services
	Error detection
	Recovery procedure

	CAAM register descriptions
	CAAM memory map
	Master Configuration Register (MCFGR)
	Page 0 SDID Register (PAGE0_SDID)
	Security Configuration Register (SCFGR)
	Job Ring a DID Register - most significant half (JR0DID_MS - JR2DID_MS)
	Job Ring a DID Register - least significant half (JR0DID_LS - JR2DID_LS)
	Debug Control Register (DEBUGCTL)
	Job Ring Start Register (JRSTARTR)
	RTIC OWN Register (RTIC_OWN)
	RTIC DID Register for Block a (RTICA_DID - RTICD_DID)
	DECO Request Source Register (DECORSR)
	DECO Request Register (DECORR)
	DECO Availability Register (DAR)
	DECO Reset Register (DRR)
	Job Ring a Secure Memory Virtual Base Address Register (JR0SMVBAR - JR2SMVBAR)
	Peak Bandwidth Smoothing Limit Register (PBSL)
	DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS)
	DMA0_AIDL_MAP_LS (DMA0_AIDL_MAP_LS)
	DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS)
	DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS)
	DMA0 AXI ID Enable Register (DMA0_AID_ENB)
	DMA0 AXI Read Timing Check Register (DMA0_ARD_TC)
	DMA0 Read Timing Check Latency Register (DMA0_ARD_LAT)
	DMA0 AXI Write Timing Check Register (DMA0_AWR_TC)
	DMA0 Write Timing Check Latency Register (DMA0_AWR_LAT)
	Manufacturing Protection Private Key Register (MPPKR0 - MPPKR63)
	Manufacturing Protection Message Register (MPMR0 - MPMR31)
	Manufacturing Protection Test Register (MPTESTR0 - MPTESTR31)
	Manufacturing Protection ECC Register (MPECC)
	Job Descriptor Key Encryption Key Register (JDKEKR0 - JDKEKR7)
	Trusted Descriptor Key Encryption Key Register (TDKEKR0 - TDKEKR7)
	Trusted Descriptor Signing Key Register (TDSKR0 - TDSKR7)
	Secure Key Nonce Register (SKNR)
	DMA Status Register (DMA_STA)
	DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP)
	DMA_X_AID_3_0_MAP (DMA_X_AID_3_0_MAP)
	DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP)
	DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP)
	DMA_X AXI ID Map Enable Register (DMA_X_AID_15_0_EN)
	DMA_X AXI Read Timing Check Control Register (DMA_X_ARTC_CTL)
	DMA_X AXI Read Timing Check Late Count Register (DMA_X_ARTC_LC)
	DMA_X AXI Read Timing Check Sample Count Register (DMA_X_ARTC_SC)
	DMA_X Read Timing Check Latency Register (DMA_X_ARTC_LAT)
	DMA_X AXI Write Timing Check Control Register (DMA_X_AWTC_CTL)
	DMA_X AXI Write Timing Check Late Count Register (DMA_X_AWTC_LC)
	DMA_X AXI Write Timing Check Sample Count Register (DMA_X_AWTC_SC)
	DMA_X Write Timing Check Latency Register (DMA_X_AWTC_LAT)
	RNG TRNG Miscellaneous Control Register (RTMCTL)
	RNG TRNG Statistical Check Miscellaneous Register (RTSCMISC)
	RNG TRNG Poker Range Register (RTPKRRNG)
	RNG TRNG Poker Maximum Limit Register (RTPKRMAX)
	RNG TRNG Poker Square Calculation Result Register (RTPKRSQ)
	RNG TRNG Seed Control Register (RTSDCTL)
	RNG TRNG Sparse Bit Limit Register (RTSBLIM)
	RNG TRNG Total Samples Register (RTTOTSAM)
	RNG TRNG Frequency Count Minimum Limit Register (RTFRQMIN)
	RNG TRNG Frequency Count Register (RTFRQCNT)
	RNG TRNG Frequency Count Maximum Limit Register (RTFRQMAX)
	RNG TRNG Statistical Check Monobit Count Register (RTSCMC)
	RNG TRNG Statistical Check Monobit Limit Register (RTSCML)
	RNG TRNG Statistical Check Run Length 1 Count Register (RTSCR1C)
	RNG TRNG Statistical Check Run Length 1 Limit Register (RTSCR1L)
	RNG TRNG Statistical Check Run Length 2 Count Register (RTSCR2C)
	RNG TRNG Statistical Check Run Length 2 Limit Register (RTSCR2L)
	RNG TRNG Statistical Check Run Length 3 Count Register (RTSCR3C)
	RNG TRNG Statistical Check Run Length 3 Limit Register (RTSCR3L)
	RNG TRNG Statistical Check Run Length 4 Count Register (RTSCR4C)
	RNG TRNG Statistical Check Run Length 4 Limit Register (RTSCR4L)
	RNG TRNG Statistical Check Run Length 5 Count Register (RTSCR5C)
	RNG TRNG Statistical Check Run Length 5 Limit Register (RTSCR5L)
	RNG TRNG Statistical Check Run Length 6+ Count Register (RTSCR6PC)
	RNG TRNG Statistical Check Run Length 6+ Limit Register (RTSCR6PL)
	RNG TRNG Status Register (RTSTATUS)
	RNG TRNG Entropy Read Register (RTENT0 - RTENT15)
	RNG TRNG Statistical Check Poker Count 1 and 0 Register (RTPKRCNT10)
	RNG TRNG Statistical Check Poker Count 3 and 2 Register (RTPKRCNT32)
	RNG TRNG Statistical Check Poker Count 5 and 4 Register (RTPKRCNT54)
	RNG TRNG Statistical Check Poker Count 7 and 6 Register (RTPKRCNT76)
	RNG TRNG Statistical Check Poker Count 9 and 8 Register (RTPKRCNT98)
	RNG TRNG Statistical Check Poker Count B and A Register (RTPKRCNTBA)
	RNG TRNG Statistical Check Poker Count D and C Register (RTPKRCNTDC)
	RNG TRNG Statistical Check Poker Count F and E Register (RTPKRCNTFE)
	RNG DRNG Status Register (RDSTA)
	RNG DRNG State Handle 0 Reseed Interval Register (RDINT0)
	RNG DRNG State Handle 1 Reseed Interval Register (RDINT1)
	RNG DRNG Hash Control Register (RDHCNTL)
	RNG DRNG Hash Digest Register (RDHDIG)
	RNG DRNG Hash Buffer Register (RDHBUF)
	Partition c SDID register (P0SDID_PG0 - P7SDID_JR2)
	Secure Memory Access Permissions register (P0SMAPR_PG0 - P7SMAPR_JR2)
	Secure Memory Access Group Registers (P0SMAG2_PG0 - P7SMAG1_JR2)
	Recoverable Error Indication Status (REIS)
	Recoverable Error Indication Halt (REIH)
	Secure Memory Write Protect Job Ring Register (SMWPJR0R - SMWPJR2R)
	Secure Memory Command Register (SMCR_PG0 - SMCR_JR2)
	Secure Memory Command Status Register (SMCSR_PG0 - SMCSR_JR2)
	CAAM Version ID Register, most-significant half (CAAMVID_MS)
	CAAM Version ID Register, least-significant half (CAAMVID_LS)
	Holding Tank 0 Job Descriptor Address (HT0_JD_ADDR)
	Holding Tank 0 Shared Descriptor Address (HT0_SD_ADDR)
	Holding Tank 0 Job Queue Control, most-significant half (HT0_JQ_CTRL_MS)
	Holding Tank 0 Job Queue Control, least-significant half (HT0_JQ_CTRL_LS)
	Holding Tank Status (HT0_STATUS)
	Job Queue Debug Select Register (JQ_DEBUG_SEL)
	Job Ring Job IDs in Use Register, least-significant half (JRJIDU_LS)
	Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC)
	Job Ring Job-Done Job ID FIFO (JRJDJIF)
	Job Ring Job-Done Source 1 (JRJDS1)
	Job Ring Job-Done Descriptor Address 0 Register (JRJDDA)
	CHA Revision Number Register, most-significant half (CRNR_MS)
	CHA Revision Number Register, least-significant half (CRNR_LS)
	Compile Time Parameters Register, most-significant half (CTPR_MS)
	Compile Time Parameters Register, least-significant half (CTPR_LS)
	Secure Memory Status Register (SMSTA)
	Secure Memory Partition Owners Register (SMPO)
	Fault Address Register (FAR)
	Fault Address DID Register (FADID)
	Fault Address Detail Register (FADR)
	CAAM Status Register (CSTA)
	Secure Memory Version ID Register, most-significant half (SMVID_MS)
	Secure Memory Version ID Register, least-significant half (SMVID_LS)
	RTIC Version ID Register (RVID)
	CHA Cluster Block Version ID Register (CCBVID)
	CHA Version ID Register, most-significant half (CHAVID_MS)
	CHA Version ID Register, least-significant half (CHAVID_LS)
	CHA Number Register, most-significant half (CHANUM_MS)
	CHA Number Register, least-significant half (CHANUM_LS)
	Input Ring Base Address Register for Job Ring a (IRBAR_JR0 - IRBAR_JR2)
	Input Ring Size Register for Job Ring a (IRSR_JR0 - IRSR_JR2)
	Input Ring Slots Available Register for Job Ring a (IRSAR_JR0 - IRSAR_JR2)
	Input Ring Jobs Added Register for Job Ringa (IRJAR_JR0 - IRJAR_JR2)
	Output Ring Base Address Register for Job Ring a (ORBAR_JR0 - ORBAR_JR2)
	Output Ring Size Register for Job Ring a (ORSR_JR0 - ORSR_JR2)
	Output Ring Jobs Removed Register for Job Ring a (ORJRR_JR0 - ORJRR_JR2)
	Output Ring Slots Full Register for Job Ring a (ORSFR_JR0 - ORSFR_JR2)
	Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR2)
	Job Ring Interrupt Status Register for Job Ring a (JRINTR_JR0 - JRINTR_JR2)
	Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_MS - JRCFGR_JR2_MS)
	Job Ring Configuration Register for Job Ring a, least-significant half (JRCFGR_JR0_LS - JRCFGR_JR2_LS)
	Input Ring Read Index Register for Job Ring a (IRRIR_JR0 - IRRIR_JR2)
	Output Ring Write Index Register for Job Ring a (ORWIR_JR0 - ORWIR_JR2)
	Job Ring Command Register for Job Ring a (JRCR_JR0 - JRCR_JR2)
	Job Ring a Address-Array Valid Register (JR0AAV - JR2AAV)
	Job Ring a Address-Array Address b Register (JR0AAA0 - JR2AAA3)
	Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0 - REIR0JR2)
	Recoverable Error Indication Record 2 for Job Ring a (REIR2JR0 - REIR2JR2)
	Recoverable Error Indication Record 4 for Job Ring a (REIR4JR0 - REIR4JR2)
	Recoverable Error Indication Record 5 for Job Ring a (REIR5JR0 - REIR5JR2)
	RTIC Status Register (RSTA)
	RTIC Command Register (RCMD)
	RTIC Control Register (RCTL)
	RTIC Throttle Register (RTHR)
	RTIC Watchdog Timer (RWDOG)
	RTIC Endian Register (REND)
	RTIC Memory Block a Address b Register (RMAA0 - RMDA1)
	RTIC Memory Block a Length b Register (RMAL0 - RMDL1)
	RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)
	Recoverable Error Indication Record 0 for RTIC (REIR0RTIC)
	Recoverable Error Indication Record 2 for RTIC (REIR2RTIC)
	Recoverable Error Indication Record 4 for RTIC (REIR4RTIC)
	Recoverable Error Indication Record 5 for RTIC (REIR5RTIC)
	CCB 0 Class 1 Mode Register Format for Non-Public Key Algorithms (C0C1MR)
	CCB 0 Class 1 Mode Register Format for Public Key Algorithms (C0C1MR_PK)
	CCB 0 Class 1 Mode Register Format for RNG4 (C0C1MR_RNG)
	CCB 0 Class 1 Key Size Register (C0C1KSR)
	CCB 0 Class 1 Data Size Register (C0C1DSR)
	CCB 0 Class 1 ICV Size Register (C0C1ICVSR)
	CCB 0 CHA Control Register (C0CCTRL)
	CCB 0 Interrupt Control Register (C0ICTL)
	CCB 0 Clear Written Register (C0CWR)
	CCB 0 Status and Error Register, most-significant half (C0CSTA_MS)
	CCB 0 Status and Error Register, least-significant half (C0CSTA_LS)
	CCB 0 Class 1 AAD Size Register (C0C1AADSZR)
	CCB 0 Class 1 IV Size Register (C0C1IVSZR)
	PKHA A Size Register (C0PKASZR)
	PKHA B Size Register (C0PKBSZR)
	PKHA N Size Register (C0PKNSZR)
	PKHA E Size Register (C0PKESZR)
	CCB 0 Class 1 Context Register Word a (C0C1CTXR0 - C0C1CTXR15)
	CCB 0 Class 1 Key Registers Word a (C0C1KR0 - C0C1KR7)
	CCB 0 Class 2 Mode Register (C0C2MR)
	CCB 0 Class 2 Key Size Register (C0C2KSR)
	CCB 0 Class 2 Data Size Register (C0C2DSR)
	CCB 0 Class 2 ICV Size Register (C0C2ICVSZR)
	CCB 0 Class 2 Context Register Word a (C0C2CTXR0 - C0C2CTXR9)
	CCB 0 Class 2 Key Register Word a (C0C2KEYR0 - C0C2KEYR15)
	CCB 0 FIFO Status Register (C0FIFOSTA)
	CCB 0 iNformation FIFO When STYPE != 10b (C0NFIFO)
	CCB 0 iNformation FIFO When STYPE == 10b (C0NFIFO_2)
	CCB 0 Input Data FIFO (C0IFIFO)
	CCB 0 Output Data FIFO (C0OFIFO)
	DECO0 Job Queue Control Register, most-significant half (D0JQCR_MS)
	DECO0 Job Queue Control Register, least-significant half (D0JQCR_LS)
	DECO0 Descriptor Address Register (D0DAR)
	DECO0 Operation Status Register, most-significant half (D0OPSTA_MS)
	DECO0 Operation Status Register, least-significant half (D0OPSTA_LS)
	DECO0 Primary DID Status Register (D0PDIDSR)
	DECO0 Output DID Status Register (D0ODIDSR)
	DECO0 Math Register m_MS (D0MTH0_MS - D0MTH3_MS)
	DECO0 Math Register m_LS (D0MTH0_LS - D0MTH3_LS)
	DECO0 Gather Table Register 0 Word 0 (D0GTR0_0)
	DECO0 Gather Table Register 0 Word 1 (D0GTR0_1)
	DECO0 Gather Table Register 0 Word 2 (D0GTR0_2)
	DECO0 Gather Table Register 0 Word 3 (D0GTR0_3)
	DECO0 Scatter Table Register 0 Word 0 (D0STR0_0)
	DECO0 Scatter Table Register 0 Word 1 (D0STR0_1)
	DECO0 Scatter Table Register 0 Word 2 (D0STR0_2)
	DECO0 Scatter Table Register 0 Word 3 (D0STR0_3)
	DECO0 Descriptor Buffer Word a (D0DESB0 - D0DESB63)
	DECO0 Debug Job Register (D0DJR)
	DECO0 Debug DECO Register (D0DDR)
	DECO0 Debug Job Pointer (D0DJP)
	DECO0 Debug Shared Pointer (D0SDP)
	DECO0 Debug DID, most-significant half (D0DDR_MS)
	DECO0 Debug DID, least-significant half (D0DDR_LS)
	Sequence Output Length Register (SOL0)
	Variable Sequence Output Length Register (VSOL0)
	Sequence Input Length Register (SIL0)
	Variable Sequence Input Length Register (VSIL0)
	Protocol Override Register (D0POVRD)
	Variable Sequence Output Length Register; Upper 32 bits (UVSOL0)
	Variable Sequence Input Length Register; Upper 32 bits (UVSIL0)

	Chapter 11: Secure Non-Volatile Storage (SNVS)
	SNVS introduction
	SNVS feature list
	SNVS functional description

	SNVS Structure
	SNVS power domains
	Digital Low-Voltage Detector (LVD)
	SNVS clock sources

	Security violation policy
	Security state machine
	SNVS interrupts, alarms, and security violations
	Configuring SNVS's response to a security event
	SNVS_LP security event policy
	High Assurance Counter

	Runtime Procedures
	Using SNVS Timer Facilities
	SNVS_HP Real Time Counter
	SNVS_LP Secure Real Time Counter (SRTC)
	RTC/SRTC control bits setting
	Reading RTC and SRTC values

	Using Other SNVS Registers
	Using the General-Purpose Register
	Using the Monotonic Counter (MC)

	Configuring Master Key checking and control
	Error Code for the OTPMK
	Provisioning the Zeroizable Master Key

	Reset and Initialization of SNVS
	Checklist for Initialization of the SNVS HP
	Checklist for Initialization of the SNVS LP

	SNVS register descriptions
	SNVS memory map
	SNVS_HP Lock Register (HPLR)
	SNVS_HP Command Register (HPCOMR)
	SNVS_HP Control Register (HPCR)
	SNVS_HP Security Interrupt Control Register (HPSICR)
	SNVS_HP Security Violation Control Register (HPSVCR)
	SNVS_HP Status Register (HPSR)
	SNVS_HP Security Violation Status Register (HPSVSR)
	SNVS_HP High Assurance Counter IV Register (HPHACIVR)
	SNVS_HP High Assurance Counter Register (HPHACR)
	SNVS_HP Real Time Counter MSB Register (HPRTCMR)
	SNVS_HP Real Time Counter LSB Register (HPRTCLR)
	SNVS_HP Time Alarm MSB Register (HPTAMR)
	SNVS_HP Time Alarm LSB Register (HPTALR)
	SNVS_LP Lock Register (LPLR)
	SNVS_LP Control Register (LPCR)
	SNVS_LP Master Key Control Register (LPMKCR)
	SNVS_LP Security Violation Control Register (LPSVCR)
	SNVS_LP Security Events Configuration Register (LPSECR)
	SNVS_LP Status Register (LPSR)
	SNVS_LP Secure Real Time Counter MSB Register (LPSRTCMR)
	SNVS_LP Secure Real Time Counter LSB Register (LPSRTCLR)
	SNVS_LP Time Alarm Register (LPTAR)
	SNVS_LP Secure Monotonic Counter MSB Register (LPSMCMR)
	SNVS_LP Secure Monotonic Counter LSB Register (LPSMCLR)
	SNVS_LP Digital Low-Voltage Detector Register (LPLVDR)
	SNVS_LP General Purpose Register 0 (legacy alias) (LPGPR0_legacy_alias)
	SNVS_LP Zeroizable Master Key Register (LPZMKR0 - LPZMKR7)
	SNVS_LP General Purpose Registers 0 .. 3 (LPGPR0 - LPGPR3)
	SNVS_HP Version ID Register 1 (HPVIDR1)
	SNVS_HP Version ID Register 2 (HPVIDR2)

	Appendix A: Cryptographic Acceleration and Assurance Module (CAAM) Glossary
	Acronyms and abbreviations
	Glossary

